Search results for: patterns of life
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9964

Search results for: patterns of life

6994 Ferro-Substituted Silicate Calcium Materials, a Novel Bio-Ceramic Using Hyperthermia for Bone Cancer Therapy

Authors: Hassan Gheisari

Abstract:

Ferro silicate calcium nano particles are prepared through the sol-gel method using polyvinyl alcohol (PVA) as a chelating agent. The powder as prepared is annealed at three different temperatures (900 ºC, 1000 ºC and 1100 ºC) for 3 h. The XRD patterns of the samples indicate broad peaks and the full width at half maximum decreased with increasing annealing temperature. FTIR spectra of the samples confirm the presence of metal - oxygen complexes within the structure. The average particle size obtained from PSA curve demonstrates ultrafine particles. SEM micrographs indicate the particles synthesized have spherical morphology. The saturation magnetization (Ms) and remnant magnetization (Mr) of the samples show dependence on particle size and crystallinity of the samples. The highest saturation magnetization is achieved for the sample annealed at 1100 ºC having maximum average particle size. The high saturation magnetization of the samples suggests the present method is suitable for obtaining nano particles magnetic ferro bioceramic which is desirable for practical applications such as hyperthermia bone cancer therapy.

Keywords: hyperthermia, bone cancer, bio ceramic, magnetic materials, sol– gel, silicate calcium

Procedia PDF Downloads 308
6993 One-Step Time Series Predictions with Recurrent Neural Networks

Authors: Vaidehi Iyer, Konstantin Borozdin

Abstract:

Time series prediction problems have many important practical applications, but are notoriously difficult for statistical modeling. Recently, machine learning methods have been attracted significant interest as a practical tool applied to a variety of problems, even though developments in this field tend to be semi-empirical. This paper explores application of Long Short Term Memory based Recurrent Neural Networks to the one-step prediction of time series for both trend and stochastic components. Two types of data are analyzed - daily stock prices, that are often considered to be a typical example of a random walk, - and weather patterns dominated by seasonal variations. Results from both analyses are compared, and reinforced learning framework is used to select more efficient between Recurrent Neural Networks and more traditional auto regression methods. It is shown that both methods are able to follow long-term trends and seasonal variations closely, but have difficulties with reproducing day-to-day variability. Future research directions and potential real world applications are briefly discussed.

Keywords: long short term memory, prediction methods, recurrent neural networks, reinforcement learning

Procedia PDF Downloads 229
6992 Sustainability of Photovoltaic Recycling Planning

Authors: Jun-Ki Choi

Abstract:

The usage of valuable resources and the potential for waste generation at the end of the life cycle of photovoltaic (PV) technologies necessitate a proactive planning for a PV recycling infrastructure. To ensure the sustainability of PV in large scales of deployment, it is vital to develop and institute low-cost recycling technologies and infrastructure for the emerging PV industry in parallel with the rapid commercialization of these new technologies. There are various issues involved in the economics of PV recycling and this research examine those at macro and micro levels, developing a holistic interpretation of the economic viability of the PV recycling systems. This study developed mathematical models to analyze the profitability of recycling technologies and to guide tactical decisions for allocating optimal location of PV take-back centers (PVTBC), necessary for the collection of end of life products. The economic decision is usually based on the level of the marginal capital cost of each PVTBC, cost of reverse logistics, distance traveled, and the amount of PV waste collected from various locations. Results illustrated that the reverse logistics costs comprise a major portion of the cost of PVTBC; PV recycling centers can be constructed in the optimally selected locations to minimize the total reverse logistics cost for transporting the PV wastes from various collection facilities to the recycling center. In the micro- process level, automated recycling processes should be developed to handle the large amount of growing PV wastes economically. The market price of the reclaimed materials are important factors for deciding the profitability of the recycling process and this illustrates the importance of the recovering the glass and expensive metals from PV modules.

