Search results for: energy factor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12881

Search results for: energy factor

9881 Opportunity Integrated Assessment Facilitating Critical Thinking and Science Process Skills Measurement on Acid Base Matter

Authors: Anggi Ristiyana Puspita Sari, Suyanta

Abstract:

To recognize the importance of the development of critical thinking and science process skills, the instrument should give attention to the characteristics of chemistry. Therefore, constructing an accurate instrument for measuring those skills is important. However, the integrated instrument assessment is limited in number. The purpose of this study is to validate an integrated assessment instrument for measuring students’ critical thinking and science process skills on acid base matter. The development model of the test instrument adapted McIntire model. The sample consisted of 392 second grade high school students in the academic year of 2015/2016 in Yogyakarta. Exploratory factor analysis (EFA) was conducted to explore construct validity, whereas content validity was substantiated by Aiken’s formula. The result shows that the KMO test is 0.714 which indicates sufficient items for each factor and the Bartlett test is significant (a significance value of less than 0.05). Furthermore, content validity coefficient which is based on 8 expert judgments is obtained at 0.85. The findings support the integrated assessment instrument to measure critical thinking and science process skills on acid base matter.

Keywords: acid base matter, critical thinking skills, integrated assessment instrument, science process skills, validity

Procedia PDF Downloads 310
9880 Design and Integration of an Energy Harvesting Vibration Absorber for Rotating System

Authors: F. Infante, W. Kaal, S. Perfetto, S. Herold

Abstract:

In the last decade the demand of wireless sensors and low-power electric devices for condition monitoring in mechanical structures has been strongly increased. Networks of wireless sensors can potentially be applied in a huge variety of applications. Due to the reduction of both size and power consumption of the electric components and the increasing complexity of mechanical systems, the interest of creating dense nodes sensor networks has become very salient. Nevertheless, with the development of large sensor networks with numerous nodes, the critical problem of powering them is drawing more and more attention. Batteries are not a valid alternative for consideration regarding lifetime, size and effort in replacing them. Between possible alternative solutions for durable power sources useable in mechanical components, vibrations represent a suitable source for the amount of power required to feed a wireless sensor network. For this purpose, energy harvesting from structural vibrations has received much attention in the past few years. Suitable vibrations can be found in numerous mechanical environments including automotive moving structures, household applications, but also civil engineering structures like buildings and bridges. Similarly, a dynamic vibration absorber (DVA) is one of the most used devices to mitigate unwanted vibration of structures. This device is used to transfer the primary structural vibration to the auxiliary system. Thus, the related energy is effectively localized in the secondary less sensitive structure. Then, the additional benefit of harvesting part of the energy can be obtained by implementing dedicated components. This paper describes the design process of an energy harvesting tuned vibration absorber (EHTVA) for rotating systems using piezoelectric elements. The energy of the vibration is converted into electricity rather than dissipated. The device proposed is indeed designed to mitigate torsional vibrations as with a conventional rotational TVA, while harvesting energy as a power source for immediate use or storage. The resultant rotational multi degree of freedom (MDOF) system is initially reduced in an equivalent single degree of freedom (SDOF) system. The Den Hartog’s theory is used for evaluating the optimal mechanical parameters of the initial DVA for the SDOF systems defined. The performance of the TVA is operationally assessed and the vibration reduction at the original resonance frequency is measured. Then, the design is modified for the integration of active piezoelectric patches without detuning the TVA. In order to estimate the real power generated, a complex storage circuit is implemented. A DC-DC step-down converter is connected to the device through a rectifier to return a fixed output voltage. Introducing a big capacitor, the energy stored is measured at different frequencies. Finally, the electromechanical prototype is tested and validated achieving simultaneously reduction and harvesting functions.

Keywords: energy harvesting, piezoelectricity, torsional vibration, vibration absorber

Procedia PDF Downloads 133
9879 Exploring Male and Female Consumers’ Perceptions of Clothing Retailers’ CSR Initiatives in South Africa

Authors: Gerhard D. Muller, Nadine C. Sonnenberg, Suné Donoghue

Abstract:

This study delves into the intricacies of male and female consumers’ perceptions of Corporate Social Responsibility (CSR) in the South African clothing retail sector, a sector experiencing increasing consumption, yet facing significant environmental and social challenges. The aim is to discern between male and female consumers’ perceptions of clothing retailers’ CSR initiatives based on the Triple Bottom Line (TBL) framework, which evaluates organizational sustainability across social, environmental, and economic domains. Methodologically, the study is embedded in a quantitative research paradigm adopting a cross-sectional survey design. A purposive sampling strategy was used to recruit male and female respondents from a diverse South African demographic background. A structured questionnaire was developed and included established consumer CSR perception scales that were adapted for the purposes of this study. The questionnaire was distributed via online platforms. The data collected from the online survey, were split by gender to allow for comparison between male and female consumers’ perceptions of clothing retailers’ CSR initiatives. Exploratory Factor Analysis (EFA) was conducted on each of the datasets. The EFA for females revealed a five-factor solution, whereas the male EFA presented a six-factor solution, with the notable addition of an Economic Performance dimension. Results indicate subtle differences in the gender groups’ CSR perceptions. While both genders seem to value clothing retailers’ focus on quality services, females seem to have more pronounced perceptions surrounding clothing retailers’ contributions to social and environmental causes. Males, on the other hand, seem to be more discerning in their perceptions surrounding clothing retailers’ support of social and environmental causes. Ethical stakeholder relationships emerged as a shared concern across genders. Still, males presented a distinct factor, Economic Performance, highlighting a gendered divergence in the weighting of economic success and financial performance in CSR evaluation. The implications of these results are multifaceted. Theoretically, the study enriches the discourse on CSR by integrating gender insights into the TBL framework, offering a greater understanding of consumers’ CSR perceptions in the South African clothing retail context. Practically, it provides actionable insights for clothing retailers, suggesting that CSR initiatives should be gender-sensitive and communicate the TBL's elements effectively to resonate with the pertinent concerns of each segment. Additionally, the findings advocate for a contextualized approach to CSR in emerging markets that aligns with local cultural and social differences.

