Search results for: energetic process efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19845

Search results for: energetic process efficiency

16845 Effectiveness of School Strategic Planning: The Case of Fijian Schools

Authors: G. Lingam, N. Lingam, K. Raghuwaiya

Abstract:

In Fiji, notable among the recent spate of educational reforms has been the Ministry of Education’s (MoEs) requirement that all schools undertake a process of school strategic planning. This preliminary study explores perceptions of a sample of Fijian teachers on the way this exercise has been conducted in their schools. The analysis of both quantitative and qualitative data indicates that school leaders’ lack of knowledge and skills in school strategic planning is a major limitation. As an unsurprising consequence, the process(es) schools adopted did not conform to what the literature suggests as best planning practices. School leaders need more training to ensure they are better prepared to carry out this strategic planning effectively, especially in widening the opportunities for all who have a stake in education to contribute to the process. Implications of the findings are likely to be pertinent to other developing contexts within and beyond the Pacific region for the training of school leaders to ensure they are better equipped to orchestrate and benefit from educational reforms thrust upon them.

Keywords: school strategic planning, educational reforms, Fijian schools, Ministry of Education

Procedia PDF Downloads 361
16844 Factors Influencing the Resistance of the Purchase of Organic Food and Market Education Process in Indonesia

Authors: Fety Nurlia Muzayanah, Arif Imam Suroso, Mukhamad Najib

Abstract:

The market share of organic food in Indonesia just reaches 0.5-2 percents from the entire of agricultural products. The aim of this research is to analyze the relation of gender, work, age and final education toward the buying interest of organic food, to identify the factors influencing the resistance of the purchase of organic food, and to identify the market education process. The analysis result of Structural Equation Modeling (SEM) shows the factors causing the resistance of the purchase of organic food are the negative attitude toward organic food, the lack of affordable in range for organic food product and the lack of awareness toward organic food, while the subjective norms have no significant effect toward the buying interest. The market education process which can be done is the education about the use of the health of organic food, the organic certification and the economic value.

Keywords: market education, organic food, consumer behavior, structural equation modeling

Procedia PDF Downloads 596
16843 A Spatial Perspective on the Metallized Combustion Aspect of Rockets

Authors: Chitresh Prasad, Arvind Ramesh, Aditya Virkar, Karan Dholkaria, Vinayak Malhotra

Abstract:

Solid Propellant Rocket is a rocket that utilises a combination of a solid Oxidizer and a solid Fuel. Success in Solid Rocket Motor design and development depends significantly on knowledge of burning rate behaviour of the selected solid propellant under all motor operating conditions and design limit conditions. Most Solid Motor Rockets consist of the Main Engine, along with multiple Boosters that provide an additional thrust to the space-bound vehicle. Though widely used, they have been eclipsed by Liquid Propellant Rockets, because of their better performance characteristics. The addition of a catalyst such as Iron Oxide, on the other hand, can drastically enhance the performance of a Solid Rocket. This scientific investigation tries to emulate the working of a Solid Rocket using Sparklers and Energized Candles, with a central Energized Candle acting as the Main Engine and surrounding Sparklers acting as the Booster. The Energized Candle is made of Paraffin Wax, with Magnesium filings embedded in it’s wick. The Sparkler is made up of 45% Barium Nitrate, 35% Iron, 9% Aluminium, 10% Dextrin and the remaining composition consists of Boric Acid. The Magnesium in the Energized Candle, and the combination of Iron and Aluminium in the Sparkler, act as catalysts and enhance the burn rates of both materials. This combustion of Metallized Propellants has an influence over the regression rate of the subject candle. The experimental parameters explored here are Separation Distance, Systematically varying Configuration and Layout Symmetry. The major performance parameter under observation is the Regression Rate of the Energized Candle. The rate of regression is significantly affected by the orientation and configuration of the sparklers, which usually act as heat sources for the energized candle. The Overall Efficiency of any engine is factorised by the thermal and propulsive efficiencies. Numerous efforts have been made to improve one or the other. This investigation focuses on the Orientation of Rocket Motor Design to maximize their Overall Efficiency. The primary objective is to analyse the Flame Spread Rate variations of the energized candle, which resembles the solid rocket propellant used in the first stage of rocket operation thereby affecting the Specific Impulse values in a Rocket, which in turn have a deciding impact on their Time of Flight. Another objective of this research venture is to determine the effectiveness of the key controlling parameters explored. This investigation also emulates the exhaust gas interactions of the Solid Rocket through concurrent ignition of the Energized Candle and Sparklers, and their behaviour is analysed. Modern space programmes intend to explore the universe outside our solar system. To accomplish these goals, it is necessary to design a launch vehicle which is capable of providing incessant propulsion along with better efficiency for vast durations. The main motivation of this study is to enhance Rocket performance and their Overall Efficiency through better designing and optimization techniques, which will play a crucial role in this human conquest for knowledge.

Keywords: design modifications, improving overall efficiency, metallized combustion, regression rate variations

Procedia PDF Downloads 161
16842 Open Innovation for Crowdsourced Product Development: The Case Study of Quirky.com

Authors: Ana Bilandzic, Marcus Foth, Greg Hearn

Abstract:

In a narrow sense, innovation is the invention and commercialisation of a new product or service in the marketplace. The literature suggests places that support knowledge exchange and social interaction, e.g. coffee shops, to nurture innovative ideas. With the widespread success of Internet, interpersonal communication and interaction changed. Online platforms complement physical places for idea exchange and innovation – the rise of hybrid, ‘net localities.’ Further, since its introduction in 2003 by Chesbrough, the concept of open innovation received increased attention as a topic in academic research as well as an innovation strategy applied by companies. Open innovation allows companies to seek and release intellectual property and new ideas from outside of their own company. As a consequence, the innovation process is no longer only managed within the company, but it is pursued in a co-creation process with customers, suppliers, and other stakeholders. Quirky.com (Quirky), a company founded by Ben Kaufman in 2009, recognised the opportunity given by the Internet for knowledge exchange and open innovation. Quirky developed an online platform that makes innovation available to everyone. This paper reports on a study that analysed Quirky’s business process in an extended event-driven process chain (eEPC). The aim was to determine how the platform enabled crowdsourced innovation for physical products on the Internet. The analysis reveals that key elements of the business model are based on open innovation. Quirky is an example of how open innovation can support crowdsourced and crowdfunded product ideation, development and selling. The company opened up various stages in the innovation process to its members to contribute in the product development, e.g. product ideation, design, and market research. Throughout the process, members earn influence through participating in the product development. Based on the influence they receive, shares on the product’s turnover. The outcomes of the study’s analysis highlighted certain benefits of open innovation for product development. The paper concludes with recommendations for future research to look into opportunities of open innovation approaches to be adopted by tertiary institutions as a novel way to commercialise research intellectual property.