Keywords: photovoltaic, recycling, mathematical models, sustainability

Procedia PDF Downloads 255
6991 Survey of Hawke's Bay Tourism Based Businesses: Tsunami Understanding and Preparation

Authors: V. A. Ritchie

Abstract:

The loss of life and livelihood experienced after the magnitude 9.3 Sumatra earthquake and tsunami on 26 December 2004 and magnitude 9 earthquake and tsunami in northeastern Japan on 11 March 2011, has raised global awareness and brought tsunami phenomenology, nomenclature, and representation into sharp focus. At the same time, travel and tourism continue to increase, contributing around 1 in 11 jobs worldwide. This increase in tourism is especially true for coastal zones, placing pressure on decision-makers to downplay tsunami risks and at the same time provide adequate tsunami warning so that holidaymakers will feel confident enough to visit places of high tsunami risk. This study investigates how well tsunami preparedness messages are getting through for tourist-based businesses in Hawke’s Bay New Zealand, a region of frequent seismic activity and a high probability of experiencing a nearshore tsunami. The aim of this study is to investigate whether tourists based businesses are well informed about tsunamis, how well they understand that information and to what extent their clients are included in awareness raising and evacuation processes. In high-risk tsunami zones, such as Hawke’s Bay, tourism based businesses face competitive tension between short term business profitability and longer term reputational issues related to preventable loss of life from natural hazards, such as tsunamis. This study will address ways to accommodate culturally and linguistically relevant tourist awareness measures without discouraging tourists or being too costly to implement.

Keywords: tsunami risk and response, travel and tourism, business preparedness, cross cultural knowledge transfer

Procedia PDF Downloads 152
6990 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network

Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.

Keywords: big data, k-NN, machine learning, traffic speed prediction

Procedia PDF Downloads 363
6989 Multiaxial Fatigue Analysis of a High Performance Nickel-Based Superalloy

Authors: P. Selva, B. Lorraina, J. Alexis, A. Seror, A. Longuet, C. Mary, F. Denard

Abstract:

Over the past four decades, the fatigue behavior of nickel-based alloys has been widely studied. However, in recent years, significant advances in the fabrication process leading to grain size reduction have been made in order to improve fatigue properties of aircraft turbine discs. Indeed, a change in particle size affects the initiation mode of fatigue cracks as well as the fatigue life of the material. The present study aims to investigate the fatigue behavior of a newly developed nickel-based superalloy under biaxial-planar loading. Low Cycle Fatigue (LCF) tests are performed at different stress ratios so as to study the influence of the multiaxial stress state on the fatigue life of the material. Full-field displacement and strain measurements as well as crack initiation detection are obtained using Digital Image Correlation (DIC) techniques. The aim of this presentation is first to provide an in-depth description of both the experimental set-up and protocol: the multiaxial testing machine, the specific design of the cruciform specimen and performances of the DIC code are introduced. Second, results for sixteen specimens related to different load ratios are presented. Crack detection, strain amplitude and number of cycles to crack initiation vs. triaxial stress ratio for each loading case are given. Third, from fractographic investigations by scanning electron microscopy it is found that the mechanism of fatigue crack initiation does not depend on the triaxial stress ratio and that most fatigue cracks initiate from subsurface carbides.

Keywords: cruciform specimen, multiaxial fatigue, nickel-based superalloy

Procedia PDF Downloads 295
6988 Shared Beliefs and Behavioral Labels in Bullying among Middle Schoolers: Qualitative Analysis of Peer Group Dynamics

Authors: Malgorzata Wojcik

Abstract:

Groups are a powerful and significant part of human development. They serve as major emergent microsocial structures in children’s and youth’s ecological system. During middle and secondary school, peer groups become a particularly salient influence. While they promote a range of prosocial and positive emotional and behavioral attributes, they can also elicit negative or antisocial attributes, effectively “bringing out the worst” in some individuals. The grounded theory approach was employed to guide data collection and analysis, as it allows for a deeper understanding of the group processes and students’ perspectives on complex intragroup relations. Students’ perspectives on bullying cases were investigated by observing daily interactions among those involved and interviewing 47 students. The results complement theories of labeling in bullying by showing that all students self-label themselves and find it difficult to break patterns of behaviors related to bullying, such as supporting the bully or not defending the victim. In terms of the practical implications, the findings indicate that it could be beneficial to use non-punitive, restorative anti-bullying interventions that implement peer influence to transform bullying relations by removing behavioral labels.

