Search results for: technological parameters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10202

Search results for: technological parameters

7202 Thermodynamic Modeling and Exergoeconomic Analysis of an Isobaric Adiabatic Compressed Air Energy Storage System

Authors: Youssef Mazloum, Haytham Sayah, Maroun Nemer

Abstract:

The penetration of renewable energy sources into the electric grid is significantly increasing. However, the intermittence of these sources breaks the balance between supply and demand for electricity. Hence, the importance of the energy storage technologies, they permit restoring the balance and reducing the drawbacks of intermittence of the renewable energies. This paper discusses the modeling and the cost-effectiveness of an isobaric adiabatic compressed air energy storage (IA-CAES) system. The proposed system is a combination among a compressed air energy storage (CAES) system with pumped hydro storage system and thermal energy storage system. The aim of this combination is to overcome the disadvantages of the conventional CAES system such as the losses due to the storage pressure variation, the loss of the compression heat and the use of fossil fuel sources. A steady state model is developed to perform an energy and exergy analyses of the IA-CAES system and calculate the distribution of the exergy losses in the latter system. A sensitivity analysis is also carried out to estimate the effects of some key parameters on the system’s efficiency, such as the pinch of the heat exchangers, the isentropic efficiency of the rotating machinery and the pressure losses. The conducted sensitivity analysis is a local analysis since the sensibility of each parameter changes with the variation of the other parameters. Therefore, an exergoeconomic study is achieved as well as a cost optimization in order to reduce the electricity cost produced during the production phase. The optimizer used is OmOptim which is a genetic algorithms based optimizer.

Keywords: cost-effectiveness, Exergoeconomic analysis, isobaric adiabatic compressed air energy storage (IA-CAES) system, thermodynamic modeling

Procedia PDF Downloads 236
7201 Blockchain for Transport: Performance Simulations of Blockchain Network for Emission Monitoring Scenario

Authors: Dermot O'Brien, Vasileios Christaras, Georgios Fontaras, Igor Nai Fovino, Ioannis Kounelis

Abstract:

With the rise of the Internet of Things (IoT), 5G, and blockchain (BC) technologies, vehicles are becoming ever increasingly connected and are already transmitting substantial amounts of data to the original equipment manufacturers (OEMs) servers. This data could be used to help detect mileage fraud and enable more accurate vehicle emissions monitoring. This would not only help regulators but could enable applications such as permitting efficient drivers to pay less tax, geofencing for air quality improvement, as well as pollution tolling and trading platforms for transport-related businesses and EU citizens. Other applications could include traffic management and shared mobility systems. BC enables the transmission of data with additional security and removes single points of failure while maintaining data provenance, identity ownership, and the possibility to retain varying levels of privacy depending on the requirements of the applied use case. This research performs simulations of vehicles interacting with European member state authorities and European Commission BC nodes that are running hyperleger fabric and explores whether the technology is currently feasible for transport applications such as the emission monitoring use-case.

Keywords: future transportation systems, technological innovations, policy approaches for transportation future, economic and regulatory trends, blockchain

Procedia PDF Downloads 160
7200 Indium-Gallium-Zinc Oxide Photosynaptic Device with Alkylated Graphene Oxide for Optoelectronic Spike Processing

Authors: Seyong Oh, Jin-Hong Park

Abstract:

Recently, neuromorphic computing based on brain-inspired artificial neural networks (ANNs) has attracted huge amount of research interests due to the technological abilities to facilitate massively parallel, low-energy consuming, and event-driven computing. In particular, research on artificial synapse that imitate biological synapses responsible for human information processing and memory is in the spotlight. Here, we demonstrate a photosynaptic device, wherein a synaptic weight is governed by a mixed spike consisting of voltage and light spikes. Compared to the device operated only by the voltage spike, ∆G in the proposed photosynaptic device significantly increased from -2.32nS to 5.95nS with no degradation of nonlinearity (NL) (potentiation/depression values were changed from 4.24/8 to 5/8). Furthermore, the Modified National Institute of Standards and Technology (MNIST) digit pattern recognition rates improved from 36% and 49% to 50% and 62% in ANNs consisting of the synaptic devices with 20 and 100 weight states, respectively. We expect that the photosynaptic device technology processed by optoelectronic spike will play an important role in implementing the neuromorphic computing systems in the future.

Keywords: optoelectronic synapse, IGZO (Indium-Gallium-Zinc Oxide) photosynaptic device, optoelectronic spiking process, neuromorphic computing

Procedia PDF Downloads 159
7199 Impact of the Quality of Aggregate on the Elasticity Modulus of Concrete

Authors: K. Krizova

Abstract:

This objective of this article is to present concrete that differs by the size of the aggregate used. The set of concrete contained six concrete recipes manufactured as traditional vibrated concrete containing identical basic components of concrete. The experiment focused on monitoring the resulting properties of hardened concrete, specifically the primary strength and modulus of the concrete elasticity and the developing parameters from 7 to 180 days were assessed.

Keywords: aggregate, cement, concrete, elasticity modulus

Procedia PDF Downloads 300
7198 The Artificial Intelligence (AI) Impact on Project Management: A Destructive or Transformative Agent

Authors: Kwame Amoah

Abstract:

Artificial intelligence (AI) has the prospect of transforming project management, significantly improving efficiency and accuracy. By automating specific tasks with defined guidelines, AI can assist project managers in making better decisions and allocating resources efficiently, with possible risk mitigation. This study explores how AI is already impacting project management and likely future AI's impact on the field. The AI's reaction has been a divided opinion; while others picture it as a destroyer of jobs, some welcome it as an innovation advocate. Both sides agree that AI will be disruptive and revolutionize PM's functions. If current research is to go by, AI or some form will replace one-third of all learning graduate PM jobs by as early as 2030. A recent survey indicates AI spending will reach $97.9 billion by the end of 2023. Considering such a profound impact, the project management profession will also see a paradigm shift driven by AI. The study examines what the project management profession will look like in the next 5-10 years after this technological disruption. The research methods incorporate existing literature, develop trend analysis, and conduct structured interviews with project management stakeholders from North America to gauge the trend. PM professionals can harness the power of AI, ensuring a smooth transition and positive outcomes. AI adoption will maximize benefits, minimize adverse consequences, and uphold ethical standards, leading to improved project performance.