Keywords: business process, crowdsourced innovation, open innovation, Quirky

Procedia PDF Downloads 214
16841 Direct Fed Microbes: A Better Approach to Maximize Utilization of Roughages in Tropical Ruminants

Authors: Muhammad Adeel Arshad, Shaukat Ali Bhatti, Faiz-ul Hassan

Abstract:

Manipulating microbial ecosystem in the rumen is considered as an important strategy to optimize production efficiency in ruminants. In the past, antibiotics and synthetic chemical compounds have been used for the manipulation of rumen fermentation. However, since the non-therapeutic use of antibiotics has been banned, efforts are being focused to search out safe alternative products. In tropics, crop residues and forage grazing are major dietary sources for ruminants. Poor digestibility and utilization of these feedstuffs by animals is a limiting factor to exploit the full potential of ruminants in this area. Hence, there is a need to enhance the utilization of these available feeding resources. One of the potential strategies in this regard is the use of direct-fed microbes. Bacteria and fungi are mostly used as direct-fed microbes to improve animal health and productivity. Commonly used bacterial species include lactic acid-producing and utilizing bacteria (Lactobacillus, Streptococcus, Enterococcus, Bifidobacterium, and Bacillus) and fungal species of yeast are Saccharomyces and Aspergillus. Direct-fed microbes modulate microbial balance in the gastrointestinal tract through the competitive exclusion of pathogenic species and favoring beneficial microbes. Improvement in weight gain and feed efficiency has been observed as a result of feeding direct-fed bacteria. The use of fungi as a direct-fed microbe may prevent excessive production of lactate and harmful oxygen in the rumen leading to better feed digestibility. However, the mechanistic mode of action for bacterial or fungal direct-fed microbes has not been established yet. Various reports have confirmed an increase in dry matter intake, milk yield, and milk contents in response to the administration of direct-fed microbes. However, the application of a direct-fed microbe has shown variable responses mainly attributed to dosages and strains of microbes. Nonetheless, it is concluded that the inclusion of direct-fed microbes may mediate the rumen ecosystem to manage lactic acid production and utilization in both clinical and sub-acute rumen acidosis.

Keywords: microbes, roughages, rumen, feed efficiency, production, fermentation

Procedia PDF Downloads 124
16840 Assessing the Mass Concentration of Microplastics and Nanoplastics in Wastewater Treatment Plants by Pyrolysis Gas Chromatography−Mass Spectrometry

Authors: Yanghui Xu, Qin Ou, Xintu Wang, Feng Hou, Peng Li, Jan Peter van der Hoek, Gang Liu

Abstract:

The level and removal of microplastics (MPs) in wastewater treatment plants (WWTPs) has been well evaluated by the particle number, while the mass concentration of MPs and especially nanoplastics (NPs) remains unclear. In this study, microfiltration, ultrafiltration and hydrogen peroxide digestion were used to extract MPs and NPs with different size ranges (0.01−1, 1−50, and 50−1000 μm) across the whole treatment schemes in two WWTPs. By identifying specific pyrolysis products, pyrolysis gas chromatography−mass spectrometry were used to quantify their mass concentrations of selected six types of polymers (i.e., polymethyl methacrylate (PMMA), polypropylene (PP), polystyrene (PS), polyethylene (PE), polyethylene terephthalate (PET), and polyamide (PA)). The mass concentrations of total MPs and NPs decreased from 26.23 and 11.28 μg/L in the influent to 1.75 and 0.71 μg/L in the effluent, with removal rates of 93.3 and 93.7% in plants A and B, respectively. Among them, PP, PET and PE were the dominant polymer types in wastewater, while PMMA, PS and PA only accounted for a small part. The mass concentrations of NPs (0.01−1 μm) were much lower than those of MPs (>1 μm), accounting for 12.0−17.9 and 5.6− 19.5% of the total MPs and NPs, respectively. Notably, the removal efficiency differed with the polymer type and size range. The low-density MPs (e.g., PP and PE) had lower removal efficiency than high-density PET in both plants. Since particles with smaller size could pass the tertiary sand filter or membrane filter more easily, the removal efficiency of NPs was lower than that of MPs with larger particle size. Based on annual wastewater effluent discharge, it is estimated that about 0.321 and 0.052 tons of MPs and NPs were released into the river each year. Overall, this study investigated the mass concentration of MPs and NPs with a wide size range of 0.01−1000 μm in wastewater, which provided valuable information regarding the pollution level and distribution characteristics of MPs, especially NPs, in WWTPs. However, there are limitations and uncertainties in the current study, especially regarding the sample collection and MP/NP detection. The used plastic items (e.g., sampling buckets, ultrafiltration membranes, centrifugal tubes, and pipette tips) may introduce potential contamination. Additionally, the proposed method caused loss of MPs, especially NPs, which can lead to underestimation of MPs/NPs. Further studies are recommended to address these challenges about MPs/NPs in wastewater.