Keywords: consumer perceptions, corporate Social responsibility, gender differentiation, triple bottom line

Procedia PDF Downloads 45
9878 Bowen Ratio in Western São Paulo State, Brazil

Authors: Elaine Cristina Barboza, Antonio Jaschke Machado

Abstract:

This paper discusses micrometeorological aspects of the urban climate in three cities in Western São Paulo State: Presidente Prudente, Assis, and Iepê. Particular attention is paid to the method used to estimate the components of the energy balance at the surface. Estimates of convective fluxes showed that the Bowen ratio was an indicator of the local climate and that its magnitude varied between 0.3 and 0.7. Maximum values for the Bowen ratio occurred earlier in Iepê (11:00 am) than in Presidente Prudente (4:00 pm). The results indicate that the Bowen ratio is modulated by the radiation balance at the surface and by different clusters of vegetation.

Keywords: Bowen ratio, medium-sized cities, surface energy balance, urban climate

Procedia PDF Downloads 583
9877 Modelisation of a Full-Scale Closed Cement Grinding

Authors: D. Touil, L. Ouadah

Abstract:

An industrial model of cement grinding circuit is proposed on the basis of sampling surveys undertaken in the Meftah cement plant in Algiers, Algeria. The ball mill is described by a series of equal fully mixed stages that incorporates the effect of air sweeping. The kinetic parameters of this material in the energy normalized form obtained using the data of batch dry ball milling are taken into account in developing the present scale-up procedure. The dynamic separator is represented by the air classifier selectivity equation corrected by empirical factors. The model is incorporated in computer program that predict full size distributions and mass flow rates for all streams in a circuit under a particular set of operating conditions.

Keywords: grinding circuit, clinker, cement, modeling, population balance, energy

Procedia PDF Downloads 512
9876 Evaluation of the Sustainability of Greek Vernacular Architecture in Different Climate Zones: Architectural Typology and Building Physics

Authors: Christina Kalogirou

Abstract:

Investigating the integration of bioclimatic design into vernacular architecture could lead to interesting results regarding the preservation of cultural heritage while enhancing the energy efficiency of historic buildings. Furthermore, these recognized principles and systems of bioclimatic design in vernacular settlements could be applied to modern architecture and thus to new buildings in such areas. This study introduces an approach to categorizing distinct technologies and design principles of bioclimatic design based on a thoughtful approach to various climatic zones and environment in Greece (mountainous areas, islands and lowlands). For this purpose, various types of dwellings are evaluated for their response to climate, regarding the layout of the buildings (orientation, floor plans’ shape, semi-open spaces), the site planning, the openings (size, position, protection), the building envelope (walls: construction materials-thickness, roof construction detailing) and the migratory living pattern according to seasonal needs. As a result, various passive design principles (that could be adapted to current architectural practice in such areas, in order to optimize the relationship between site, building, climate and energy efficiency) are proposed.

Keywords: bioclimatic design, buildings physics, climatic zones, energy efficiency, vernacular architecture

Procedia PDF Downloads 375
9875 Traffic Safety and Risk Assessment Model by Analysis of Questionnaire Survey: A Case Study of S. G. Highway, Ahmedabad, India

Authors: Abhijitsinh Gohil, Kaushal Wadhvaniya, Kuldipsinh Jadeja

Abstract:

Road Safety is a multi-sectoral and multi-dimensional issue. An effective model can assess the risk associated with highway safety. A questionnaire survey is very essential to identify the events or activities which are causing unsafe condition for traffic on an urban highway. A questionnaire of standard questions including vehicular, human and infrastructure characteristics can be made. Responses from the age wise group of road users can be taken on field. Each question or an event holds a specific risk weightage, which contributes in creating an inappropriate and unsafe flow of traffic. The probability of occurrence of an event can be calculated from the data collected from the road users. Finally, the risk score can be calculated by considering the risk factor and the probability of occurrence of individual event and addition of all risk score for the individual event will give the total risk score of a particular road. Standards for risk score can be made and total risk score can be compared with the standards. Thus road can be categorized based on risk associated and traffic safety on it. With this model, one can assess the need for traffic safety improvement on a given road, and qualitative data can be analysed.

Keywords: probability of occurrence, questionnaire, risk factor, risk score

Procedia PDF Downloads 326
9874 Understanding Nanocarrier Efficacy in Drug Delivery Systems Using Molecular Dynamics

Authors: Maedeh Rahimnejad, Bahman Vahidi, Bahman Ebrahimi Hoseinzadeh, Fatemeh Yazdian, Puria Motamed Fath, Roghieh Jamjah

Abstract:

Introduction: The intensive labor and high cost of developing new vehicles for controlled drug delivery highlights the need for a change in their discovery process. Computational models can be used to accelerate experimental steps and control the high cost of experiments. Methods: In this work, to better understand the interaction of anti-cancer drug and the nanocarrier with the cell membrane, we have done molecular dynamics simulation using NAMD. We have chosen paclitaxel for the drug molecule and dipalmitoylphosphatidylcholine (DPPC) as a natural phospholipid nanocarrier. Results: Next, center of mass (COM) between molecules and the van der Waals interaction energy close to the cell membrane has been analyzed. Furthermore, the simulation results of the paclitaxel interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane have been compared. Discussion: Analysis by molecular dynamics (MD) showed that not only the energy between the nanocarrier and the cell membrane is low, but also the center of mass amount decreases in the nanocarrier and the cell membrane system during the interaction; therefore they show significantly better interaction in comparison to the individual drug with the cell membrane.

Keywords: anti-cancer drug, center of mass, interaction energy, molecular dynamics simulation, nanocarrier

Procedia PDF Downloads 280
9873 Broadband Optical Plasmonic Antennas Using Fano Resonance Effects

Authors: Siamak Dawazdah Emami, Amin Khodaei, Harith Bin Ahmad, Hairul A. Adbul-Rashid

Abstract:

The Fano resonance effect on plasmonic nanoparticle materials results in such materials possessing a number of unique optical properties, and the potential applicability for sensing, nonlinear devices and slow-light devices. A Fano resonance is a consequence of coherent interference between superradiant and subradiant hybridized plasmon modes. Incident light on subradiant modes will initiate excitation that results in superradiant modes, and these superradient modes possess zero or finite dipole moments alongside a comparable negligible coupling with light. This research work details the derivation of an electrodynamics coupling model for the interaction of dipolar transitions and radiation via plasmonic nanoclusters such as quadrimers, pentamers and heptamers. The directivity calculation is analyzed in order to qualify the redirection of emission. The geometry of a configured array of nanostructures strongly influenced the transmission and reflection properties, which subsequently resulted in the directivity of each antenna being related to the nanosphere size and gap distances between the nanospheres in each model’s structure. A well-separated configuration of nanospheres resulted in the structure behaving similarly to monomers, with spectra peaks of a broad superradiant mode being centered within the vicinity of 560 nm wavelength. Reducing the distance between ring nanospheres in pentamers and heptamers to 20~60 nm caused the coupling factor and charge distributions to increase and invoke a subradiant mode centered within the vicinity of 690 nm. Increasing the outside ring’s nanosphere distance from the centered nanospheres caused the coupling factor to decrease, with the coupling factor being inversely proportional to cubic of the distance between nanospheres. This phenomenon led to a dramatic decrease of the superradiant mode at a 200 nm distance between the central nanosphere and outer rings. Effects from a superradiant mode vanished beyond a 240 nm distance between central and outer ring nanospheres.