Keywords: project management, disruptive teacnologies, project management function, AL applications, artificial intelligence

Procedia PDF Downloads 65
7197 Comprehensive Approach to Control Virus Infection and Energy Consumption in An Occupant Classroom

Authors: SeyedKeivan Nateghi, Jan Kaczmarczyk

Abstract:

People nowadays spend most of their time in buildings. Accordingly, maintaining a good quality of indoor air is very important. New universal matters related to the prevalence of Covid-19 also highlight the importance of indoor air conditioning in reducing the risk of virus infection. Cooling and Heating of a house will provide a suitable zone of air temperature for residents. One of the significant factors in energy demand is energy consumption in the building. In general, building divisions compose more than 30% of the world's fundamental energy requirement. As energy demand increased, greenhouse effects emerged that caused global warming. Regardless of the environmental damage to the ecosystem, it can spread infectious diseases such as malaria, cholera, or dengue to many other parts of the world. With the advent of the Covid-19 phenomenon, the previous instructions to reduce energy consumption are no longer responsive because they increase the risk of virus infection among people in the room. Two problems of high energy consumption and coronavirus infection are opposite. A classroom with 30 students and one teacher in Katowice, Poland, considered controlling two objectives simultaneal. The probability of transmission of the disease is calculated from the carbon dioxide concentration of people. Also, in a certain period, the amount of energy consumption is estimated by EnergyPlus. The effect of three parameters of number, angle, and time or schedule of opening windows on the probability of infection transmission and energy consumption of the class were investigated. Parameters were examined widely to determine the best possible condition for simultaneous control of infection spread and energy consumption. The number of opening windows is discrete (0,3), and two other parameters are continuous (0,180) and (8 AM, 2 PM). Preliminary results show that changes in the number, angle, and timing of window openings significantly impact the likelihood of virus transmission and class energy consumption. The greater the number, tilt, and timing of window openings, the less likely the student will transmit the virus. But energy consumption is increasing. When all the windows were closed at all hours of the class, the energy consumption for the first day of January was only 0.2 megajoules. In comparison, the probability of transmitting the virus per person in the classroom is more than 45%. But when all windows were open at maximum angles during class, the chance of transmitting the infection was reduced to 0.35%. But the energy consumption will be 36 megajoules. Therefore, school classrooms need an optimal schedule to control both functions. In this article, we will present a suitable plan for the classroom with natural ventilation through windows to control energy consumption and the possibility of infection transmission at the same time.

Keywords: Covid-19, energy consumption, building, carbon dioxide, energyplus

Procedia PDF Downloads 85
7196 NOx Abatement by CO with the Use of Grain Catalysts with Active Coating Made of Transition Metal (Cu, Mn, Nb) Oxides Prepared by Electroless Chemical Deposition Method

Authors: Davyd Urbanas, Pranas Baltrenas

Abstract:

It is well-known that, despite the constant increase of alternative energy sources usage, today combustible fuels are still widely used in power engineering. As a result of fuel combustion, significant amounts of nitrogen oxides (NOx) and carbon monoxide (CO is a product of incomplete combustion) are supplied to the atmosphere. Also, these pollutants are formed in industry (chemical production, refining, and metal production). In this work, the investigation of nitrogen oxides CO-selective catalytic reduction using new grain load-type catalysts was carried out. The catalysts containing the substrate and a thin active coating made of transition metal (Mn, Cu, and Nb) oxides were prepared with the use of electroless chemical deposition method. Chemical composition, chemical state, and morphology of the formed active coating were investigated using ICP-OES, EDX, SEM, and XPS techniques. The obtained results revealed that the prepared catalysts (Cu-Mn-oxide and Cu-Mn-Nb-oxide) have rough and developed surface and can be successfully used for the flue gas catalytic purification. The significant advantage of prepared catalysts is their suitability from technological application point of view, which differs this work from others dedicated to gas purification by SCR.

Keywords: flue gas, nitrogen oxides, selective catalytic reduction, transition metal oxides

Procedia PDF Downloads 149
7195 A West Coast Estuarine Case Study: A Predictive Approach to Monitor Estuarine Eutrophication

Authors: Vedant Janapaty

Abstract:

Estuaries are wetlands where fresh water from streams mixes with salt water from the sea. Also known as “kidneys of our planet”- they are extremely productive environments that filter pollutants, absorb floods from sea level rise, and shelter a unique ecosystem. However, eutrophication and loss of native species are ailing our wetlands. There is a lack of uniform data collection and sparse research on correlations between satellite data and in situ measurements. Remote sensing (RS) has shown great promise in environmental monitoring. This project attempts to use satellite data and correlate metrics with in situ observations collected at five estuaries. Images for satellite data were processed to calculate 7 bands (SIs) using Python. Average SI values were calculated per month for 23 years. Publicly available data from 6 sites at ELK was used to obtain 10 parameters (OPs). Average OP values were calculated per month for 23 years. Linear correlations between the 7 SIs and 10 OPs were made and found to be inadequate (correlation = 1 to 64%). Fourier transform analysis on 7 SIs was performed. Dominant frequencies and amplitudes were extracted for 7 SIs, and a machine learning(ML) model was trained, validated, and tested for 10 OPs. Better correlations were observed between SIs and OPs, with certain time delays (0, 3, 4, 6 month delay), and ML was again performed. The OPs saw improved R² values in the range of 0.2 to 0.93. This approach can be used to get periodic analyses of overall wetland health with satellite indices. It proves that remote sensing can be used to develop correlations with critical parameters that measure eutrophication in situ data and can be used by practitioners to easily monitor wetland health.

Keywords: estuary, remote sensing, machine learning, Fourier transform

Procedia PDF Downloads 85
7194 ‘BEST BARK’ Dog Care and Owner Consultation System

Authors: Shalitha Jayasekara, Saluk Bawantha, Dinithi Anupama, Isuru Gunarathne, Pradeepa Bandara, Hansi De Silva

Abstract:

Dogs have been known as "man's best friend" for generations, providing friendship and loyalty to their human counterparts. However, due to people's busy lives, they are unaware of the ailments that can affect their pets. However, in recent years, mobile technologies have had a significant impact on our lives, and with technological improvements, a rule-based expert system allows the end-user to enable new types of healthcare systems. The advent of Android OS-based smartphones with more user-friendly interfaces and lower pricing opens new possibilities for continuous monitoring of pets' health conditions, such as healthy dogs, dangerous ingestions, and swallowed objects. The proposed ‘Best Bark’ Dog care and owner consultation system is a mobile application for dog owners. Four main components for dog owners were implemented after a questionnaire was distributed to the target group of audience and the findings were evaluated. The proposed applications are widely used to provide health and clinical support to dog owners, including suggesting exercise and diet plans and answering queries about their dogs. Additionally, after the owner uploads a photo of the dog, the application provides immediate feedback and a description of the dog's skin disease.