Keywords: bullying, peer group, victimization, class reputation

Procedia PDF Downloads 117
6987 Multi-Objective Electric Vehicle Charge Coordination for Economic Network Management under Uncertainty

Authors: Ridoy Das, Myriam Neaimeh, Yue Wang, Ghanim Putrus

Abstract:

Electric vehicles are a popular transportation medium renowned for potential environmental benefits. However, large and uncontrolled charging volumes can impact distribution networks negatively. Smart charging is widely recognized as an efficient solution to achieve both improved renewable energy integration and grid relief. Nevertheless, different decision-makers may pursue diverse and conflicting objectives. In this context, this paper proposes a multi-objective optimization framework to control electric vehicle charging to achieve both energy cost reduction and peak shaving. A weighted-sum method is developed due to its intuitiveness and efficiency. Monte Carlo simulations are implemented to investigate the impact of uncertain electric vehicle driving patterns and provide decision-makers with a robust outcome in terms of prospective cost and network loading. The results demonstrate that there is a conflict between energy cost efficiency and peak shaving, with the decision-makers needing to make a collaborative decision.

Keywords: electric vehicles, multi-objective optimization, uncertainty, mixed integer linear programming

Procedia PDF Downloads 179
6986 Nonparametric Path Analysis with a Truncated Spline Approach in Modeling Waste Management Behavior Patterns

Authors: Adji Achmad Rinaldo Fernandes, Usriatur Rohma

Abstract:

Nonparametric path analysis is a statistical method that does not rely on the assumption that the curve is known. The purpose of this study is to determine the best truncated spline nonparametric path function between linear and quadratic polynomial degrees with 1, 2, and 3 knot points and to determine the significance of estimating the best truncated spline nonparametric path function in the model of the effect of perceived benefits and perceived convenience on behavior to convert waste into economic value through the intention variable of changing people's mindset about waste using the t test statistic at the jackknife resampling stage. The data used in this study are primary data obtained from research grants. The results showed that the best model of nonparametric truncated spline path analysis is quadratic polynomial degree with 3 knot points. In addition, the significance of the best truncated spline nonparametric path function estimation using jackknife resampling shows that all exogenous variables have a significant influence on the endogenous variables.

Keywords: nonparametric path analysis, truncated spline, linear, kuadratic, behavior to turn waste into economic value, jackknife resampling

Procedia PDF Downloads 48
6985 21st Century Provocation: Modern Slavery, the Implications for Individuals on the Autism Spectrum

Authors: Christina Surmei

Abstract:

Autism Spectrum Disorder (ASD) is defined as a diverse range of developmental conditions that affect an individual’s functionality. ASD is not linear, and individuals can present with deficits in social interaction, communication, and demonstrate limited, repetitive patterns of behaviour, interests, or activities. These characteristics may be observed in a variety of ways and range from mild to severe. ASD may include autism disorder, pervasive developmental disorder not otherwise specified, Asperger’s, or other related pervasive developmental disorders. Modern slavery is defined as 'situations of exploitation that a person cannot refuse or leave because of threats, violence, coercion, and abuse of power or deception'. A review of the literature investigated the prevalence of research regarding ASD and modern slavery. Two universal search engines and five online journals were used as the apparatuses of inquiry. The results revealed two editorials, one study, and one act, totaling four publications attesting to ASD and modern slavery as a joint entity. This is representative of a vast absence of research. However, as individual entities research on autism and modern slavery is in a general high occurrence. This paper has identified a significant gap in research on ASD and modern slavery, and initiates the dialogue to unpack a significant global issue in society today.

Keywords: autism spectrum, education, modern slavery, support

Procedia PDF Downloads 168
6984 The Scientific Study of the Relationship Between Physicochemical and Microstructural Properties of Ultrafiltered Cheese: Protein Modification and Membrane Separation

Authors: Shahram Naghizadeh Raeisi, Ali Alghooneh

Abstract:

The loss of curd cohesiveness and syneresis are two common problems in the ultrafiltered cheese industry. In this study, by using membrane technology and protein modification, a modified cheese was developed and its properties were compared with a control sample. In order to decrease the lactose content and adjust the protein, acidity, dry matter and milk minerals, a combination of ultrafiltration, nanofiltration and reverse osmosis technologies was employed. For protein modification, a two-stage chemical and enzymatic reaction was employed before and after ultrafiltration. The physicochemical and microstructural properties of the modified ultrafiltered cheese were compared with the control one. Results showed that the modified protein enhanced the functional properties of the final cheese significantly (pvalue< 0.05), even if the protein content was 50% lower than the control one. The modified cheese showed 21 ± 0.70, 18 ± 1.10 & 25±1.65% higher hardness, cohesiveness and water-holding capacity values, respectively, than the control sample. This behavior could be explained by the developed microstructure of the gel network. Furthermore, chemical-enzymatic modification of milk protein induced a significant change in the network parameter of the final cheese. In this way, the indices of network linkage strength, network linkage density, and time scale of junctions were 10.34 ± 0.52, 68.50 ± 2.10 & 82.21 ± 3.85% higher than the control sample, whereas the distance between adjacent linkages was 16.77 ± 1.10% lower than the control sample. These results were supported by the results of the textural analysis. A non-linear viscoelastic study showed a triangle waveform stress of the modified protein contained cheese, while the control sample showed rectangular waveform stress, which suggested a better sliceability of the modified cheese. Moreover, to study the shelf life of the products, the acidity, as well as molds and yeast population, were determined in 120 days. It’s worth mentioning that the lactose content of modified cheese was adjusted at 2.5% before fermentation, while the lactose of the control one was at 4.5%. The control sample showed 8 weeks shelf life, while the shelf life of the modified cheese was 18 weeks in the refrigerator. During 18 weeks, the acidity of modified and control samples increased from 82 ± 1.50 to 94 ± 2.20 °D and 88 ± 1.64 to 194 ± 5.10 °D, respectively. The mold and yeast populations, with time, followed the semicircular shape model (R2 = 0.92, R2adj = 0.89, RMSE = 1.25). Furthermore, the mold and yeast counts and their growth rate in the modified cheese were lower than those for control one; Aforementioned result could be explained by the shortage of the source of energy for the microorganism in the modified cheese. The lactose content of the modified sample was less than 0.2 ± 0.05% at the end of fermentation, while this was 3.7 ± 0.68% in the control sample.

Keywords: non-linear viscoelastic, protein modification, semicircular shape model, ultrafiltered cheese

Procedia PDF Downloads 74
6983 Deep Learning Approaches for Accurate Detection of Epileptic Seizures from Electroencephalogram Data

Authors: Ramzi Rihane, Yassine Benayed

Abstract:

Epilepsy is a chronic neurological disorder characterized by recurrent, unprovoked seizures resulting from abnormal electrical activity in the brain. Timely and accurate detection of these seizures is essential for improving patient care. In this study, we leverage the UK Bonn University open-source EEG dataset and employ advanced deep-learning techniques to automate the detection of epileptic seizures. By extracting key features from both time and frequency domains, as well as Spectrogram features, we enhance the performance of various deep learning models. Our investigation includes architectures such as Long Short-Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), 1D Convolutional Neural Networks (1D-CNN), and hybrid CNN-LSTM and CNN-BiLSTM models. The models achieved impressive accuracies: LSTM (98.52%), Bi-LSTM (98.61%), CNN-LSTM (98.91%), CNN-BiLSTM (98.83%), and CNN (98.73%). Additionally, we utilized a data augmentation technique called SMOTE, which yielded the following results: CNN (97.36%), LSTM (97.01%), Bi-LSTM (97.23%), CNN-LSTM (97.45%), and CNN-BiLSTM (97.34%). These findings demonstrate the effectiveness of deep learning in capturing complex patterns in EEG signals, providing a reliable and scalable solution for real-time seizure detection in clinical environments.

Keywords: electroencephalogram, epileptic seizure, deep learning, LSTM, CNN, BI-LSTM, seizure detection

Procedia PDF Downloads 14
6982 Nonparametric Truncated Spline Regression Model on the Data of Human Development Index in Indonesia

Authors: Kornelius Ronald Demu, Dewi Retno Sari Saputro, Purnami Widyaningsih

Abstract:

Human Development Index (HDI) is a standard measurement for a country's human development. Several factors may have influenced it, such as life expectancy, gross domestic product (GDP) based on the province's annual expenditure, the number of poor people, and the percentage of an illiterate people. The scatter plot between HDI and the influenced factors show that the plot does not follow a specific pattern or form. Therefore, the HDI's data in Indonesia can be applied with a nonparametric regression model. The estimation of the regression curve in the nonparametric regression model is flexible because it follows the shape of the data pattern. One of the nonparametric regression's method is a truncated spline. Truncated spline regression is one of the nonparametric approach, which is a modification of the segmented polynomial functions. The estimator of a truncated spline regression model was affected by the selection of the optimal knots point. Knot points is a focus point of spline truncated functions. The optimal knots point was determined by the minimum value of generalized cross validation (GCV). In this article were applied the data of Human Development Index with a truncated spline nonparametric regression model. The results of this research were obtained the best-truncated spline regression model to the HDI's data in Indonesia with the combination of optimal knots point 5-5-5-4. Life expectancy and the percentage of an illiterate people were the significant factors depend to the HDI in Indonesia. The coefficient of determination is 94.54%. This means the regression model is good enough to applied on the data of HDI in Indonesia.