Keywords: fano resonance, optical antenna, plasmonic, nano-clusters

Procedia PDF Downloads 421
9872 Role of von Willebrand Factor Antigen as Non-Invasive Biomarker for the Prediction of Portal Hypertensive Gastropathy in Patients with Liver Cirrhosis

Authors: Mohamed El Horri, Amine Mouden, Reda Messaoudi, Mohamed Chekkal, Driss Benlaldj, Malika Baghdadi, Lahcene Benmahdi, Fatima Seghier

Abstract:

Background/aim: Recently, the Von Willebrand factor antigen (vWF-Ag)has been identified as a new marker of portal hypertension (PH) and its complications. Few studies talked about its role in the prediction of esophageal varices. VWF-Ag is considered a non-invasive approach, In order to avoid the endoscopic burden, cost, drawbacks, unpleasant and repeated examinations to the patients. In our study, we aimed to evaluate the ability of this marker in the prediction of another complication of portal hypertension, which is portal hypertensive gastropathy (PHG), the one that is diagnosed also by endoscopic tools. Patients and methods: It is about a prospective study, which include 124 cirrhotic patients with no history of bleeding who underwent screening endoscopy for PH-related complications like esophageal varices (EVs) and PHG. Routine biological tests were performed as well as the VWF-Ag testing by both ELFA and Immunoturbidimetric techniques. The diagnostic performance of our marker was assessed using sensitivity, specificity, positive predictive value, negative predictive value, accuracy, and receiver operating characteristic curves. Results: 124 patients were enrolled in this study, with a mean age of 58 years [CI: 55 – 60 years] and a sex ratio of 1.17. Viral etiologies were found in 50% of patients. Screening endoscopy revealed the presence of PHG in 20.2% of cases, while for EVsthey were found in 83.1% of cases. VWF-Ag levels, were significantly increased in patients with PHG compared to those who have not: 441% [CI: 375 – 506], versus 279% [CI: 253 – 304], respectively (p <0.0001). Using the area under the receiver operating characteristic curve (AUC), vWF-Ag was a good predictor for the presence of PHG. With a value higher than 320% and an AUC of 0.824, VWF-Ag had an 84% sensitivity, 74% specificity, 44.7% positive predictive value, 94.8% negative predictive value, and 75.8% diagnostic accuracy. Conclusion: VWF-Ag is a good non-invasive low coast marker for excluding the presence of PHG in patients with liver cirrhosis. Using this marker as part of a selective screening strategy might reduce the need for endoscopic screening and the coast of the management of these kinds of patients.

Keywords: von willebrand factor, portal hypertensive gastropathy, prediction, liver cirrhosis

Procedia PDF Downloads 187
9871 Effect of Mechanical Loading on the Delamination of Stratified Composite in Mode I

Authors: H. Achache, Y. Madani, A. Benzerdjeb

Abstract:

The present study is based on the three-dimensional digital analysis by the finite elements method of the mechanical loading effect on the delamination of unidirectional and multidirectional stratified composites. The aim of this work is the determination of the release energy rate G in mode I and the Von Mises equivalent constraint distribution along the damaged area under the influence of several parameters such as the applied load and the delamination size. The results obtained in this study show that the unidirectional composite laminates have better mechanical resistance one the loading line than the multidirectional composite laminates.

Keywords: delamination, release energy rate, stratified composite, finite element method, ply

Procedia PDF Downloads 412
9870 Downregulation of Epidermal Growth Factor Receptor in Advanced Stage Laryngeal Squamous Cell Carcinoma

Authors: Sarocha Vivatvakin, Thanaporn Ratchataswan, Thiratest Leesutipornchai, Komkrit Ruangritchankul, Somboon Keelawat, Virachai Kerekhanjanarong, Patnarin Mahattanasakul, Saknan Bongsebandhu-Phubhakdi

Abstract:

In this globalization era, much attention has been drawn to various molecular biomarkers, which may have the potential to predict the progression of cancer. Epidermal growth factor receptor (EGFR) is the classic member of the ErbB family of membrane-associated intrinsic tyrosine kinase receptors. EGFR expression was found in several organs throughout the body as its roles involve in the regulation of cell proliferation, survival, and differentiation in normal physiologic conditions. However, anomalous expression, whether over- or under-expression is believed to be the underlying mechanism of pathologic conditions, including carcinogenesis. Even though numerous discussions regarding the EGFR as a prognostic tool in head and neck cancer have been established, the consensus has not yet been met. The aims of the present study are to assess the correlation between the level of EGFR expression and demographic data as well as clinicopathological features and to evaluate the ability of EGFR as a reliable prognostic marker. Furthermore, another aim of this study is to investigate the probable pathophysiology that explains the finding results. This retrospective study included 30 squamous cell laryngeal carcinoma patients treated at King Chulalongkorn Memorial Hospital from January 1, 2000, to December 31, 2004. EGFR expression level was observed to be significantly downregulated with the progression of the laryngeal cancer stage. (one way ANOVA, p = 0.001) A statistically significant lower EGFR expression in the late stage of the disease compared to the early stage was recorded. (unpaired t-test, p = 0.041) EGFR overexpression also showed the tendency to increase recurrence of cancer (unpaired t-test, p = 0.128). A significant downregulation of EGFR expression was documented in advanced stage laryngeal cancer. The results indicated that EGFR level correlates to prognosis in term of stage progression. Thus, EGFR expression might be used as a prevailing biomarker for laryngeal squamous cell carcinoma prognostic prediction.