Keywords: microplastics, nanoplastics, mass concentration, WWTPs, Py-GC/MS

Procedia PDF Downloads 265
16839 Development of Filling Material in 3D Printer with the Aid of Computer Software for Supported with Natural Zeolite for the Removal of Nitrogen and Phosphorus

Authors: Luís Fernando Cusioli, Leticia Nishi, Lucas Bairros, Gabriel Xavier Jorge, Sandro Rogério Lautenschalager, Celso Varutu Nakamura, Rosângela Bergamasco

Abstract:

Focusing on the elimination of nitrogen and phosphorus from sewage, the study proposes to face the challenges of eutrophication and to optimize the effectiveness of sewage treatment through biofilms and filling produced by a 3D printer, seeking to identify the most effective Polylactic Acid (PLA), Acrylonitrile Butadiene Styrene (ABS). The study also proposes to evaluate the nitrification process in a Submerged Aerated Biological Filter (FBAS) on a pilot plant scale, quantifying the removal of nitrogen and phosphorus. The experiment will consist of two distinct phases, namely, a bench stage and the implementation of a pilot plant. During the bench stage, samples will be collected at five points to characterize the microbiota. Samples will be collected, and the microbiota will be investigated using Fluorescence In Situ Hybridization (FISH), deepening the understanding of the performance of biofilms in the face of multiple variables. In this context, the study contributes to the search for effective solutions to mitigate eutrophication and, thus, strengthen initiatives to improve effluent treatment.

Keywords: eutrophication, sewage treatment, biofilms, nitrogen and phosphorus removal, 3d printer, environmental efficiency

Procedia PDF Downloads 67
16838 Optimization of Electrical Discharge Machining Parameters in Machining AISI D3 Tool Steel by Grey Relational Analysis

Authors: Othman Mohamed Altheni, Abdurrahman Abusaada

Abstract:

This study presents optimization of multiple performance characteristics [material removal rate (MRR), surface roughness (Ra), and overcut (OC)] of hardened AISI D3 tool steel in electrical discharge machining (EDM) using Taguchi method and Grey relational analysis. Machining process parameters selected were pulsed current Ip, pulse-on time Ton, pulse-off time Toff and gap voltage Vg. Based on ANOVA, pulse current is found to be the most significant factor affecting EDM process. Optimized process parameters are simultaneously leading to a higher MRR, lower Ra, and lower OC are then verified through a confirmation experiment. Validation experiment shows an improved MRR, Ra and OC when Taguchi method and grey relational analysis were used

Keywords: edm parameters, grey relational analysis, Taguchi method, ANOVA

Procedia PDF Downloads 282
16837 Study on Optimization Design of Pressure Hull for Underwater Vehicle

Authors: Qasim Idrees, Gao Liangtian, Liu Bo, Miao Yiran

Abstract:

In order to improve the efficiency and accuracy of the pressure hull structure, optimization of underwater vehicle based on response surface methodology, a method for optimizing the design of pressure hull structure was studied. To determine the pressure shell of five dimensions as a design variable, the application of thin shell theory and the Chinese Classification Society (CCS) specification was carried on the preliminary design. In order to optimize variables of the feasible region, different methods were studied and implemented such as Opt LHD method (to determine the design test sample points in the feasible domain space), parametric ABAQUS solution for each sample point response, and the two-order polynomial response for the surface model of the limit load of structures. Based on the ultimate load of the structure and the quality of the shell, the two-generation genetic algorithm was used to solve the response surface, and the Pareto optimal solution set was obtained. The final optimization result was 41.68% higher than that of the initial design, and the shell quality was reduced by about 27.26%. The parametric method can ensure the accuracy of the test and improve the efficiency of optimization.

Keywords: parameterization, response surface, structure optimization, pressure hull

Procedia PDF Downloads 217
16836 Induction Heating and Electromagnetic Stirring of Bi-Phasic Metal/Glass Molten Bath for Mixed Nuclear Waste Treatment

Authors: P. Charvin, R. Bourrou, F. Lemont, C. Lafon, A. Russello

Abstract:

For nuclear waste treatment and confinement, a specific IN-CAN melting module based on low-frequency induction heating have been designed. The frequency of 50Hz has been chosen to improve penetration length through metal. In this design, the liquid metal, strongly stirred by electromagnetic effects, presents shape of a dome caused by strong Laplace forces developing in the bulk of bath. Because of a lower density, the glass phase is located above the metal phase and is heated and stirred by metal through interface. Electric parameters (Intensity, frequency) give precious information about metal load and composition (resistivity of alloy) through impedance modification. Then, power supply can be adapted to energy transfer efficiency for suitable process supervision. Modeling of this system allows prediction of metal dome shape (in agreement with experimental measurement with a specific device), glass and metal velocity, heat and motion transfer through interface. MHD modeling is achieved with COMSOL and Fluent. First, a simplified model is used to obtain the shape of the metal dome. Then the shape is fixed to calculate the fluid flow and the thermal part.

Keywords: electromagnetic stirring, induction heating, interface modeling, metal load

Procedia PDF Downloads 247
16835 Investigation on the Capacitive Deionization of Functionalized Carbon Nanotubes (F-CNTs) and Silver-Decorated F-CNTs for Water Softening

Authors: Khrizelle Angelique Sablan, Rizalinda De Leon, Jaeyoung Lee, Joey Ocon

Abstract:

The impending water shortage drives us to find alternative sources of water. One of the possible solutions is desalination of seawater. There are numerous processes by which it can be done and one if which is capacitive deionization. Capacitive deionization is a relatively new technique for water desalination. It utilizes the electric double layer for ion adsorption. Carbon-based materials are commonly used as electrodes for capacitive deionization. In this study, carbon nanotubes (CNTs) were treated in a mixture of nitric and sulfuric acid. The silver addition was also facilitated to incorporate antimicrobial action. The acid-treated carbon nanotubes (f-CNTs) and silver-decorated f-CNTs (Ag@f-CNTs) were used as electrode materials for seawater deionization and compared with CNT and acid-treated CNT. The synthesized materials were characterized using TEM, EDS, XRD, XPS and BET. The electrochemical performance was evaluated using cyclic voltammetry, and the deionization performance was tested on a single cell with water containing 64mg/L NaCl. The results showed that the synthesized Ag@f-CNT-10 H could have better performance than CNT and a-CNT with a maximum ion removal efficiency of 50.22% and a corresponding adsorption capacity of 3.21 mg/g. It also showed antimicrobial activity against E. coli. However, the said material lacks stability as the efficiency decreases with repeated usage of the electrode.