Keywords: generalized cross validation (GCV), Human Development Index (HDI), knots point, nonparametric regression, truncated spline

Procedia PDF Downloads 339
6981 Incidence, Risk Factors and Impact of Major Adverse Events Following Paediatric Cardiac Surgery

Authors: Sandipika Gupta

Abstract:

Objective: Due to admirably low 30-day mortality rates for paediatric cardiac surgery, it is now pertinent to turn towards more intermediate-length outcomes such as morbidities closely associated with these surgeries. One such morbidity, major adverse events (MAE) comprises a group of adverse outcomes associated with paediatric cardiac surgery (e.g. cardiac arrest, major haemorrhage). Methods: This is a retrospective study that analysed the incidence and impact of MAE which was the primary outcome in the UK population. The data was collected in 5 centres between October 2015 and June 2017, amassing 3090 surgical episodes. The incidence and risk factors for MAE, were assessed through descriptive statistical analyses and multivariate logistic regression. The secondary outcomes of life status at 6 months and the length of hospital stay were also evaluated to understand the impact of MAE on patients. Results: Out of 3090 episodes, 134 (4.3%) had a postoperative MAE. The majority of the episodes were in: neonates (47%, P<0.001), high-risk cardiac diagnosis groups (20.1%, P<0.001), episodes with longer 5mes on the bypass (72.4%, P<0.001) and urgent surgeries (57.9%, P<0.001). Episodes reporting MAE also reported longer lengths of stay in hospital (29 days vs 9 days, P<0.001). Furthermore, patients experiencing MAE were at a higher risk of mortality at the 6-month life status check (mortality rates: 29.2% vs 2%, P<0.001).Conclusions: Key risk factors were identified. An important negative impact of MAE was found for patients. The identified risk factors could be used to profile and flag at-risk patients. Monitoring of MAE rates and closer investigation into the care pathway before and after individual MAEs in children’s heart units may lead to a reduction in these terrible events.

Keywords:

Procedia PDF Downloads 232
6980 Hybrid Recovery of Copper and Silver from Photovoltaic Ribbon and Ag finger of End-Of-Life Solar Panels

Authors: T. Patcharawit, C. Kansomket, N. Wongnaree, W. Kritsrikan, T. Yingnakorn, S. Khumkoa

Abstract:

Recovery of pure copper and silver from end-of-life photovoltaic panels was investigated in this paper using an effective hybrid pyro-hydrometallurgical process. In the first step of waste treatment, solar panel waste was first dismantled to obtain a PV sheet to be cut and calcined at 500°C, to separate out PV ribbon from glass cullet, ash, and volatile while the silicon wafer containing silver finger was collected for recovery. In the second step of metal recovery, copper recovery from photovoltaic ribbon was via 1-3 M HCl leaching with SnCl₂ and H₂O₂ additions in order to remove the tin-lead coating on the ribbon. The leached copper band was cleaned and subsequently melted as an anode for the next step of electrorefining. Stainless steel was set as the cathode with CuSO₄ as an electrolyte, and at a potential of 0.2 V, high purity copper of 99.93% was obtained at 96.11% recovery after 24 hours. For silver recovery, the silicon wafer containing silver finger was leached using HNO₃ at 1-4 M in an ultrasonic bath. In the next step of precipitation, silver chloride was then obtained and subsequently reduced by sucrose and NaOH to give silver powder prior to oxy-acetylene melting to finally obtain pure silver metal. The integrated recycling process is considered to be economical, providing effective recovery of high purity metals such as copper and silver while other materials such as aluminum, copper wire, glass cullet can also be recovered to be reused commercially. Compounds such as PbCl₂ and SnO₂ obtained can also be recovered to enter the market.