Keywords: downregulation, epidermal growth factor receptor, immunohistochemistry, laryngeal squamous cell carcinoma

Procedia PDF Downloads 93
9869 Mixed Traffic Speed–Flow Behavior under Influence of Road Side Friction and Non-Motorized Vehicles: A Comparative Study of Arterial Roads in India

Authors: Chetan R. Patel, G. J. Joshi

Abstract:

The present study is carried out on six lane divided urban arterial road in Patna and Pune city of India. Both the road having distinct differences in terms of the vehicle composition and the road side parking. Arterial road in Patan city has 33% of non-motorized mode, whereas Pune arterial road dominated by 65% of Two wheeler. Also road side parking is observed in Patna city. The field studies using vidiographic techniques are carried out for traffic data collection. Data are extracted for one minute duration for vehicle composition, speed variation and flow rate on selected arterial road of the two cities. Speed flow relationship is developed and capacity is determine. Equivalency factor in terms of dynamic car unit is determine to represent the vehicle is single unit. The variation in the capacity due to side friction, presence of non motorized traffic and effective utilization of lane width is compared at concluding remarks.

Keywords: arterial road, capacity, dynamic equivalency factor, effect of non motorized mode, side friction

Procedia PDF Downloads 338
9868 Urbanization Effects on the Food-Water-Energy Nexus within Ecosystem Services: A Case Study of the Beijing-Tianjin-Hebei Urban Agglomeration in China

Authors: Ke Yang, QiHan, Bauke de Veirs

Abstract:

This study addresses the need for coordinated management of natural resources in urban agglomeration. Using ecosystem services theory, The study explore the relationship between land use in the Beijing-Tianjin-Hebei (B-T-H) region and the Food-Water-Energy (F-W-E) nexus from 2000 to 2030. We assess ecosystem services using the InVEST: Habitat Quality (HQ), Water Yield (WY), Carbon Sequestration (CS), Soil Retention (SDR), and Food Production (FP). The study find an annual expansion of construction land alongside a significant decline in cultivated land. Additionally, HQ, CS, and per capita FP decline annually until 2020 and are expected to persist through 2030. In contrast, WY and SDR grow annually but may decline by 2030. Spearman coefficient analysis reveals synergies between HQ and CS, SDR and CS, and SDR and HQ, with trade-offs between CS and WY and HQ and WY. Utilizing the K-means clustering analysis method, we introduce county-based spatial planning for the F-W-E system, offering valuable insights and recommendations for sustainable resource management.

Keywords: food-water-energy (F-W-E), ecosystem services, trade-offs and synergies, ecosystem service bundle, county-based

Procedia PDF Downloads 48
9867 Experimental and Computational Investigations on the Mitigation of Air Pollutants Using Pulsed Radio Waves

Authors: Gangadhara Siva Naga Venkata Krishna Satya Narayana Swamy Undi

Abstract:

Particulate matter (PM) pollution in ambient air is a major environmental health risk factor contributing to disease and mortality worldwide. Current air pollution control methods have limitations in reducing real-world ambient PM levels. This study demonstrates the efficacy of using pulsed radio wave technology as a distinct approach to lower outdoor particulate pollution. Experimental data were compared with computational models to evaluate the efficiency of pulsed waves in coagulating and settling PM. Results showed 50%+ reductions in PM2.5 and PM10 concentrations at the city scale, with particle removal rates exceeding gravity settling by over 3X. Historical air quality data further validated the significant PM reductions achieved in test cases. Computational analyses revealed the underlying coagulation mechanisms induced by the pulsed waves, supporting the feasibility of this strategy for ambient particulate control. The pulsed electromagnetic technology displayed robustness in sustainably managing PM levels across diverse urban and industrial environments. Findings highlight the promise of this advanced approach as a next-generation solution to mitigate particulate air pollution and associated health burdens globally. The technology's scalability and energy efficiency can help address a key gap in current efforts to improve ambient air quality.

Keywords: particulate matter, mitigation technologies, clean air, ambient air pollution

Procedia PDF Downloads 35
9866 Electrocatalysts for Lithium-Sulfur Energy Storage Systems

Authors: Mirko Ante, Şeniz Sörgel, Andreas Bund

Abstract:

Li-S- (Lithium-Sulfur-) battery systems provide very high specific gravimetric energy (2600 Wh/kg) and volumetric energy density (2800Wh/l). Hence, Li-S batteries are one of the key technologies for both the upcoming electromobility and stationary applications. Furthermore, the Li-S battery system is potentially cheap and environmentally benign. However, the technical implementation suffers from cycling stability, low charge and discharge rates and incomplete understanding of the complex polysulfide reaction mechanism. The aim of this work is to develop an effective electrocatalyst for the polysulfide reactions so that the electrode kinetics of the sulfur half-cell will be improved. Accordingly, the overvoltage will be decreased, and the efficiency of the cell will be increased. An enhanced electroactive surface additionally improves the charge and discharge rates. To reach this goal, functionalized electrocatalytic coatings are investigated to accelerate the kinetics of the polysulfide reactions. In order to determine a suitable electrocatalyst, apparent exchange current densities of a variety of materials (Ni, Co, Pt, Cr, Al, Cu, ITO, stainless steel) have been evaluated in a polysulfide containing electrolyte by potentiodynamic measurements and a Butler-Volmer fit including diffusion limitation. The samples have been examined by Scanning Electron Microscopy (SEM) after the potentiodynamic measurements. Up to now, our work shows that cobalt is a promising material with good electrocatalytic properties for the polysulfide reactions and good chemical stability in the system. Furthermore, an electrodeposition from a modified Watt’s nickel electrolyte with a sulfur source seems to provide an autocatalytic effect, but the electrocatalytic behavior decreases after several cycles of the current-potential-curve.