Keywords: Convolution Neural Networks, Artificial Neural Networks, Knowledgebase, Sentimental Analysis.

Procedia PDF Downloads 141
7193 Application and Aspects of Biometeorology in Inland Open Water Fisheries Management in the Context of Changing Climate: Status and Research Needs

Authors: U.K. Sarkar, G. Karnatak, P. Mishal, Lianthuamluaia, S. Kumari, S.K. Das, B.K. Das

Abstract:

Inland open water fisheries provide food, income, livelihood and nutritional security to millions of fishers across the globe. However, the open water ecosystem and fisheries are threatened due to climate change and anthropogenic pressures, which are more visible in the recent six decades, making the resources vulnerable. Understanding the interaction between meteorological parameters and inland fisheries is imperative to develop mitigation and adaptation strategies. As per IPCC 5th assessment report, the earth is warming at a faster rate in recent decades. Global mean surface temperature (GMST) for the decade 2006–2015 (0.87°C) was 6 times higher than the average over the 1850–1900 period. The direct and indirect impacts of climatic parameters on the ecology of fisheries ecosystem have a great bearing on fisheries due to alterations in fish physiology. The impact of meteorological factors on ecosystem health and fish food organisms brings about changes in fish diversity, assemblage, reproduction and natural recruitment. India’s average temperature has risen by around 0.7°C during 1901–2018. The studies show that the mean air temperature in the Ganga basin has increased in the range of 0.20 - 0.47 °C and annual rainfall decreased in the range of 257-580 mm during the last three decades. The studies clearly indicate visible impacts of climatic and environmental factors on inland open water fisheries. Besides, a significant reduction in-depth and area (37.20–57.68% reduction), diversity of natural indigenous fish fauna (ranging from 22.85 to 54%) in wetlands and progression of trophic state from mesotrophic to eutrophic were recorded. In this communication, different applications of biometeorology in inland fisheries management with special reference to the assessment of ecosystem and species vulnerability to climatic variability and change have been discussed. Further, the paper discusses the impact of climate anomaly and extreme climatic events on inland fisheries and emphasizes novel modeling approaches for understanding the impact of climatic and environmental factors on reproductive phenology for identification of climate-sensitive/resilient fish species for the adoption of climate-smart fisheries in the future. Adaptation and mitigation strategies to enhance fish production and the role of culture-based fisheries and enclosure culture in converting sequestered carbon into blue carbon have also been discussed. In general, the type and direction of influence of meteorological parameters on fish biology in open water fisheries ecosystems are not adequately understood. The optimum range of meteorological parameters for sustaining inland open water fisheries is yet to be established. Therefore, the application of biometeorology in inland fisheries offers ample scope for understanding the dynamics in changing climate, which would help to develop a database on such least, addressed research frontier area. This would further help to project fisheries scenarios in changing climate regimes and develop adaptation and mitigation strategies to cope up with adverse meteorological factors to sustain fisheries and to conserve aquatic ecosystem and biodiversity.

Keywords: biometeorology, inland fisheries, aquatic ecosystem, modeling, India

Procedia PDF Downloads 180
7192 Evaluation of Adaptive Fitness of Indian Teak (Tectona grandis L. F.) Metapopulation through Inter Simple Sequence Repeat Markers

Authors: Vivek Vaishnav, Shamim Akhtar Ansari

Abstract:

Teak (Tectona grandis L.f.) belonging to plant family Lamiaceae and the most commercialized timber species is endemic to South-Asia. The adaptive fitness of the species metapopulation was evaluated through its genetic differentiation and assessing the influence of geo-climatic conditions. 290 genotypes were sampled from 29 locations of its natural distribution and the genetic data was incorporated with geo-climatic parameters. Through Bayesian approach based analysis of 43 highly polymorphic ISSR markers, six homogeneous clusters (0.8% genetic variability) were identified. The six clusters were found with the various regimes of the temperature range, i.e., I - 9.10±1.35⁰C, II -6.35±0.21⁰C, III -12.21±0.43⁰C, IV - 10.8±1.06⁰C, V - 11.67±3.04⁰C, and VI - 12.35±0.21⁰C. The population had a very high percentage of LD (21.48%) among the amplified loci possibly due to experiencing restricted gene flow as well as co-adaptation and association of distant/diverse loci/alleles as a result of the stabilized climatic conditions and countless cycles of historical recombination events on a large geological timescale. The same possibly accounts for the narrow distribution of teak as a climax species in the tropical deciduous forests of the country. The regions of strong LD in teak genome significantly associated with climatic parameters also reflect that the species is tolerant to the wide regimes of the temperature range and may possibly withstand global warming and climate change in the coming millennium.

Keywords: Bayesian analysis, inter simple sequence repeat, linkage disequilibrium, marker-geoclimatic association

Procedia PDF Downloads 250
7191 Advanced Approach to Analysis the Thin Strip Profile in Cold Rolling of Pair Roll Crossing and Shifting Mill Using an Arbitrary Lagrangian-Eulerian Technique

Authors: Abdulrahman Aljabri, Essam R. I. Mahmoud, Hamad Almohamedi, Zhengyi Jiang

Abstract:

Cold rolled thin strip has received intensive attention through technological and theoretical progress in the rolling process, as well as researchers have focused on its control during rolling as an essential parameter for producing thinner strip with good shape and profile. An advanced approach has been proposed to analysis the thin strip profile in cold rolling of pair roll crossing and shifting mill using Finite Element Analysis (FEA) with an ALE technique. The ALE (Arbitrary Lagrangian-Eulerian) techniques to enable more flexibility of the ALE technique in the adjustment of the finite element mesh, which provides a significant tool for simulating the thin strip under realistic rolling process constraint and provide accurate model results. The FEA can provide theoretical basis for the 3D model of controlling the strip shape and profile in thin strip rolling, and deliver an optimal rolling process parameter, and suggest corrective changes during cold rolling of thin strip.