Keywords: capacitive deionization, carbon nanotubes, desalination, acid functionalization, silver

Procedia PDF Downloads 217
16834 Efficacy of Pisum sativum and Arbuscular Mycorrhizal Symbiosis for Phytoextraction of Heavy Metalloids from Soil

Authors: Ritu Chaturvedi, Manoj Paul

Abstract:

A pot experiment was conducted to investigate the effect of Arbuscular mycorrhizal fungus (AMF) on metal(loid) uptake and accumulation efficiency of Pisum sativum along with physiological and biochemical response. Plants were grown in soil spiked with 50 and 100 mg kg-1 Pb, 25 and 50 mg kg-1 Cd, 50 and 100 mg kg-1 As and a combination of all three metal(loid)s. A parallel set was maintained and inoculated with arbuscular mycorrhizal fungus for comparison. After 60 days, plants were harvested and analysed for metal(loid) content. A steady increase in metal(loid) accumulation was observed on increment of metal(loid) dose and also on AMF inoculation. Plant height, biomass, chlorophyll, carotenoid and carbohydrate content reduced upon metal(loid) exposure. Increase in enzymatic (CAT, SOD and APX) and nonenzymatic (Proline) defence proteins was observed on metal(loid) exposure. AMF inoculation leads to an increase in plant height, biomass, chlorophyll, carotenoids, carbohydrate and enzymatic defence proteins (p≤0.001) under study; whereas proline content was reduced. Considering the accumulation efficiency and adaptive response of plants and alleviation of stress by AMF, this symbiosis can be applied for on-site remediation of Pb and Cd contaminated soil.

Keywords: heavy metal, mycorrhiza, pea, phyroremediation

Procedia PDF Downloads 217
16833 Systematic Process for Constructing an Augmented Reality Display Platform

Authors: Cheng Chieh Hsu, Alfred Chen, Yu-Pin Ma, Meng-Jie Lin, Fu Pai Chiu, Yi-Yan Sie

Abstract:

In this study, it is attempted to construct an augmented reality display platform (ARDP), and its objectives are two facets, i.e. 1) providing a creative display mode for museums/historical heritages and 2) providing a benchmark for human-computer interaction professionals to build an augmented reality display platform. A general augmented reality theory has been explored in the very beginning and afterwards a systematic process model is proposed. There are three major core tasks to be done for the platform, i.e. 1) constructing the physical interactive table, 2) designing the media, and 3) designing the media carrier. In order to describe how the platform manipulates, the authors have introduced Tainan Confucius Temple, a cultural heritage in Taiwan, as a case study. As a result, a systematic process with thirteen steps has been developed and it aims at providing a rational method for constructing the platform.

Keywords: human-computer interaction, media, media carrier, augmented reality display platform

Procedia PDF Downloads 400
16832 Healthy Beverages Made from Grape Juice: Antioxidant, Energetic, and Isotonic Components

Authors: Yasmina Bendaali, Cristian Vaquero, Carlos Escott, Carmen González, Antonio Morata

Abstract:

Consumer tendencies to healthy eating habits and request for organic beverages led to the production of new drinks from fruit juices as a source of nutrients and bioactive compounds. Grape juice is a rich source of sugars, organic acids, and phenolic compounds, which define its beneficial effect on health and the attractive sensory profile for consumers' choices (color, taste, flavor). Thus, grape juice was used as a source of sugars, avoiding the addition of sweeteners by diluting it with mineral water to obtain the sugar concentration recommended for isotonic drinks (6% to 8%) to provide energy during physical activities. In addition, phenolic compounds of grape juice are associated with many human health benefits, mainly antioxidant activity, which helps to prevent different diseases associated with oxidative stress, including cancers and cardiovascular and neurodegenerative diseases. Furthermore, physical exercise has been shown to increase the production of free radicals and other reactive oxygen species. Thus, athletes need to improve their antioxidant defense systems to prevent oxidative damage. Different studies have demonstrated the positive effect of grape juice consumption during physical activities, which improves antioxidant activity and performance, protects against oxidative damage, and reduces inflammation. Thus, the use of grape juice to develop isotonic drinks can provide isotonic drinks with antioxidant and biological activities in addition to their principal role of rehydration and replacement of minerals and carbohydrates during physical exercises. Moreover, attractive sensory characteristics, mainly color, which is provided by anthocyanin content, have a great contribution to making the drinks more natural and help to dispense the use of synthetic dyes in addition to the health benefits which will be a novel product in the field of healthy beverages responding on the demand of consumers for new, innovative, and healthy products.

Keywords: grape juice, isotonic, antioxidants, anthocyanins, natural, sport

Procedia PDF Downloads 62
16831 Sustainable Material Selection for Buildings: Analytic Network Process Method and Life Cycle Assessment Approach

Authors: Samira Mahmoudkelayeh, Katayoun Taghizade, Mitra Pourvaziri, Elnaz Asadian

Abstract:

Over the recent decades, depletion of resources and environmental concerns made researchers and practitioners present sustainable approaches. Since construction process consumes a great deal of both renewable and non-renewable resources, it is of great significance regarding environmental impacts. Choosing sustainable construction materials is a remarkable strategy presented in many researches and has a significant effect on building’s environmental footprint. This paper represents an assessment framework for selecting best sustainable materials for exterior enclosure in the city of Tehran based on sustainability principles (eco-friendly, cost effective and socio-cultural viable solutions). To perform a comprehensive analysis of environmental impacts, life cycle assessment, a cradle to grave approach is used. A questionnaire survey of construction experts has been conducted to determine the relative importance of criteria. Analytic Network Process (ANP) is applied as a multi-criteria decision-making method to choose sustainable material which consider interdependencies of criteria and sub-criteria. Finally, it prioritizes and aggregates relevant criteria into ultimate assessed score.