Keywords: electrorefining, leaching, calcination, PV ribbon, silver finger, solar panel

Procedia PDF Downloads 135
6979 Spatial Patterns and Temporal Evolution of Octopus Abundance in the Mauritanian Zone

Authors: Dedah Ahmed Babou, Nicolas Bez

Abstract:

The Min-Max autocorrelation factor (MAF) approach makes it possible to express in a space formed by spatially independent factors, spatiotemporal observations. These factors are ordered in decreasing order of spatial autocorrelation. The starting observations are thus expressed in the space formed by these factors according to temporal coordinates. Each vector of temporal coefficients expresses the temporal evolution of the weight of the corresponding factor. Applying this approach has enabled us to achieve the following results: (i) Define a spatially orthogonal space in which the projections of the raw data are determined; (ii) Define a limit threshold for the factors with the strongest structures in order to analyze the weight, and the temporal evolution of these different structures (iii) Study the correlation between the temporal evolution of the persistent spatial structures and that of the observed average abundance (iv) Propose prototypes of campaigns reflecting a high vs. low abundance (v) Propose a classification of campaigns that highlights seasonal and/or temporal similarities. These results were obtained by analyzing the octopus yield during the scientific campaigns of the oceanographic vessel Al Awam during the period 1989-2017 in the Mauritanian exclusive economic zone.

Keywords: spatiotemporal , autocorrelation, kriging, variogram, Octopus vulgaris

Procedia PDF Downloads 147
6978 Quality of Life and Self-Assessed Health of Methadone – Maintained Opiate Addicts

Authors: Brajevic-gizdic Igna, Vuletic Gorka

Abstract:

Introduction: Research in opiate addiction is increasingly indicating the importance of substitution therapy in opiate addicts. Opiate addiction is a chronic relapsing disease that includes craving as a criterion. Craving has been considered a predictor of a relapse, which is defined as a strong desire with an excessive need to take a substance. The study aimed to measure the intensity of craving using the VAS (visual analog scale) in opioid addicts taking the Opioid Substitution Therapy (OST). Method: The total sample compromised of 30 participants in outpatient treatment. Two groups of opiate addicts were considered: Methadone-maintenance and buprenorphine-maintenance addicts. The participants completed the survey questionnaire during the outpatient treatment. Results: The results indicated high levels of cravings in patients during the treatment on OST, which is considered an important destabilization factor in abstinence. Thus, the use of methadone/buprenorphine dose should be considered. Conclusion: These findings provided an objective measurement of methadone /buprenorphine dosage and therapy options. The underdoes of OST can put patients at high risk of relapse, resulting in high levels of craving. Thus, when determining the therapeutic dose of OST, it is crucial to consider patients´ craving. This would achieve stabilization more quickly and avoid relapse in abstinence. Subjective physician assessment and patient’s statement are the main criteria to determine OST dosage. Future studies should use larger sample sizes and focus on the importance of intensity craving measurement on OST to objectify methadone /buprenorphine dosage.

Keywords: abstinence, addicts, methadone, OST, quality of life

Procedia PDF Downloads 91
6977 Effect of Aging Time on CeO2 Nanoparticle Size Distribution Synthesized via Sol-Gel Method

Authors: Navid Zanganeh, Hafez Balavi, Farbod Sharif, Mahla Zabet, Marzieh Bakhtiary Noodeh

Abstract:

Cerium oxide (CeO2) also known as cerium dioxide or ceria is a pale yellow-white powder with various applications in the industry from wood coating to cosmetics, filtration, fuel cell electrolytes, gas sensors, hybrid solar cells and catalysts. In this research, attempts were made to synthesize and characterization of CeO2 nano-particles via sol-gel method. In addition, the effect of aging time on the size of particles was investigated. For this purpose, the aging times adjusted 48, 56, 64, and 72 min. The obtained particles were characterized by x-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), transmitted electron microscopy (TEM), and Brunauer–Emmett–Teller (BET). As a result, XRD patterns confirmed the formation of CeO2 nanoparticles. SEM and TEM images illustrated the nano-particles with cluster shape, spherical and a nano-size range which was in agreement with XRD results. The finest particles (7.3 nm) was obtained at the optimum condition which was aging time of 48 min, calcination temperature at 400 ⁰C, and cerium concentration of 0.004 mol. Average specific surface area of the particles at optimum condition was measured by BET analysis and recorded as 47.57 m2/g.