Keywords: pair roll crossing, work roll shifting, strip shape and profile, finite element modeling

Procedia PDF Downloads 84
7190 Rhizome-Soaking with Plant-Derived Smoke-Water (Pdsw) And Karrikinolide Boosts the Essential-Oil Yield, Active Constituents and Leaf Physiological Parameters of Mentha Arvensis L

Authors: Sarika Singh, Moin Uddin, M. Masroor A. Khan, Aman Sobia Chishti, Sangram Singh, Urooj Hassan Bhatt

Abstract:

Mentha arvensis L. (Japanese mint) is a perennial plant carrying medicinal, aromatic, antiseptic, and anaesthetic properties. Plant-derived smoke-water (PDSW) plays a significant role in seed germination, seedling growth, and other physiological attributes. To ascertain the effect of PDSW and karrikinolide on Mentha arvensis L., a rhizome-soaking experiment was conducted on Mentha arvensis. Prior to planting, mint rhizomes were soaked for 24 hours with aqueous solutions of various concentrations of PDSW (1:125v/v, 1:250 v/v, 1:500 v/v, and 1:1000 v/v), karrikinolide (10-6M, 10⁻⁷M, 10⁻⁸M, and 10⁻⁹M) using double distilled water as control treatment. Rhizome soaking with 1:500 v/v concentration of PDSW and 10⁻⁸M concentration of KAR1 increased the growth attributes, including plant height, fresh weight, dry, leaf area, and leaf yield per plant of Mentha arvensis. Leaf physiological-parameters, viz. chlorophyll fluorescence, PSII activity, and total chlorophyll and carotenoid content, were also increased as a result of the application of this treatment PDSW (1:500 v/v) and KAR1 (10⁻⁸M). In addition, treatment with 1:500 v/v and 10⁻⁸M significantly increased the essential oil yield and active constituents of Mentha arvensis compared to the control. Results indicated that PDSW, being a cheap source of karrikins, might be successfully used to augment mint essential oil production.

Keywords: active constituents, essential oil, medicinal plant, mentha arvensis L

Procedia PDF Downloads 78
7189 The Impact of Technology on Architecture and Graphic Designs

Authors: Feby Zaki Raouf Fawzy

Abstract:

Nowadays, design and architecture are being affected and undergoing change with the rapid advancements in technology, economics, politics, society, and culture. Architecture has been transforming with the latest developments after the inclusion of computers in design. Integration of design into the computational environment has revolutionized architecture and unique perspectives in architecture have been gained. The history of architecture shows the various technological developments and changes in which architecture has transformed with time. Therefore, the analysis of integration between technology and the history of the architectural process makes it possible to build a consensus on the idea of how architecture is to proceed. In this study, each period that occurs with the integration of technology into architecture is addressed within the historical process. At the same time, changes in architecture via technology are identified as important milestones and predictions with regards to the future of architecture have been determined. Developments and changes in technology and the use of technology in architecture within years are analyzed in charts and graphs comparatively. The historical process of architecture and its transformation via technology is supported by a detailed literature review, and they are consolidated with the examination of focal points of 20th-century architecture under the titles parametric design, genetic architecture, simulation, and biomimicry. It is concluded that with the historical research between past and present, the developments in architecture cannot keep up with the advancements in technology, and recent developments in technology overshadow architecture; even technology decides the direction of architecture. As a result, a scenario is presented with regard to the reach of technology in the future of architecture and the role of the architect.

Keywords: design and development the information technology architecture, enterprise architecture, enterprise architecture design result, TOGAF architecture development method (ADM)

Procedia PDF Downloads 44
7188 An Experiential Learning of Ontology-Based Multi-document Summarization by Removal Summarization Techniques

Authors: Pranjali Avinash Yadav-Deshmukh

Abstract:

Remarkable development of the Internet along with the new technological innovation, such as high-speed systems and affordable large storage space have led to a tremendous increase in the amount and accessibility to digital records. For any person, studying of all these data is tremendously time intensive, so there is a great need to access effective multi-document summarization (MDS) systems, which can successfully reduce details found in several records into a short, understandable summary or conclusion. For semantic representation of textual details in ontology area, as a theoretical design, our system provides a significant structure. The stability of using the ontology in fixing multi-document summarization problems in the sector of catastrophe control is finding its recommended design. Saliency ranking is usually allocated to each phrase and phrases are rated according to the ranking, then the top rated phrases are chosen as the conclusion. With regards to the conclusion quality, wide tests on a selection of media announcements are appropriate for “Jammu Kashmir Overflow in 2014” records. Ontology centered multi-document summarization methods using “NLP centered extraction” outshine other baselines. Our participation in recommended component is to implement the details removal methods (NLP) to enhance the results.

Keywords: disaster management, extraction technique, k-means, multi-document summarization, NLP, ontology, sentence extraction

Procedia PDF Downloads 367
7187 Immigration as a Promoting Factor of Innovation in Developing Countries: Evidence from Thai Manufacturers

Authors: Piriya Pholphirul, Pungpond Rukumnuaykit

Abstract:

Contrary to studies of other migrant-receiving countries, most of which are developed countries, this paper examines impacts of immigrant workers on innovative capacities in Thailand, which is not only a representative of a receiving country that is a developing country but also a country where the majority of its immigrant workers are unskilled. Analysis of firm-level survey data in Thailand finds that employing unskilled and cheap labor from neighboring countries, namely, Myanmar, the Lao PDR, and Cambodia, is like adopting a kind of “labor-saving technology” which actually impedes firms’ R&D investment. Contrary to developed countries in which immigrants are found to boost innovation and promote sustainable growth, in Thailand, even though employing unskilled immigrant workers helps firms maintain their cost competitiveness in the short run, its negative impacts on R&D investment tend to hamper improvements in productivity and thus diminish global competitiveness in the long run. Employing skilled or educated migrants, on the other hand, complements technological progress and encourages firms to innovate more quickly. In addition, the paper finds that providing government incentives and promoting access to financing have become effective tools in facilitating Thai firms’ investment in innovation.

Keywords: immigration, innovation, developing country, Thailand

Procedia PDF Downloads 404
7186 Magnetocaloric Effect in Ho₂O₃ Nanopowder at Cryogenic Temperature

Authors: K. P. Shinde, M. V. Tien, H. Lin, H.-R. Park, S.-C.Yu, K. C. Chung, D.-H. Kim

Abstract:

Magnetic refrigeration provides an attractive alternative cooling technology due to its potential advantages such as high cooling efficiency, environmental friendliness, low noise, and compactness over the conventional cooling techniques based on gas compression. Magnetocaloric effect (MCE) occurs by changes in entropy (ΔS) and temperature (ΔT) under external magnetic fields. We have been focused on identifying materials with large MCE in two temperature regimes, not only room temperature but also at cryogenic temperature for specific technological applications, such as space science and liquefaction of hydrogen in fuel industry. To date, the commonly used materials for cryogenic refrigeration are based on hydrated salts. In the present work, we report giant MCE in rare earth Ho2O3 nanopowder at cryogenic temperature. HoN nanoparticles with average size of 30 nm were prepared by using plasma arc discharge method with gas composition of N2/H2 (80%/20%). The prepared HoN was sintered in air atmosphere at 1200 oC for 24 hrs to convert it into oxide. Structural and morphological properties were studied by XRD and SEM. XRD confirms the pure phase and cubic crystal structure of Ho2O3 without any impurity within error range. It has been discovered that Holmium oxide exhibits giant MCE at low temperature without magnetic hysteresis loss with the second-order antiferromagnetic phase transition with Néels temperature around 2 K. The maximum entropy change was found to be 25.2 J/kgK at an applied field of 6 T.