Keywords: electrocatalyst, energy storage, lithium sulfur battery, sulfur electrode materials

Procedia PDF Downloads 353
9865 Prevalence of Seropositivity for Cytomegalovirus in Patients with Hereditary Bleeding Diseases in West Azerbaijan of Iran

Authors: Zakieh Rostamzadeh, Zahra Shirmohammadi

Abstract:

Human cytomegalovirus is a species of the cytomegalovirus family of viruses, which in turn is a member of the viral family known as herpesviridae or herpesviruses. Although they may be found throughout the body, HCMV infections are frequently associated with the salivary glands. HCMV infection is typically unnoticed in healthy people, but can be life-threatening for the immunocompromised such as HIV-infected persons, organ transplant recipients, or newborn infants. After infection, HCMV has an ability to remain latent within the body over long periods. Cytomegalovirus (CMV) causes infection in immunocompromised, hemophilia patients and those who received blood transfusion frequently. This study aimed at determining the prevalence of cytomegalovirus (CMV) antibodies in hemophilia patients. Materials and Methods: A retrospective observational study was carried out in Urmia, North West of Iran. The study population comprised a sample of 50 hemophilic patients born after 1985 and have received blood factors in West Azerbaijan. The exclusion criteria include: drug abusing, high risk sexual contacts, vertical transmission of mother to fetus and suspicious needling. All samples were evaluated with the method of ELISA, with a certain kind of kit and by a certain laboratory. Results: Fifty hemophiliacs from 250 patients registered with Urmia Hemophilia Society were enrolled in the study including 43 (86%) male, and 7 (14%) female. The mean age of patients was 10.3 years, range 3 to 25 years. None of patients had risk factors mentioned above. Among our studied population, 34(68%) had hemophilia A, 1 (2%) hemophilia B, 8 (16%) VWF, 3(6%) factor VII deficiency, 1 (2%) factor V deficiency, 1 (2%) factor X deficiency, 1 (2%). Sera of 50 Hemodialysis patients were investigated for CMV-specific immunoglobulin G (IgG) and IgM. % 91.89 patients were anti-CMV IgG positive and %40.54 was seropositive for anti-CMV IgM. 37.8% patient had serological evidence of reactivation and 2.7% of patients had the primary infection. Discussion: There was no relationship between the antibody titer and: drug abusing, high risk sexual contacts, vertical transmission of mother to fetus and suspicious needling.

Keywords: bioinformatics, biomedicine, cytomegalovirus, immunocompromise

Procedia PDF Downloads 346
9864 Estimation of World Steel Production by Process

Authors: Reina Kawase

Abstract:

World GHG emissions should be reduced 50% by 2050 compared with 1990 level. CO2 emission reduction from steel sector, an energy-intensive sector, is essential. To estimate CO2 emission from steel sector in the world, estimation of steel production is required. The world steel production by process is estimated during the period of 2005-2050. The world is divided into aggregated 35 regions. For a steel making process, two kinds of processes are considered; basic oxygen furnace (BOF) and electric arc furnace (EAF). Steel production by process in each region is decided based on a current production capacity, supply-demand balance of steel and scrap, technology innovation of steel making, steel consumption projection, and goods trade. World steel production under moderate countermeasure scenario in 2050 increases by 1.3 times compared with that in 2012. When domestic scrap recycling is promoted, steel production in developed regions increases about 1.5 times. The share in developed regions changes from 34 %(2012) to about 40%(2050). This is because developed regions are main suppliers of scrap. 48-57% of world steel production is produced by EAF. Under the scenario which thinks much of supply-demand balance of steel, steel production in developing regions increases is 1.4 times and is larger than that in developed regions. The share in developing regions, however, is not so different from current level. The increase in steel production by EAF is the largest under the scenario in which supply-demand balance of steel is an important factor. The share reaches 65%.

Keywords: global steel production, production distribution scenario, steel making process, supply-demand balance

Procedia PDF Downloads 433
9863 An Investigation of Interdisciplinary Techniques for Assessment of Water Quality in an Industrial Area

Authors: Priti Saha, Biswajit Paul

Abstract:

Rapid urbanization and industrialization have increased the demand of groundwater. However, the present era has evident an enormous level of groundwater pollution. Therefore, water quality assessment is paramount importance to evaluate its suitability for drinking, irrigation and industrial use. This study focus to evaluate the groundwater quality of an industrial city in eastern India through interdisciplinary techniques. The multi-purpose Water Quality Index (WQI) assess the suitability for drinking as well as irrigation of forty sampling locations, where 2.5% and 15% of sampling locations have excellent water quality (WQI:0-25) as well as 15% and 40% have good quality (WQI:25-50), which represents its suitability for drinking and irrigation respectively. However, the industrial water quality was assessed through Ryznar Stability Index (LSI), which affirmed that only 2.5% of sampling locations have neither corrosive nor scale forming properties (RSI: 6.2-6.8). These techniques with the integration of geographical information system (GIS) for spatial assessment indorsed its effectiveness to identify the regions where the water bodies are suitable to use for drinking, irrigation as well as industrial activities. Further, the sources of these contaminants were identified through factor analysis (FA), which revealed that both the geogenic as well as anthropogenic sources were responsible for groundwater pollution. This research demonstrates the effectiveness of statistical and GIS techniques for the analysis of environmental contaminants.

Keywords: groundwater, water quality analysis, water quality index, WQI, factor analysis, FA, spatial assessment

Procedia PDF Downloads 182
9862 The Performance Evaluation of the Modular Design of Hybrid Wall with Surface Heating and Cooling System

Authors: Selcen Nur Eri̇kci̇ Çeli̇k, Burcu İbaş Parlakyildiz, Gülay Zorer Gedi̇k

Abstract:

Reducing the use of mechanical heating and cooling systems in buildings, which accounts for approximately 30-40% of total energy consumption in the world has a major impact in terms of energy conservation. Formations of buildings that have sustainable and low energy utilization, structural elements with mechanical systems should be evaluated with a holistic approach. In point of reduction of building energy consumption ratio, wall elements that are vertical building elements and have an area broadly (m2) have proposed as a regulation with a different system. In the study, designing surface heating and cooling energy with a hybrid type of modular wall system and the integration of building elements will be evaluated. The design of wall element; - Identification of certain standards in terms of architectural design and size, -Elaboration according to the area where the wall elements (interior walls, exterior walls) -Solution of the joints, -Obtaining the surface in terms of building compatible with both conceptual structural put emphasis on upper stages, these elements will be formed. The durability of the product to the various forces, stability and resistance are so much substantial that are used the establishment of ready-wall element section and the planning of structural design. All created ready-wall alternatives will be paid attention at some parameters; such as adapting to performance-cost by optimum level and size that can be easily processed and reached. The restrictions such as the size of the zoning regulations, building function, structural system, wheelbase that are imposed by building laws, should be evaluated. The building aims to intend to function according to a certain standardization system and construction of wall elements will be used. The scope of performance criteria determined on the wall elements, utilization (operation, maintenance) and renovation phase, alternative material options will be evaluated with interim materials located in the contents. Design, implementation and technical combination of modular wall elements in the use phase and installation details together with the integration of energy saving, heat-saving and useful effects on the environmental aspects will be discussed in detail. As a result, the ready-wall product with surface heating and cooling modules will be created and defined as hybrid wall and will be compared with the conventional system in terms of thermal comfort. After preliminary architectural evaluations, certain decisions for all architectural design processes (pre and post design) such as the implementation and performance in use, maintenance, renewal will be evaluated in the results.