Keywords: aging time, CeO2 nanoparticles, size distribution, sol-gel

Procedia PDF Downloads 456
6976 The Politics of Plantation Development and Formation of 'Tribal Settlements': Life and Livelihood of the Mannans in the Cardamom Hills of India

Authors: Anu Krishna

Abstract:

Cardamom Hills geographically falls into the Western Ghat region in the state of Kerala (India). The fame of these hills dates back to antiquity as the abode of various indigenous communities and treasure house of spices like cardamom. With the colonial conquest over the region, the evergreen forests got converted into zones of mono-cropping with commercial crops such as coffee, tea, cardamom etc. on plantation basis; a process which has been further accentuated with the migration of settlers during the post-independent times. Curiously, when Cardamom Hills are better known today as the plantation belt of the country or as one of the most fostering grounds of agrarian capitalism producing the lion share of Indian cardamom, the indigenous communities of the place such as the Mannans got alienated of their ancestral lands, became inter-generational proletariats and got reduced into ‘segmented spaces’ called the settlements. While dispossession of land for plantations has dislocated the economic life of the Mannans, the migration of the settlers has resulted into a complete social, cultural, political and demographic dominion over them. This has not only relegated their existential relations, history, culture and association with the place but also condensed them as the ‘Other’ in their own territories. Therefore inquisitively, violation of rights of the communities like Mannans, encroachment of their lands, negation towards their very existence and distortion of their history gets defined as the ‘Manifest Destiny’ of the people and place whereby its inevitability gets manufactured. This paper is an attempt to elicit the ways in which the formation of Mannan settlements are interconnected to the historical reality and contemporary opulence of the plantation industry in the place. The arguments put forth by this study is based on extensive ethnographic fieldwork conducted in various Mannan settlements in the cardamom hills. The study basically dwells on to the methodological premises of multi-sited ethnography wherein information was gathered from different sites such as settlements, plantations and other interactive spaces wherein the Mannans from the settlements engages in socio-economic, cultural and political relations. Such an attempt was made to understand in depth the associations and interactions that people in the settlements have among themselves and others. The study equally uses the method of oral history to understand the alternative history, the socio-cultural and economic life of the people before the importation of plantations to the place. The paper gauges into the ways in which settlements imprisons generations of Mannans into plantation work and acts as moulds for subservient, hardworking plantation labourers.

Keywords: Cardamom Hills, plantations, labourers, Mannans, segmented spaces, settlements

Procedia PDF Downloads 243
6975 Urban Sexual Geographies, Queer Citizenship and the Socio-Economic Status of LGBTIQs in Vienna

Authors: Karin Schoenpflug, Christine M. Klapeer

Abstract:

In a large study for the Vienna City Council’s Antidiscrimination unit (WASt) an interdisciplinary team (in the fields of economics, sociology and political science) working with urban economics, critical citizenship studies, the sociology of work & inequality and urban political/human geography conducted an online survey asking LGBTIs (lesbians, gays, bisexuals, transgender and intersex people) in Vienna detailed questions on their quality-of-life, happiness and well-being. 3.161 persons responded and provided us with a rich data set concerning: 1) Labor market structures, discrimination, working conditions and employment practices (economic citizenship); 2) access to health care, welfare, education and safety in public spaces (social citizenship); 3) political participation as well as access to legal institutions (political citizenship). All those fields are important dimensions in regards to “full” citizenship and the well-being of the LGBTI population, but are also constitutive for the inclusion of sexual and gender minorities into the city population(s) of Vienna. Our data also allows us to map the sexual geography of Vienna as LGBTI communities are more likely to live in certain districts; some places are considered safe(r) and “friendlier”. In this way our work helps to fill a research gap connecting (urban) spaces and sexuality, and it produces new data and insights on the quality-of-life of this subpopulation. Our findings allow for urban (policy) planning and limiting violence and discrimination and improving the collective wellbeing and social cohesion.