Keywords: magnetocaloric effect, Ho₂O₃, magnetic entropy change, nanopowder

Procedia PDF Downloads 136
7185 Implementation of Renewable Energy Technologies in Rural Africa

Authors: Joseph Levodo, Andy Ford, ISSA Chaer

Abstract:

Africa enjoys some of the best solar radiation levels in the world averaging between 4-6 kWh/m2/day for most of the year and the global economic and political conditions that tend to make African countries more dependent on their own energy resources have caused growing interest in wanting renewable energy based technologies. However to-date, implementation of Modern Energy Technologies in Africa is still very low especially the use of solar conversion technologies. It was initially speculated that the low uptake of solar technology in Africa was associated with the continent’s high poverty levels and limitations in technical capacity as well as awareness. Nonetheless, this is not an academic based speculation and the exact reasons for this low trend in technology adoption are unclear and require further investigation. This paper presents literature review and analysis relating to the techno-economic feasibility of solar photovoltaic power generation in Africa. The literature review would include the following four main categories: design methods, techno-economic feasibility of solar photovoltaic power generation, performance evaluations of various systems, Then it looks at the role of policy and potential future of technological development of photovoltaic (PV) by exploring the impact of alternative policy instruments and technology cost reductions on the financial viability of investing solar photovoltaic (PV) in Africa.

Keywords: Africa Solar Potential, policy, photovoltaic, technologies

Procedia PDF Downloads 536
7184 A Study of the Effect of Early and Late Meal Time on Anthropometric and Biochemical Parameters in Patients of Type 2 Diabetes

Authors: Smriti Rastogi, Narsingh Verma

Abstract:

Background: A vast body of research exists on the use of oral hypoglycaemic drugs, insulin injections and the like in managing diabetes but no such research exists that has taken into consideration the parameter of time restricted meal intake and its positive effects in managing diabetes. The utility of this project is immense as it offers a solution to the woes of diabetics based on circadian rhythm and normal physiology of the human body. Method: 80 Diabetics, enrolled from the Out Patient Department of Endocrinology, KGMU (King George's Medical University) were randomly divided based on consent to early dinner TRM(time restricted meal) group or not (control group). Follow up was done at six months and 12 months for anthropometric measurement, height, weight, waist-hip ratio, neck size, fasting, postprandial blood sugar, HbA1c, serum urea, serum creatinine, and lipid profile. The patient was given a clear understanding of chronomedicine and how it affects their health. A single intervention was done - the timing of dinner was at or around 7 pm for TRM group. Result: 65% of TRM group and 40 %(non- TRM) had normal HbA1c after 12 months. HbA1c in TRM Group (first visit to second follow up) had a significant p value=0.017. A p value of <0.0001 was observed on comparing the values of blood sugar (fasting) in TRM Group from the first visit and second follow up. The values of blood sugar (postprandial) in TRM Group (first visit and second follow up) showed a p-value <0.0001 (highly significant). Values of the three parameters were non- significant in the control group. Hip size(First Visit to Second Follow Up) TRM Group showed a p-value = 0.0344 (Significant) (Difference between means=2.762 ± 1.261)Detailed results of the above parameters and a few newer ones will be presented at the conference. Conclusion: Time restricted meal intake in diabetics shows promise and is worth exploring further. Time Restricted Meal intake in Type 2 diabetics has a significant effect in controlling and maintaining HbA1c as the reduction in HbA1c value was very significant in the TRM group vs. the control group. Similar highly significant results were obtained in the case of fasting and postprandial values of blood sugar in the TRM group when compared to the control group. The effects of time restricted meal intake in diabetics show promise and are worth exploring further. It is one of the first studies which have been undertaken in Indian diabetics, although the initial data obtained is encouraging yet further research and study are required to corroborate results.

Keywords: chronomedicine, diabetes, endocrinology, time restricted meal intake

Procedia PDF Downloads 112
7183 Reduced General Dispersion Model in Cylindrical Coordinates and Isotope Transient Kinetic Analysis in Laminar Flow

Authors: Masood Otarod, Ronald M. Supkowski

Abstract:

This abstract discusses a method that reduces the general dispersion model in cylindrical coordinates to a second order linear ordinary differential equation with constant coefficients so that it can be utilized to conduct kinetic studies in packed bed tubular catalytic reactors at a broad range of Reynolds numbers. The model was tested by 13CO isotope transient tracing of the CO adsorption of Boudouard reaction in a differential reactor at an average Reynolds number of 0.2 over Pd-Al2O3 catalyst. Detailed experimental results have provided evidence for the validity of the theoretical framing of the model and the estimated parameters are consistent with the literature. The solution of the general dispersion model requires the knowledge of the radial distribution of axial velocity. This is not always known. Hence, up until now, the implementation of the dispersion model has been largely restricted to the plug-flow regime. But, ideal plug-flow is impossible to achieve and flow regimes approximating plug-flow leave much room for debate as to the validity of the results. The reduction of the general dispersion model transpires as a result of the application of a factorization theorem. Factorization theorem is derived from the observation that a cross section of a catalytic bed consists of a solid phase across which the reaction takes place and a void or porous phase across which no significant measure of reaction occurs. The disparity in flow and the heterogeneity of the catalytic bed cause the concentration of reacting compounds to fluctuate radially. These variabilities signify the existence of radial positions at which the radial gradient of concentration is zero. Succinctly, factorization theorem states that a concentration function of axial and radial coordinates in a catalytic bed is factorable as the product of the mean radial cup-mixing function and a contingent dimensionless function. The concentration of adsorbed compounds are also factorable since they are piecewise continuous functions and suffer the same variability but in the reverse order of the concentration of mobile phase compounds. Factorability is a property of packed beds which transforms the general dispersion model to an equation in terms of the measurable mean radial cup-mixing concentration of the mobile phase compounds and mean cross-sectional concentration of adsorbed species. The reduced model does not require the knowledge of the radial distribution of the axial velocity. Instead, it is characterized by new transport parameters so denoted by Ωc, Ωa, Ωc, and which are respectively denominated convection coefficient cofactor, axial dispersion coefficient cofactor, and radial dispersion coefficient cofactor. These cofactors adjust the dispersion equation as compensation for the unavailability of the radial distribution of the axial velocity. Together with the rest of the kinetic parameters they can be determined from experimental data via an optimization procedure. Our data showed that the estimated parameters Ωc, Ωa Ωr, are monotonically correlated with the Reynolds number. This is expected to be the case based on the theoretical construct of the model. Computer generated simulations of methanation reaction on nickel provide additional support for the utility of the newly conceptualized dispersion model.