Keywords: modular ready-wall element, hybrid, architectural design, thermal comfort, energy saving

Procedia PDF Downloads 239
9861 Venezuela in the US Oil Geopolitics: An Analysis in the Light of the New Oil Landscape

Authors: William Clavijo, Edmar Almeida

Abstract:

The article analyzes the importance of Venezuela in the US geopolitics of oil considering the new oil landscape. To this end, the importance of oil in the geopolitics of the United States is discussed from the perspective of energy security as well as considering a broader view of national security. Based on this discussion, the relevance of Venezuelan oil reserves on US geopolitical agenda is analyzed. Among the results, the article shows that the transformations in the supply structure of the international oil market during the last decade have allowed the United States to achieve greater levels of independence from oil imports from other producing countries. This new reality has profoundly changed the US interest in Venezuelan oil to a broader subject that involves sensitive issues of its national security agenda.

Keywords: oil geopolitics, Venezuela, United States, energy security, national security

Procedia PDF Downloads 153
9860 Wood as a Climate Buffer in a Supermarket

Authors: Kristine Nore, Alexander Severnisen, Petter Arnestad, Dimitris Kraniotis, Roy Rossebø

Abstract:

Natural materials like wood, absorb and release moisture. Thus wood can buffer indoor climate. When used wisely, this buffer potential can be used to counteract the outer climate influence on the building. The mass of moisture used in the buffer is defined as the potential hygrothermal mass, which can be an energy storage in a building. This works like a natural heat pump, where the moisture is active in damping the diurnal changes. In Norway, the ability of wood as a material used for climate buffering is tested in several buildings with the extensive use of wood, including supermarkets. This paper defines the potential of hygrothermal mass in a supermarket building. This includes the chosen ventilation strategy, and how the climate impact of the building is reduced. The building is located above the arctic circle, 50m from the coastline, in Valnesfjord. It was built in 2015, has a shopping area, including toilet and entrance, of 975 m². The climate of the area is polar according to the Köppen classification, but the supermarket still needs cooling on hot summer days. In order to contribute to the total energy balance, wood needs dynamic influence to activate its hygrothermal mass. Drying and moistening of the wood are energy intensive, and this energy potential can be exploited. Examples are to use solar heat for drying instead of heating the indoor air, and raw air with high enthalpy that allow dry wooden surfaces to absorb moisture and release latent heat. Weather forecasts are used to define the need for future cooling or heating. Thus, the potential energy buffering of the wood can be optimized with intelligent ventilation control. The ventilation control in Valnesfjord includes the weather forecast and historical data. That is a five-day forecast and a two-day history. This is to prevent adjustments to smaller weather changes. The ventilation control has three zones. During summer, the moisture is retained to dampen for solar radiation through drying. In the winter time, moist air let into the shopping area to contribute to the heating. When letting the temperature down during the night, the moisture absorbed in the wood slow down the cooling. The ventilation system is shut down during closing hours of the supermarket in this period. During the autumn and spring, a regime of either storing the moisture or drying out to according to the weather prognoses is defined. To ensure indoor climate quality, measurements of CO₂ and VOC overrule the low energy control if needed. Verified simulations of the Valnesfjord building will build a basic model for investigating wood as a climate regulating material also in other climates. Future knowledge on hygrothermal mass potential in materials is promising. When including the time-dependent buffer capacity of materials, building operators can achieve optimal efficiency of their ventilation systems. The use of wood as a climate regulating material, through its potential hygrothermal mass and connected to weather prognoses, may provide up to 25% energy savings related to heating, cooling, and ventilation of a building.

Keywords: climate buffer, energy, hygrothermal mass, ventilation, wood, weather forecast

Procedia PDF Downloads 196
9859 Hierarchical Operation Strategies for Grid Connected Building Microgrid with Energy Storage and Photovoltatic Source

Authors: Seon-Ho Yoon, Jin-Young Choi, Dong-Jun Won

Abstract:

This paper presents hierarchical operation strategies which are minimizing operation error between day ahead operation plan and real time operation. Operating power systems between centralized and decentralized approaches can be represented as hierarchical control scheme, featured as primary control, secondary control and tertiary control. Primary control is known as local control, featuring fast response. Secondary control is referred to as microgrid Energy Management System (EMS). Tertiary control is responsible of coordinating the operations of multi-microgrids. In this paper, we formulated 3 stage microgrid operation strategies which are similar to hierarchical control scheme. First stage is to set a day ahead scheduled output power of Battery Energy Storage System (BESS) which is only controllable source in microgrid and it is optimized to minimize cost of exchanged power with main grid using Particle Swarm Optimization (PSO) method. Second stage is to control the active and reactive power of BESS to be operated in day ahead scheduled plan in case that State of Charge (SOC) error occurs between real time and scheduled plan. The third is rescheduling the system when the predicted error is over the limited value. The first stage can be compared with the secondary control in that it adjusts the active power. The second stage is comparable to the primary control in that it controls the error in local manner. The third stage is compared with the secondary control in that it manages power balancing. The proposed strategies will be applied to one of the buildings in Electronics and Telecommunication Research Institute (ETRI). The building microgrid is composed of Photovoltaic (PV) generation, BESS and load and it will be interconnected with the main grid. Main purpose of that is minimizing operation cost and to be operated in scheduled plan. Simulation results support validation of proposed strategies.