Keywords: sustainable materials, building, analytic network process, life cycle assessment

Procedia PDF Downloads 226
16830 A Wideband CMOS Power Amplifier with 23.3 dB S21, 10.6 dBm Psat and 12.3% PAE for 60 GHz WPAN and 77 GHz Automobile Radar Systems

Authors: Yo-Sheng Lin, Chien-Chin Wang, Yun-Wen Lin, Chien-Yo Lee

Abstract:

A wide band power amplifier (PA) for 60 GHz and 77 GHz direct-conversion transceiver using standard 90 nm CMOS technology is reported. The PA comprises a cascode input stage with a wide band T-type input-matching network and inductive interconnection and load, followed by a common-source (CS) gain stage and a CS output stage. To increase the saturated output power (PSAT) and power-added efficiency (PAE), the output stage adopts a two-way power dividing and combining architecture. Instead of the area-consumed Wilkinson power divider and combiner, miniature low-loss transmission-line inductors are used at the input and output terminals of each of the output stages for wide band input and output impedance matching to 100 ohm. This in turn results in further PSAT and PAE enhancement. The PA consumes 92.2 mW and achieves maximum power gain (S21) of 23.3 dB at 56 GHz, and S21 of 21.7 dB and 14 dB, respectively, at 60 GHz and 77 GHz. In addition, the PA achieves excellent saturated output power (PSAT) of 10.6 dB and maximum power added efficiency (PAE) of 12.3% at 60 GHz. At 77 GHz, the PA achieves excellent PSAT of 10.4 dB and maximum PAE of 6%. These results demonstrate the proposed wide band PA architecture is very promising for 60 GHz wireless personal local network (WPAN) and 77 GHz automobile radar systems.

Keywords: 60 GHz, 77 GHz, PA, WPAN, automotive radar

Procedia PDF Downloads 566
16829 Enhancement of Dissolved Oxygen Concentration during the Electrocoagulation Process Using an Innovative Flow Column: Electrocoagulation Reactor

Authors: Khalid S. Hashim, Andy Shaw, Rafid Alkhaddar

Abstract:

Dissolved oxygen (DO) plays a key role in the electrocoagulation process (EC) as it oxidizes the heavy metals, ammonia, and cyanide into other forms that can be removed easily from water. Hence, many of the previous investigations used external aerators to provide the required DO inside EC reactors, especially when the water being treated had a low DO (such as leachate and high organic content waters), or when the DO depleted during the EC treatment. Although the external aeration process effectively enhances the DO concentration, it has a significant impact on energy consumption. Thus, the present project aims to fill a part of this gap in the literature by an innovative use of perforated flow columns in the design of an EC reactor (ECR1). In order to investigate the performance of ECR1, water samples with a controlled DO concentration were pumped at different flow rates (110, 220, and 440 ml/min) to the ECR1 for 10 min. The obtained results demonstrated that the ECR1 increased the DO concentration from 5.0 to 9.54, 10.53, and 11.0 mg/L, which is equivalent to 90.8%, 110.6%, and 120% at flow rates of 110, 220, and 440 mL/min respectively.

Keywords: flow column, electrocoagulation, dissolved oxygen, water treatment

Procedia PDF Downloads 333
16828 Removal of Cr⁶⁺, Co²⁺ and Ni²⁺ Ions from Aqueous Solutions by Algerian Enteromorpha compressa (L.) Biomass

Authors: Asma Aid, Samira Amokrane, Djamel Nibou, Hadj Mekatel

Abstract:

The marine Enteromorpha Compressa (L.) (ECL) biomass was used as a low-cost biological adsorbent for the removal of Cr⁶⁺, Co²⁺ and Ni²⁺ ions from artificially contaminated aqueous solutions. The operating variables pH, the initial concentration C₀, the solid/liquid ratio R and the temperature T were studied. A full factorial experimental design technique enabled us to obtain a mathematical model describing the adsorption of Cr⁶⁺, Co²⁺ and Ni²⁺ ions and to study the main effects and interactions among operational parameters. The equilibrium isotherm has been analyzed by Langmuir, Freundlich, and Dubinin-Radushkevich models; it has been found that the adsorption process follows the Langmuir model for the used ions. Kinetic studies showed that the pseudo-second-order model correlates our experimental data. Thermodynamic parameters showed the endothermic heat of adsorption and the spontaneity of the adsorption process for Cr⁶⁺ ions and exothermic heat of adsorption for Co²⁺ and Ni²⁺ ions.

Keywords: enteromorpha Compressa, adsorption process, Cr⁶⁺, Co²⁺ and Ni²⁺, equilibrium isotherm

Procedia PDF Downloads 181
16827 Descriptive Analysis: New Media Influence on Decision Makers

Authors: Bashaiar Alsanaa

Abstract:

The process of decision making requires environment surveillance and public opinion monitoring, both of which can be attained through effective use of social media. This study aims to investigate the extent to which new media influence the decision making process by the Kuwaiti government. The research explores how unprecedented access to information as well as dynamic user-interaction made possible by new technologies play a significant role in all aspects of decision making whether on the end of the public or decision makers themselves. The research analyzes two case studies where public opinion was forceful on social media in order to explore how such media create interactive and liberal environments for individuals to participate in the process of taking action with regards to political, economic and social issues. The findings of this descriptive study indicate the overwhelming extent to which social media are being used in Kuwait to create new social reform by the government based on citizen interaction with current topics.

Keywords: communication, descriptive, new media technologies, social media.