Keywords: factorization, general dispersion model, isotope transient kinetic, partial differential equations

Procedia PDF Downloads 254
7182 Aggregating Buyers and Sellers for E-Commerce: How Demand and Supply Meet in Fairs

Authors: Pierluigi Gallo, Francesco Randazzo, Ignazio Gallo

Abstract:

In recent years, many new and interesting models of successful online business have been developed. Many of these are based on the competition between users, such as online auctions, where the product price is not fixed and tends to rise. Other models, including group-buying, are based on cooperation between users, characterized by a dynamic price of the product that tends to go down. There is not yet a business model in which both sellers and buyers are grouped in order to negotiate on a specific product or service. The present study investigates a new extension of the group-buying model, called fair, which allows aggregation of demand and supply for price optimization, in a cooperative manner. Additionally, our system also aggregates products and destinations for shipping optimization. We introduced the following new relevant input parameters in order to implement a double-side aggregation: (a) price-quantity curves provided by the seller; (b) waiting time, that is, the longer buyers wait, the greater discount they get; (c) payment time, which determines if the buyer pays before, during or after receiving the product; (d) the distance between the place where products are available and the place of shipment, provided in advance by the buyer or dynamically suggested by the system. To analyze the proposed model we implemented a system prototype and a simulator that allows studying effects of changing some input parameters. We analyzed the dynamic price model in fairs having one single seller and a combination of selected sellers. The results are very encouraging and motivate further investigation on this topic.

Keywords: auction, aggregation, fair, group buying, social buying

Procedia PDF Downloads 283
7181 Integration of Technology in Business Education: Emerging Voices from Business Education Classrooms in Nigeria Secondary Schools

Authors: Clinton Chidiebere Anyanwu

Abstract:

Secondary education is a vital part of a virtuous circle of economic growth within the context of a globalised knowledge economy. The teaching of Business Education entails teaching learners the essentials, rudiments, assumptions, and methods of business. Hence, it was deemed necessary for the study to investigate technology integration in Business Education. Drawing from the theoretical frameworks of technological pedagogical content knowledge (TPACK), and unified theory of acceptance and use of technology (UTAUT), the study observes teachers’ level of technology use in Business Education classrooms. Using a mixed-methods sequential explanatory design, probability, and purposive sampling, the majority of participants were found to be not integrating technology to an acceptable level and a small percentage was. After an analysis of constructs from UTAUT, some of this could be attributed to the lack of facilitating conditions in the teaching and learning of Business Education. The implication of the study findings is that poor investment in technology integration in secondary schools in Nigeria affects pedagogical implementations and effective teaching and learning of Business Education subjects. The study concludes that if facilitating conditions and professional development are considered to address the shortfalls in terms of TPACK, technology integration will become a reality in secondary schools in Nigeria.

Keywords: business education, secondary education, technology integration, TPACK, UTAUT

Procedia PDF Downloads 195
7180 Adopting the Transition Management Model as a Tool for Sustainable Groundwater Management in Nigeria

Authors: Ali Bakari Mohammed

Abstract:

Transitioning is a continuous process of radical change in a society which involves co-evolution of institutional, technological, socio-cultural, and ecological developments at different scales and levels. Transition management model is a methodology that influences structural change of complex systems over a period (0-30 years) by experimenting and implementing new techniques. A transition management in the context of groundwater is a radical change from the current operate and control system to a next generation integrated and sustainable system that takes into account quality protection and sustained supply into the future. This study evaluates the transition management model in adopting it as a viable tool for the attainment of sustainable groundwater management. The outcome of the evaluation shows that there are three levels (strategic, tactical and operational) of operating the transition management model. At the strategic level, long-term goals for sustainable groundwater management are formulated, at the tactical level activities such as inter institutional networking, negotiation, planning and financing are carried out, and at the operational level, transition experiments and strategic niche management are carried out at the societal level. Overall, different actors and set of activities are required to partake at each management level. The outcome of this paper will provide basis for the implementation of the Sustainable Development Goal (SDG) 6 in Nigeria.

Keywords: transition management, groundwater, sustainable management, tool, Nigeria

Procedia PDF Downloads 256
7179 A Tribe, a County, and a Casino: Socioeconomic Disparities between the Mohegan Tribe and New London County through Two Decades

Authors: Michaela Wang

Abstract:

Since British established colonial settlements across the East Coast, Native Americans have suffered stark socio economic disparities in comparison to their neighboring communities. This paper employs the 1990, 2000, and 2010 United States Decennial Census to assess whether and to what extent the casino economy helped to close this socioeconomic gap between the Mohegan tribe and its surrounding community. These three Decennial Censuses cover two decades, from six years prior to the erection of Mohegan Sun casino to 14 years afterwards, including the Great Recession 2007-2009. Income, employment, education and housing parameters are selected as socio economic indicators. The profitable advent of the Mohegan Sun in 1996 dramatically improved the socio economic status of the Mohegan Tribe between 1990 and 2000. In fact, for most of these indicators––poverty, median household income, employment, home ownership, and car ownership––disparities shifted; tribal socioeconomic parameters improved from well below the level of New London County in 1990, to the same level or above the county rates in 2000. However, economic downturn in 2007-2009 Great Recession impacted Mohegan people remarkably. By 2010, disparities for household income, employment, home ownership, and car ownership returned. The casino bridged socio economic inequalities, but at the face of economic crises, the mono-product economy grew vulnerable.