Keywords: Battery Energy Storage System (BESS), Energy Management System (EMS), Microgrid (MG), Particle Swarm Optimization (PSO)

Procedia PDF Downloads 240
9858 Climate Change Impact on Water Resources Management in Remote Islands Using Hybrid Renewable Energy Systems

Authors: Elissavet Feloni, Ioannis Kourtis, Konstantinos Kotsifakis, Evangelos Baltas

Abstract:

Water inadequacy in small dry islands scattered in the Aegean Sea (Greece) is a major problem regarding Water Resources Management (WRM), especially during the summer period due to tourism. In the present work, various WRM schemes are designed and presented. The WRM schemes take into account current infrastructure and include Rainwater Harvesting tanks and Reverse Osmosis Desalination Units. The energy requirements are covered mainly by wind turbines and/or a seawater pumped storage system. Sizing is based on the available data for population and tourism per island, after taking into account a slight increase in the population (up to 1.5% per year), and it guarantees at least 80% reliability for the energy supply and 99.9% for potable water. Evaluation of scenarios is carried out from a financial perspective, after calculating the Life Cycle Cost (LCC) of each investment for a lifespan of 30 years. The wind-powered desalination plant was found to be the most cost-effective practice, from an economic point of view. Finally, in order to estimate the Climate Change (CC) impact, six different CC scenarios were investigated. The corresponding rate of on-grid versus off-grid energy required for ensuring the targeted reliability for the zero and each climatic scenario was investigated per island. The results revealed that under CC the grid-on energy required would increase and as a result, the reduction in wind turbines and seawater pumped storage systems’ reliability will be in the range of 4 to 44%. However, the range of this percentage change does not exceed 22% per island for all examined CC scenarios. Overall, CC is proposed to be incorporated into the design process for WRM-related projects. Acknowledgements: This research is co-financed by Greece and the European Union (European Social Fund - ESF) through the Operational Program «Human Resources Development, Education and Lifelong Learning 2014-2020» in the context of the project “Development of a combined rain harvesting and renewable energy-based system for covering domestic and agricultural water requirements in small dry Greek Islands” (MIS 5004775).

Keywords: small dry islands, water resources management, climate change, desalination, RES, seawater pumped storage system, rainwater harvesting

Procedia PDF Downloads 105
9857 Defining the Vibrancy of the Temple Square: A Case of Car Street Udupi, Karnataka

Authors: Nivedhitha Venkatakrishnan

Abstract:

Walking down busy temple streets in India is an experience in lifetime. Especially the temple streets are one of the most energetic places not only because of the divinity but also because of the streets itself which provides place for people to relax, meet, shop, linger, just walk around these activities create a set of experience which results in memories that lasts longer. Thinking of any temple street in India the image that comes to anyone’s mind are the elegantly sculpted Gopurams (Gateway) that depicts the craftsmanship and the history of the place, people taking a holy dip in the water, the aroma of the agarbathi’s, flowers with the divine Vedic chants and the sound of the temple bell flock of pigeons flying from the niches of the Gopuram with the sun in the backdrop. It gives a feeling of impulse energy that brings in life to these streets. Any temple street with even any one factor missing would look dead. This will be amiss in the essence in the scene of one’s experiences. These Temple Streets traditionally cater not only for religious purpose but to a wide range of activities. A vibrant street that facilitates such activities are preferred by the public any day. The research seeks to understand and find out the definition of Vibrancy in Indian Context. What is Vibrancy? What brings in the feeling of Vibrancy/Liveliness/Energy? Is it the Built structure and the city? Or is it the people? Or is it the Activity? Or is it Built structure – city – People – Activity put together brings the sense of Vibrancy to a place? How to define Vibrancy? Is it measurable? For which a case of Car Street Udupi, Karnataka is taken. The research is carried out in two stages. ‘Stage One’ makes use of ethnographic fieldwork as a basic method, complimented by structured field observations using a behavioral mapping procedure of the streets. Stage Two’ utilizes surveys that collected. This stage seeks to understand what design characteristics and furniture arrangements are associated with stationary, social and gathering activities of people by each cultural group and all groups collectively. The main conclusion from this research is that retail activities remain the main concern of people in cultural streets. Management and higher-level planning of retail activities on the streets could encourage and motivate possible Shops to enrich the trade variety of the street that provides a means for social and cultural diversity. In addition to business activities, spatial design characteristics are found to have an influence on people’s behavior and activity. The findings of this research suggest that retail and business activities, together with the design and skillful management of the public areas, could support a wider range of static and social activities among people of various ethnic backgrounds.

Keywords: activity, liveliness, temple street, vibrancy

Procedia PDF Downloads 144
9856 Concentration of Waste Waters by Enzyme-Assisted Low-Temperature Evaporation

Authors: Ahokas Mikko, Taskila Sanna, Varrio Kalle, Tanskanen Juha

Abstract:

The present research aimed at the development of an energy efficient process for the concentration of starchy waste waters. The selected principle is mechanical vapor recompression evaporation (MVR) which leads to concentrated solid material and evaporated water phase. Evaporation removes water until a certain viscosity limit is reached. Materials with high viscosity cannot be concentrated using standard evaporators due to limitations of pumps and other constraints, such as wetting. Control of viscosity is thus essential for efficient evaporation. This applies especially to fluids in which due starch or other compounds the viscosity tends to increase via removal of water. In the present research, the effect of enzymes on evaporation of highly viscous starch industry waste waters was investigated. Wastewater samples were received from starch industry at pH of 4.8. Response surface methodology (RSM) was applied for the investigation of factor effects on the behaviour of concentrate during evaporation. The RSM was prepared using quadratic face-centered central composite design (CCF). The evaporation performance was evaluated by monitoring the viscosity of fluid during processing. Based on viscosity curves, the addition of glucoamylase reduced the viscosity during evaporation. This assumption was confirmed by CCF, suggesting that the use of starch decomposing glucoamylase allowed evaporation of the starchy wastewater to a relatively high total solid concentration without a detrimental increase in the viscosity. The results suggest that use of enzymes for reduction of viscosity during the evaporation allows more effective concentration of the wastewater and thereby recovery of potable water.