Procedia PDF Downloads 108
16826 Improvement in Drying Characteristics of Raisin by Carbonic Maceration– Process Optimization

Authors: Nursac Akyol, Merve S. Turan, Mustafa Ozcelik, Erdogan Kucukoner, Erkan Karacabey

Abstract:

Traditional raisin production is a long time drying process under sunlight. During this procedure, grapes are open to some environmental effects besides the adverse effects of the long drying period. Thus, there is a need to develop an alternative method being applicable instead of traditional one. To this extent, a combination of a potential pretreatment (carbonic maceration, CM) with convectional oven drying was examined. CM application was used in raisin production (grape drying) as a pretreatment process before oven drying. Pressure, temperature and time were examined as application parameters of CM. In conventional oven drying, the temperature is a process variable. The aim is to find out how CM and convectional drying processes affect the drying characteristics of grapes as well as their physical and chemical properties. For this purpose, the response surface method was used to determine both the effects of the variables and the optimum pretreatment and drying conditions. The optimum conditions of CM for raisin production were 0.3 MPa of pressure value, 4°C of application temperature and 8 hours of application time. The optimized drying temperature was 77°C. The results showed that the application of CM before the drying process improved the drying characteristics. Drying took only 389 minutes for grapes pretreated by CM under optimum conditions and 495 minutes for the control group dried only by the conventional drying process. According to these results, a decrease of 21% was achieved in the time requirement for raisin production. Also, it was observed that the samples dried under optimum conditions had similar physical properties as those the control group had. It was seen that raisin, which was dried under optimum conditions were in better condition in terms of some of the bioactive contents compared to control groups. In light of all results, it is seen that CM has an important potential in the industrial drying of grape samples. The current study was financially supported by TUBITAK, Turkey (Project no: 116R038).

Keywords: drying time, pretreatment, response surface methodlogy, total phenolic

Procedia PDF Downloads 116
16825 Optimizing the Field Emission Performance of SiNWs-Based Heterostructures: Controllable Synthesis, Core-Shell Structure, 3D ZnO/Si Nanotrees and Graphene/SiNWs

Authors: Shasha Lv, Zhengcao Li

Abstract:

Due to the CMOS compatibility, silicon-based field emission (FE) devices as potential electron sources have attracted much attention. The geometrical arrangement and dimensional features of aligned silicon nanowires (SiNWs) have a determining influence on the FE properties. We discuss a multistep template replication process of Ag-assisted chemical etching combined with polystyrene (PS) spheres to fabricate highly periodic and well-aligned silicon nanowires, then their diameter, aspect ratio and density were further controlled via dry oxidation and post chemical treatment. The FE properties related to proximity and aspect ratio were systematically studied. A remarkable improvement of FE propertiy was observed with the average nanowires tip interspace increasing from 80 to 820 nm. On the basis of adjusting SiNWs dimensions and morphology, addition of a secondary material whose properties complement the SiNWs could yield a combined characteristic. Three different nanoheterostructures were fabricated to control the FE performance, they are: NiSi/Si core-shell structures, ZnO/Si nanotrees, and Graphene/SiNWs. We successfully fabricated the high-quality NiSi/Si heterostructured nanowires with excellent conformality. First, nickle nanoparticles were deposited onto SiNWs, then rapid thermal annealing process were utilized to form NiSi shell. In addition, we demonstrate a new and simple method for creating 3D nanotree-like ZnO/Si nanocomposites with a spatially branched hierarchical structure. Compared with the as-prepared SiNRs and ZnO NWs, the high-density ZnO NWs on SiNRs have exhibited predominant FE characteristics, and the FE enhancement factors were attributed to band bending effect and geometrical morphology. The FE efficiency from flat sheet structure of graphene is low. We discussed an effective approach towards full control over the diameter of uniform SiNWs to adjust the protrusions of large-scale graphene sheet deposited on SiNWs. The FE performance regarding the uniformity and dimensional control of graphene protrusions supported on SiNWs was systematically clarified. Therefore, the hybrid SiNWs/graphene structures with protrusions provide a promising class of field emission cathodes.

Keywords: field emission, silicon nanowires, heterostructures, controllable synthesis

Procedia PDF Downloads 262
16824 Testing Capabilities and Limitations of EBM Technology to Guide Design with a Test Artifact Design including Unique Features

Authors: Kadir Akkuş, Burcu A. Hamat, Kaan Ciloglu

Abstract:

Additive Manufacturing (AM) is the respectable improvement of this century in the field of manufacturing and regarded as a breakthrough that represents the third industrial revolution by the leading authorities such as Wohlers Associates Inc., The Economist, and MIT Technology Review. Thanks to the stacking and unifying methodology of AM, design of lighter but stiffer parts with really more complex shapes and geometrical features, which were not possible by traditional subtractive manufacturing methods, became achievable. Through analysis of the AM process must be performed and mechanical properties of manufactured test parts must be studied to provide input for design. Furthermore, process capabilities, constraints, limitations and challenges regarding AM must be examined so that the design must be compatible with the process to be able to take all the advantages of the AM. In this paper, capabilities and limitations of AM will be investigated through a test part including unique features and manufactured from Ti-6Al-4V by employing Electron Beam Melting (EBM) technology by comparing to the test parts introduced in literature.

Keywords: additive manufacturing, DfAM, EBM, test artifact, Ti-6Al-4V

Procedia PDF Downloads 95
16823 The Effect of Teaching Science Strategies Curriculum and Evaluating on Developing the Efficiency of Academic Self in Science and the Teaching Motivation for the Student Teachers of the Primary Years

Authors: Amani M. Al-Hussan

Abstract:

The current study aimed to explore the effects of science teaching strategies course (CURR422) on developing academic self efficacy and motivation towards teaching it in female primary classroom teachers in College of Education in Princess Nora Bint AbdulRahman University. The study sample consisted (48) female student teachers. To achieve the study aims, the researcher designed two instruments: Academic Self Efficacy Scale & Motivation towards Teaching Science Scale while maintaining the validity and reliability of these instruments.. Several statistical procedures were conducted i.e. Independent Sample T-test, Eta Square, Cohen D effect size. The results reveal that there were statistically significant differences between means of pre and post test for the sample in favor of post test. For academic self efficacy scale, Eta square was 0.99 and the effect size was 27.26. While for the motivation towards teaching science scale, Eta was 0.99 and the effect size was 51.72. These results indicated high effects of independent variable on the dependent variable.