Keywords: socio economic, indigenous, native American, disparity

Procedia PDF Downloads 99
7178 Orthogonal Metal Cutting Simulation of Steel AISI 1045 via Smoothed Particle Hydrodynamic Method

Authors: Seyed Hamed Hashemi Sohi, Gerald Jo Denoga

Abstract:

Machining or metal cutting is one of the most widely used production processes in industry. The quality of the process and the resulting machined product depends on parameters like tool geometry, material, and cutting conditions. However, the relationships of these parameters to the cutting process are often based mostly on empirical knowledge. In this study, computer modeling and simulation using LS-DYNA software and a Smoothed Particle Hydrodynamic (SPH) methodology, was performed on the orthogonal metal cutting process to analyze three-dimensional deformation of AISI 1045 medium carbon steel during machining. The simulation was performed using the following constitutive models: the Power Law model, the Johnson-Cook model, and the Zerilli-Armstrong models (Z-A). The outcomes were compared against the simulated results obtained by Cenk Kiliçaslan using the Finite Element Method (FEM) and the empirical results of Jaspers and Filice. The analysis shows that the SPH method combined with the Zerilli-Armstrong constitutive model is a viable alternative to simulating the metal cutting process. The tangential force was overestimated by 7%, and the normal force was underestimated by 16% when compared with empirical values. The simulation values for flow stress versus strain at various temperatures were also validated against empirical values. The SPH method using the Z-A model has also proven to be robust against issues of time-scaling. Experimental work was also done to investigate the effects of friction, rake angle and tool tip radius on the simulation.

Keywords: metal cutting, smoothed particle hydrodynamics, constitutive models, experimental, cutting forces analyses

Procedia PDF Downloads 248
7177 Implementation of Building Information Modelling to Monitor, Assess, and Control the Indoor Environmental Quality of Higher Education Buildings

Authors: Mukhtar Maigari

Abstract:

The landscape of Higher Education (HE) institutions, especially following the CVID-19 pandemic, necessitates advanced approaches to manage Indoor Environmental Quality (IEQ) which is crucial for the comfort, health, and productivity of students and staff. This study investigates the application of Building Information Modelling (BIM) as a multifaceted tool for monitoring, assessing, and controlling IEQ in HE buildings aiming to bridge the gap between traditional management practices and the innovative capabilities of BIM. Central to the study is a comprehensive literature review, which lays the foundation by examining current knowledge and technological advancements in both IEQ and BIM. This review sets the stage for a deeper investigation into the practical application of BIM in IEQ management. The methodology consists of Post-Occupancy Evaluation (POE) which encompasses physical monitoring, questionnaire surveys, and interviews under the umbrella of case studies. The physical data collection focuses on vital IEQ parameters such as temperature, humidity, CO2 levels etc, conducted by using different equipment including dataloggers to ensure accurate data. Complementing this, questionnaire surveys gather perceptions and satisfaction levels from students, providing valuable insights into the subjective aspects of IEQ. The interview component, targeting facilities management teams, offers an in-depth perspective on IEQ management challenges and strategies. The research delves deeper into the development of a conceptual BIM-based framework, informed by the insight findings from case studies and empirical data. This framework is designed to demonstrate the critical functions necessary for effective IEQ monitoring, assessment, control and automation with real time data handling capabilities. This BIM-based framework leads to the developing and testing a BIM-based prototype tool. This prototype leverages on software such as Autodesk Revit with its visual programming tool i.e., Dynamo and an Arduino-based sensor network thereby allowing for real-time flow of IEQ data for monitoring, control and even automation. By harnessing the capabilities of BIM technology, the study presents a forward-thinking approach that aligns with current sustainability and wellness goals, particularly vital in the post-COVID-19 era. The integration of BIM in IEQ management promises not only to enhance the health, comfort, and energy efficiency of educational environments but also to transform them into more conducive spaces for teaching and learning. Furthermore, this research could influence the future of HE buildings by prompting universities and government bodies to revaluate and improve teaching and learning environments. It demonstrates how the synergy between IEQ and BIM can empower stakeholders to monitor IEQ conditions more effectively and make informed decisions in real-time. Moreover, the developed framework has broader applications as well; it can serve as a tool for other sustainability assessments, like energy analysis in HE buildings, leveraging measured data synchronized with the BIM model. In conclusion, this study bridges the gap between theoretical research and real-world application by practicalizing how advanced technologies like BIM can be effectively integrated to enhance environmental quality in educational institutions. It portrays the potential of integrating advanced technologies like BIM in the pursuit of improved environmental conditions in educational institutions.

Keywords: BIM, POE, IEQ, HE-buildings

Procedia PDF Downloads 39
7176 Conceptualizing the Cyber Insecurity Risk in the Ethics of Automated Warfare

Authors: Otto Kakhidze, Hoda Alkhzaimi, Adam Ramey, Nasir Memon

Abstract:

This paper provides an alternative, cyber security based a conceptual framework for the ethics of automated warfare. The large body of work produced on fully or partially autonomous warfare systems tends to overlook malicious security factors as in the possibility of technical attacks on these systems when it comes to the moral and legal decision-making. The argument provides a risk-oriented justification to why technical malicious risks cannot be dismissed in legal, ethical and policy considerations when warfare models are being implemented and deployed. The assumptions of the paper are supported by providing a broader model that contains the perspective of technological vulnerabilities through the lenses of the Game Theory, Just War Theory as well as standard and non-standard defense ethics. The paper argues that a conventional risk-benefit analysis without considering ethical factors is insufficient for making legal and policy decisions on automated warfare. This approach will provide the substructure for security and defense experts as well as legal scholars, ethicists and decision theorists to work towards common justificatory grounds that will accommodate the technical security concerns that have been overlooked in the current legal and policy models.

Keywords: automated warfare, ethics of automation, inherent hijacking, security vulnerabilities, risk, uncertainty

Procedia PDF Downloads 348
7175 Double Burden of Hypertension-Hyperalbuminuria in the Pregnant Women: Cross-Sectional Study of Prevalence and Risk Factors in Foumban, West Region, Cameroon

Authors: Pierre Mintom, Ebai Patricia, Merlin Dasse, Marlyse Chantal Nyangon Ndongo, Aicha Aretouyap Kouotou, Felix Essiben, Christine Fernande Nyangono Biyegue

Abstract:

Background: The death of women during and after pregnancy remains a major concern in public health policy in Cameroon. Among the causes of this mortality is eclampsia which is a consequence of the Pre-eclampsia characterized by the double burden of pregnancy-induced hypertension and albuminuria in pregnant women. Objective: To determine the various factors associated with the pre-eclampsia in pregnant women of Foumban. Methodology: A cross-sectional and analytical study was carried out during the period from July to August 2020 and supplemented by another study carried out from August 05 to September 05, 2022, at the Foumban district hospital. A questionnaire was administered to pregnant women. It focused on socio-demographic parameters, the state nutritional, health status, and maternal parameters. Blood pressure was taken using an electronic blood pressure monitor, and urinary albumin was measuring using urine dipstick. Pre-eclampsia was defined by three types of double burden: double burden systolic hypertension–hyperalbuminuria (SHH), defined for SBP≥140 mmHg and hyperalbuminuria ≥1+ on urine dipstick, double burden diastolic hypertension–hyperalbuminuria (DHH), defined for PAD≥90 mmHg and hyperalbuminuria ≥1+ on the urine dipstick, and the double burden systolodiastolic arterial hypertension– hyperalbuminuria (SDHH), defined for SBP ≥ 140mmHg, PAD≥90 mmHg and hyperalbuminuria ≥1+ on urine dipstick. IBM SPSS Software was used for statistical analysis. Results: The results of this study show that the prevalence of pre-eclampsia was 17.3% for the double burden SHH, 19.9% for the double burden DHH and 14.1% for double burden SDHH. Associated factors with pre-eclampsia according to the three types of double burden were marital status (P<0.05), religion (P<0.05), history of hypertension before pregnancy (P<0.05). Associated factors for the double burden of DHH and SDHH were the nutritional status before the pregnancy (P<0.05) and the number of prenatal consultations (P<0.05). In terms of food groups, regular consumption of spices significantly increased the risk of pre-eclampsia by 5.318, 6.277 and 11.271 times respectively for the SHH, DHH and SDHH double burdens, while regular consumption of sweets regular consumption of sweets increased by 2.42 times and 2.053 times respectively the double DHH and SDHH burdens respectively. Conclusion: Our study made it possible to redefine pre-eclampsia by considering the subtypes of hypertension. Certain socio-demographic parameters and certain dietary habits influence the occurrence of pre-eclampsia characterized by the double burden Hypertension-hyperalbuminuria in pregnant women, which may later lead to the occurrence of eclampsia. Moreover, albuminemia could be a good predicitive factor of pre-eclampsia and could be explored.

Keywords: hypertension, hyperalbuminuria, pregnant women, foumban

Procedia PDF Downloads 49
7174 Principles for the Realistic Determination of the in-situ Concrete Compressive Strength under Consideration of Rearrangement Effects

Authors: Rabea Sefrin, Christian Glock, Juergen Schnell

Abstract:

The preservation of existing structures is of great economic interest because it contributes to higher sustainability and resource conservation. In the case of existing buildings, in addition to repair and maintenance, modernization or reconstruction works often take place in the course of adjustments or changes in use. Since the structural framework and the associated load level are usually changed in the course of the structural measures, the stability of the structure must be verified in accordance with the currently valid regulations. The concrete compressive strength of the existing structures concrete and the derived mechanical parameters are of central importance for the recalculation and verification. However, the compressive strength of the existing concrete is usually set comparatively low and thus underestimated. The reasons for this are too small numbers, and large scatter of material properties of the drill cores, which are used for the experimental determination of the design value of the compressive strength. Within a structural component, the load is usually transferred over the area with higher stiffness and consequently with higher compressive strength. Therefore, existing strength variations within a component only play a subordinate role due to rearrangement effects. This paper deals with the experimental and numerical determination of such rearrangement effects in order to calculate the concrete compressive strength of existing structures more realistic and economical. The influence of individual parameters such as the specimen geometry (prism or cylinder) or the coefficient of variation of the concrete compressive strength is analyzed in experimental small-part tests. The coefficients of variation commonly used in practice are adjusted by dividing the test specimens into several layers consisting of different concretes, which are monolithically connected to each other. From each combination, a sufficient number of the test specimen is produced and tested to enable evaluation on a statistical basis. Based on the experimental tests, FE simulations are carried out to validate the test results. In the frame of a subsequent parameter study, a large number of combinations is considered, which had not been investigated in the experimental tests yet. Thus, the influence of individual parameters on the size and characteristic of the rearrangement effect is determined and described more detailed. Based on the parameter study and the experimental results, a calculation model for a more realistic determination of the in situ concrete compressive strength is developed and presented. By considering rearrangement effects in concrete during recalculation, a higher number of existing structures can be maintained without structural measures. The preservation of existing structures is not only decisive from an economic, sustainable, and resource-saving point of view but also represents an added value for cultural and social aspects.

Keywords: existing structures, in-situ concrete compressive strength, rearrangement effects, recalculation

Procedia PDF Downloads 102
7173 Preserving the Cultural Values of the Mararoa River and Waipuna–Freshwater Springs, Southland New Zealand: An Integration of Traditional and Scientific Knowledge

Authors: Erine van Niekerk, Jason Holland

Abstract:

In Māori culture water is considered to be the foundation of all life and has its own mana (spiritual power) and mauri (life force). Water classification for cultural values therefore includes categories like waitapu (sacred water), waimanawa-whenua (water from under the land), waipuna (freshwater springs), the relationship between water quantity and quality and the relationship between surface and groundwater. Particular rivers and lakes have special significance to iwi and hapu for their rohe (tribal areas). The Mararoa River, including its freshwater springs and wetlands, is an example of such an area. There is currently little information available about the sources, characteristics and behavior of these important water resources and this study on the water quality of the Mararoa River and adjacent freshwater springs will provide valuable information to be used in informed decisions about water management. The regional council of Southland, Environment Southland, is required to make changes under their water quality policy in order to comply with the requirements for the New National Standards for Freshwater to consult with Maori to determine strategies for decision making. This requires an approach that includes traditional knowledge combined with scientific knowledge in the decision-making process. This study provided the scientific data that can be used in future for decision making on fresh water springs combined with traditional values for this particular area. Several parameters have been tested in situ as well as in a laboratory. Parameters such as temperature, salinity, electrical conductivity, Total Dissolved Solids, Total Kjeldahl Nitrogen, Total Phosphorus, Total Suspended Solids, and Escherichia coli among others show that recorded values of all test parameters fall within recommended ANZECC guidelines and Environment Southland standards and do not raise any concerns for the water quality of the springs and the river at the moment. However, the destruction of natural areas, particularly due to changes in farming practices, and the changes to water quality by the introduction of Didymosphenia geminate (Didymo) means Māori have already lost many of their traditional mahinga kai (food sources). There is a major change from land use such as sheep farming to dairying in Southland which puts freshwater resources under pressure. It is, therefore, important to draw on traditional knowledge and spirituality alongside scientific knowledge to protect the waters of the Mararoa River and waipuna. This study hopes to contribute to scientific knowledge to preserve the cultural values of these significant waters.

Keywords: cultural values, freshwater springs, Maori, water quality

Procedia PDF Downloads 270