Keywords: viscous, wastewater, treatment, evaporation, concentration

Procedia PDF Downloads 230
9855 The Ludic Exception and the Permanent Emergency: Understanding the Emergency Regimes with the Concept of Play

Authors: Mete Ulaş Aksoy

Abstract:

In contemporary politics, the state of emergency has become a permanent and salient feature of politics. This study aims to clarify the anthropological and ontological dimensions of the permanent state of emergency. It pays special attention to the structural relation between the exception and play. Focusing on the play in the context of emergency and exception enables the recognition of the difference and sometimes the discrepancy between the exception and emergency, which has passed into oblivion because of the frequency and normalization of emergency situations. This study coins the term “ludic exception” in order to highlight the difference between the exceptions in which exuberance and paroxysm rule over the socio-political life and the permanent emergency that protects the authority with a sort of extra-legality. The main thesis of the study is that the ludic elements such as risk, conspicuous consumption, sacrificial gestures, agonism, etc. circumscribe the exceptional moments temporarily, preventing them from being routine and normal. The study also emphasizes the decline of ludic elements in modernity as the main factor in the transformation of the exceptions into permanent emergency situations. In the introduction, the relationship between play and exception is taken into consideration. In the second part, the study elucidates the concept of ludic exceptions and dwells on the anthropological examples of the ludic exceptions. In the last part, the decline of ludic elements in modernity is addressed as the main factor for the permanent emergency.

Keywords: emergency, exception, ludic exception, play, sovereignty

Procedia PDF Downloads 77
9854 Numerical Investigation of the Integration of a Micro-Combustor with a Free Piston Stirling Engine in an Energy Recovery System

Authors: Ayodeji Sowale, Athanasios Kolios, Beatriz Fidalgo, Tosin Somorin, Aikaterini Anastasopoulou, Alison Parker, Leon Williams, Ewan McAdam, Sean Tyrrel

Abstract:

Recently, energy recovery systems are thriving and raising attention in the power generation sector, due to the request for cleaner forms of energy that are friendly and safe for the environment. This has created an avenue for cogeneration, where Combined Heat and Power (CHP) technologies have been recognised for their feasibility, and use in homes and small-scale businesses. The efficiency of combustors and the advantages of the free piston Stirling engines over other conventional engines in terms of output power and efficiency, have been observed and considered. This study presents the numerical analysis of a micro-combustor with a free piston Stirling engine in an integrated model of a Nano Membrane Toilet (NMT) unit. The NMT unit will use the micro-combustor to produce waste heat of high energy content from the combustion of human waste and the heat generated will power the free piston Stirling engine which will be connected to a linear alternator for electricity production. The thermodynamic influence of the combustor on the free piston Stirling engine was observed, based on the heat transfer from the flue gas to working gas of the free piston Stirling engine. The results showed that with an input of 25 MJ/kg of faecal matter, and flue gas temperature of 773 K from the micro-combustor, the free piston Stirling engine generates a daily output power of 428 W, at thermal efficiency of 10.7% with engine speed of 1800 rpm. An experimental investigation into the integration of the micro-combustor and free piston Stirling engine with the NMT unit is currently underway.

Keywords: free piston stirling engine, micro-combustor, nano membrane toilet, thermodynamics

Procedia PDF Downloads 247
9853 O-LEACH: The Problem of Orphan Nodes in the LEACH of Routing Protocol for Wireless Sensor Networks

Authors: Wassim Jerbi, Abderrahmen Guermazi, Hafedh Trabelsi

Abstract:

The optimum use of coverage in wireless sensor networks (WSNs) is very important. LEACH protocol called Low Energy Adaptive Clustering Hierarchy, presents a hierarchical clustering algorithm for wireless sensor networks. LEACH is a protocol that allows the formation of distributed cluster. In each cluster, LEACH randomly selects some sensor nodes called cluster heads (CHs). The selection of CHs is made with a probabilistic calculation. It is supposed that each non-CH node joins a cluster and becomes a cluster member. Nevertheless, some CHs can be concentrated in a specific part of the network. Thus, several sensor nodes cannot reach any CH. to solve this problem. We created an O-LEACH Orphan nodes protocol, its role is to reduce the sensor nodes which do not belong the cluster. The cluster member called Gateway receives messages from neighboring orphan nodes. The gateway informs CH having the neighboring nodes that not belong to any group. However, Gateway called (CH') attaches the orphaned nodes to the cluster and then collected the data. O-Leach enables the formation of a new method of cluster, leads to a long life and minimal energy consumption. Orphan nodes possess enough energy and seeks to be covered by the network. The principal novel contribution of the proposed work is O-LEACH protocol which provides coverage of the whole network with a minimum number of orphaned nodes and has a very high connectivity rates.As a result, the WSN application receives data from the entire network including orphan nodes. The proper functioning of the Application requires, therefore, management of intelligent resources present within each the network sensor. The simulation results show that O-LEACH performs better than LEACH in terms of coverage, connectivity rate, energy and scalability.

Keywords: WSNs; routing; LEACH; O-LEACH; Orphan nodes; sub-cluster; gateway; CH’

Procedia PDF Downloads 356
9852 Inflammatory Alleviation on Microglia Cells by an Apoptotic Mimicry

Authors: Yi-Feng Kao, Huey-Jine Chai, Chin-I Chang, Yi-Chen Chen, June-Ru Chen

Abstract:

Microglia is a macrophage that resides in brain, and overactive microglia may result in brain neuron damage or inflammation. In this study, the phospholipids was extracted from squid skin and manufactured into a liposome (SQ liposome) to mimic apoptotic body. We then evaluated anti-inflammatory effects of SQ liposome on mouse microglial cell line (BV-2) by lipopolysaccharide (LPS) induction. First, the major phospholipid constituents in the squid skin extract were including 46.2% of phosphatidylcholine, 18.4% of phosphatidylethanolamine, 7.7% of phosphatidylserine, 3.5% of phosphatidylinositol, 4.9% of Lysophosphatidylcholine and 19.3% of other phospholipids by HPLC-UV analysis. The contents of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the squid skin extract were 11.8 and 28.7%, respectively. The microscopic images showed that microglia cells can engulf apoptotic cells or SQ-liposome. In cell based studies, there was no cytotoxicity to BV-2 as the concentration of SQ-liposome was less than 2.5 mg/mL. The LPS induced pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), were significant suppressed (P < 0.05) by pretreated 0.03~2.5mg/ml SQ liposome. Oppositely, the anti-inflammatory cytokines transforming growth factor-beta (TGF-β) and interleukin-10 (IL-10) secretion were enhanced (P < 0.05). The results suggested that SQ-liposome possess anti-inflammatory properties on BV-2 and may be a good strategy for against neuro-inflammatory disease.

Keywords: apoptotic mimicry, neuroinflammation, microglia, squid processing by-products

Procedia PDF Downloads 468