Keywords: academic self efficiency, achievement, motivation, primary classroom teacher, science teaching strategies course, evaluation

Procedia PDF Downloads 485
16822 Variations in the Angulation of the First Sacral Spinous Process Angle Associated with Sacrocaudal Fusion in Greyhounds

Authors: Sa'ad M. Ismail, Hung-Hsun Yen, Christina M. Murray, Helen M. S. Davies

Abstract:

In the dog, the median sacral crest is formed by the fusion of three sacral spinous processes. In greyhounds with standard sacrums, this fusion in the median sacral crest consists of the fusion of three sacral spinous processes while it consists of four in greyhounds with sacrocaudal fusion. In the present study, variations in the angulation of the first sacral spinous process in association with different types of sacrocaudal fusion in the greyhound were investigated. Sacrums were collected from 207 greyhounds (102 sacrums; type A (unfused) and 105 with different types of sacrocaudal fusion; types: B, C and D). Sacrums were cleaned by boiling and dried and then were placed on their ventral surface on a flat surface and photographed from the left side using a digital camera at a fixed distance. The first sacral spinous process angle (1st SPA) was defined as the angle formed between the cranial border of the cranial ridge of the first sacral spinous process and the line extending across the most dorsal surface points of the spinous processes of the S1, S2, and S3. Image-Pro Express Version 5.0 imaging software was used to draw and measure the angles. Two photographs were taken for each sacrum and two repeat measurements were also taken of each angle. The mean value of the 1st SPA in greyhounds with sacrocaudal fusion was less (98.99°, SD ± 11, n = 105) than those in greyhounds with standard sacrums (99.77°, SD ± 9.18, n = 102) but was not significantly different (P < 0.05). Among greyhounds with different types of sacrocaudal fusion the mean value of the 1st SPA was as follows: type B; 97.73°, SD ± 10.94, n = 39, type C: 101.42°, SD ± 10.51, n = 52, and type D: 94.22°, SD ± 11.30, n = 12. For all types of fusion these angles were significantly different from each other (P < 0.05). Comparing the mean value of the1st SPA in standard sacrums (Type A) with that for each type of fusion separately showed that the only significantly different angulation (P < 0.05) was between standard sacrums and sacrums with sacrocaudal fusion sacrum type D (only body fusion between the S1 and Ca1). Different types of sacrocaudal fusion were associated with variations in the angle of the first sacral spinous process. These variations may affect the alignment and biomechanics of the sacral area and the pattern of movement and/or the force produced by both hind limbs to the cranial parts of the body and may alter the loading of other parts of the body. We concluded that any variations in the sacrum anatomical features might change the function of the sacrum or surrounding anatomical structures during movement.

Keywords: angulation of first sacral spinous process, biomechanics, greyhound, locomotion, sacrocaudal fusion

Procedia PDF Downloads 297
16821 Modular Data and Calculation Framework for a Technology-based Mapping of the Manufacturing Process According to the Value Stream Management Approach

Authors: Tim Wollert, Fabian Behrendt

Abstract:

Value Stream Management (VSM) is a widely used methodology in the context of Lean Management for improving end-to-end material and information flows from a supplier to a customer from a company’s perspective. Whereas the design principles, e.g. Pull, value-adding, customer-orientation and further ones are still valid against the background of an increasing digitalized and dynamic environment, the methodology itself for mapping a value stream is characterized as time- and resource-intensive due to the high degree of manual activities. The digitalization of processes in the context of Industry 4.0 enables new opportunities to reduce these manual efforts and make the VSM approach more agile. The paper at hand aims at providing a modular data and calculation framework, utilizing the available business data, provided by information and communication technologies for automizing the value stream mapping process with focus on the manufacturing process.

Keywords: lean management 4.0, value stream management (VSM) 4.0, dynamic value stream mapping, enterprise resource planning (ERP)

Procedia PDF Downloads 133
16820 Efficient Photocatalytic Degradation of Tetracycline Hydrochloride Using Modified Carbon Nitride CCN/Bi₂WO₆ Heterojunction

Authors: Syed Najeeb-Uz-Zaman Haider, Yang Juan

Abstract:

Antibiotic overuse raises environmental concerns, boosting the demand for efficient removal from pharmaceutical wastewater. Photocatalysis, particularly using semiconductor photocatalysts, offers a promising solution and garners significant scientific interest. In this study, a Z-scheme 0.15BWO/CCN heterojunction was developed, analyzed, and employed for the photocatalytic degradation of tetracycline hydrochloride (TC) under visible light. The study revealed that the dosage of 0.15BWO@CCN and the presence of coexisting ions significantly influenced the degradation efficiency, achieving up to 87% within 20 minutes under optimal conditions (at pH 9-11/strongly basic conditions) while maintaining 84% efficiency under standard conditions (unaltered pH). Photoinduced electrons gathered on the conduction band of BWO while holes accumulated on the valence band of CCN, creating more favorable conditions to produce superoxide and hydroxyl radicals. Additionally, through comprehensive experimental analysis, the degradation pathway and mechanism were thoroughly explored. The superior photocatalytic performance of 0.15BWO@CCN was attributed to its Z-scheme heterojunction structure, which significantly reduced the recombination of photoinduced electrons and holes. The radicals produced were identified using ESR, and their involvement in tetracycline degradation was further analyzed through active species trapping experiments.

Keywords: CCN, Bi₂WO₆, TC, photocatalytic degradation, heterojunction

Procedia PDF Downloads 21
16819 CompPSA: A Component-Based Pairwise RNA Secondary Structure Alignment Algorithm

Authors: Ghada Badr, Arwa Alturki

Abstract:

The biological function of an RNA molecule depends on its structure. The objective of the alignment is finding the homology between two or more RNA secondary structures. Knowing the common functionalities between two RNA structures allows a better understanding and a discovery of other relationships between them. Besides, identifying non-coding RNAs -that is not translated into a protein- is a popular application in which RNA structural alignment is the first step A few methods for RNA structure-to-structure alignment have been developed. Most of these methods are partial structure-to-structure, sequence-to-structure, or structure-to-sequence alignment. Less attention is given in the literature to the use of efficient RNA structure representation and the structure-to-structure alignment methods are lacking. In this paper, we introduce an O(N2) Component-based Pairwise RNA Structure Alignment (CompPSA) algorithm, where structures are given as a component-based representation and where N is the maximum number of components in the two structures. The proposed algorithm compares the two RNA secondary structures based on their weighted component features rather than on their base-pair details. Extensive experiments are conducted illustrating the efficiency of the CompPSA algorithm when compared to other approaches and on different real and simulated datasets. The CompPSA algorithm shows an accurate similarity measure between components. The algorithm gives the flexibility for the user to align the two RNA structures based on their weighted features (position, full length, and/or stem length). Moreover, the algorithm proves scalability and efficiency in time and memory performance.

Keywords: alignment, RNA secondary structure, pairwise, component-based, data mining

Procedia PDF Downloads 443
16818 Interoperable Design Coordination Method for Sharing Communication Information Using Building Information Model Collaboration Format

Authors: Jin Gang Lee, Hyun-Soo Lee, Moonseo Park

Abstract:

The utilization of BIM and IFC allows project participants to collaborate across different areas by consistently sharing interoperable product information represented in a model. Comments or markups generated during the coordination process can be categorized as communication information, which can be shared in less standardized manner. It can be difficult to manage and reuse such information compared to the product information in a model. The present study proposes an interoperable coordination method using BCF (the BIM Collaboration Format) for managing and sharing the communication information during BIM based coordination process. A management function for coordination in the BIM collaboration system is developed to assess its ability to share the communication information in BIM collaboration projects. This approach systematically links communication information during the coordination process to the building model and serves as a type of storage system for retrieving knowledge created during BIM collaboration projects.

Keywords: design coordination, building information model, BIM collaboration format, industry foundation classes

Procedia PDF Downloads 409
16817 A Controlled-Release Nanofertilizer Improves Tomato Growth and Minimizes Nitrogen Consumption

Authors: Mohamed I. D. Helal, Mohamed M. El-Mogy, Hassan A. Khater, Muhammad A. Fathy, Fatma E. Ibrahim, Yuncong C. Li, Zhaohui Tong, Karima F. Abdelgawad

Abstract:

Minimizing the consumption of agrochemicals, particularly nitrogen, is the ultimate goal for achieving sustainable agricultural production with low cost and high economic and environmental returns. The use of biopolymers instead of petroleum-based synthetic polymers for CRFs can significantly improve the sustainability of crop production since biopolymers are biodegradable and not harmful to soil quality. Lignin is one of the most abundant biopolymers that naturally exist. In this study, controlled-release fertilizers were developed using a biobased nanocomposite of lignin and bentonite clay mineral as a coating material for urea to increase nitrogen use efficiency. Five types of controlled-release urea (CRU) were prepared using two ratios of modified bentonite as well as techniques. The efficiency of the five controlled-release nano-urea (CRU) fertilizers in improving the growth of tomato plants was studied under field conditions. The CRU was applied to the tomato plants at three N levels representing 100, 50, and 25% of the recommended dose of conventional urea. The results showed that all CRU treatments at the three N levels significantly enhanced plant growth parameters, including plant height, number of leaves, fresh weight, and dry weight, compared to the control. Additionally, most CRU fertilizers increased total yield and fruit characteristics (weight, length, and diameter) compared to the control. Additionally, marketable yield was improved by CRU fertilizers. Fruit firmness and acidity of CRU treatments at 25 and 50% N levels were much higher than both the 100% CRU treatment and the control. The vitamin C values of all CRU treatments were lower than the control. Nitrogen uptake efficiencies (NUpE) of CRU treatments were 47–88%, which is significantly higher than that of the control (33%). In conclusion, all CRU treatments at an N level of 25% of the recommended dose showed better plant growth, yield, and fruit quality of tomatoes than the conventional fertilizer.

Keywords: nitrogen use efficiency, quality, urea, nano particles, ecofriendly

Procedia PDF Downloads 59
16816 Development and Investigation of Efficient Substrate Feeding and Dissolved Oxygen Control Algorithms for Scale-Up of Recombinant E. coli Cultivation Process

Authors: Vytautas Galvanauskas, Rimvydas Simutis, Donatas Levisauskas, Vykantas Grincas, Renaldas Urniezius

Abstract:

The paper deals with model-based development and implementation of efficient control strategies for recombinant protein synthesis in fed-batch E.coli cultivation processes. Based on experimental data, a kinetic dynamic model for cultivation process was developed. This model was used to determine substrate feeding strategies during the cultivation. The proposed feeding strategy consists of two phases – biomass growth phase and recombinant protein production phase. In the first process phase, substrate-limited process is recommended when the specific growth rate of biomass is about 90-95% of its maximum value. This ensures reduction of glucose concentration in the medium, improves process repeatability, reduces the development of secondary metabolites and other unwanted by-products. The substrate limitation can be enhanced to satisfy restriction on maximum oxygen transfer rate in the bioreactor and to guarantee necessary dissolved carbon dioxide concentration in culture media. In the recombinant protein production phase, the level of substrate limitation and specific growth rate are selected within the range to enable optimal target protein synthesis rate. To account for complex process dynamics, to efficiently exploit the oxygen transfer capability of the bioreactor, and to maintain the required dissolved oxygen concentration, adaptive control algorithms for dissolved oxygen control have been proposed. The developed model-based control strategies are useful in scale-up of cultivation processes and accelerate implementation of innovative biotechnological processes for industrial applications.

Keywords: adaptive algorithms, model-based control, recombinant E. coli, scale-up of bioprocesses

Procedia PDF Downloads 247