Keywords: urban sexual geographies, LGBTI, socio-economic status, Vienna, sitizenship status

Procedia PDF Downloads 349
6974 Association of Dietary Intake with the Nutrition Knowledge, Food Label Use, and Food Preferences of Adults in San Jose del Monte City, Bulacan, Philippines

Authors: Barby Jennette A. Florano

Abstract:

Dietary intake has been associated with the health and wellbeing of adults, and lifestyle related diseases. The aim of this study was to investigate whether nutrition knowledge, food label use, and food preference are associated with the dietary intake in a sample of San Jose Del Monte City, Bulacan (SJDM) adults. A sample of 148 adults, with a mean age of 20 years, completed a validated questionnaire related to their demographic, dietary intake, nutrition knowledge, food label use and food preference. Data were analyzed using Pearson correlation and there was no association between dietary intake and nutrition knowledge. However, there were positive relationships between dietary intake and food label use (r=0.1276, p<0.10), and dietary intake and food preference (r=0.1070, p<0.10). SJDM adults who use food label and have extensive food preference had better diet quality. This finding magnifies the role of nutrition education as a potential tool in health campaigns to promote healthy eating patterns and reading food labels among students and adults. Results of this study can give information for the design of future nutrition education intervention studies to assess the efficacy of nutrition knowledge and food label use among a similar sample population.

Keywords: dietary intake, nutrition knowledge, food preference, food label use

Procedia PDF Downloads 91
6973 Bridging Minds and Nature: Revolutionizing Elementary Environmental Education Through Artificial Intelligence

Authors: Hoora Beheshti Haradasht, Abooali Golzary

Abstract:

Environmental education plays a pivotal role in shaping the future stewards of our planet. Leveraging the power of artificial intelligence (AI) in this endeavor presents an innovative approach to captivate and educate elementary school children about environmental sustainability. This paper explores the application of AI technologies in designing interactive and personalized learning experiences that foster curiosity, critical thinking, and a deep connection to nature. By harnessing AI-driven tools, virtual simulations, and personalized content delivery, educators can create engaging platforms that empower children to comprehend complex environmental concepts while nurturing a lifelong commitment to protecting the Earth. With the pressing challenges of climate change and biodiversity loss, cultivating an environmentally conscious generation is imperative. Integrating AI in environmental education revolutionizes traditional teaching methods by tailoring content, adapting to individual learning styles, and immersing students in interactive scenarios. This paper delves into the potential of AI technologies to enhance engagement, comprehension, and pro-environmental behaviors among elementary school children. Modern AI technologies, including natural language processing, machine learning, and virtual reality, offer unique tools to craft immersive learning experiences. Adaptive platforms can analyze individual learning patterns and preferences, enabling real-time adjustments in content delivery. Virtual simulations, powered by AI, transport students into dynamic ecosystems, fostering experiential learning that goes beyond textbooks. AI-driven educational platforms provide tailored content, ensuring that environmental lessons resonate with each child's interests and cognitive level. By recognizing patterns in students' interactions, AI algorithms curate customized learning pathways, enhancing comprehension and knowledge retention. Utilizing AI, educators can develop virtual field trips and interactive nature explorations. Children can navigate virtual ecosystems, analyze real-time data, and make informed decisions, cultivating an understanding of the delicate balance between human actions and the environment. While AI offers promising educational opportunities, ethical concerns must be addressed. Safeguarding children's data privacy, ensuring content accuracy, and avoiding biases in AI algorithms are paramount to building a trustworthy learning environment. By merging AI with environmental education, educators can empower children not only with knowledge but also with the tools to become advocates for sustainable practices. As children engage in AI-enhanced learning, they develop a sense of agency and responsibility to address environmental challenges. The application of artificial intelligence in elementary environmental education presents a groundbreaking avenue to cultivate environmentally conscious citizens. By embracing AI-driven tools, educators can create transformative learning experiences that empower children to grasp intricate ecological concepts, forge an intimate connection with nature, and develop a strong commitment to safeguarding our planet for generations to come.

Keywords: artificial intelligence, environmental education, elementary children, personalized learning, sustainability

Procedia PDF Downloads 83
6972 Shifting Gender Roles: Exploring Settler Communities in Guam and Bali

Authors: Rochelle Alviz, Kirk Johnson

Abstract:

This study explores the changing nature of gender roles in two traditional island societies. The research focuses particularly on the settler populations within each community (the Filipinos in Guam and the Javanese in Bali). The research seeks to understand the influence of both the forces of globalization and the dynamics of competing cultures on gender roles. To achieve this, a qualitative research design is used, employing in-depth interviews with individuals from both communities and field notes from participant observation. The study finds that globalization and competing cultural norms have influenced traditional gender roles and expectations in two primary areas of social life: the family and the economy. The importance of these two areas of social life to both communities has led to changes and adaptations in gender roles. In the family context, individuals reconcile their traditional gender roles from their country of origin with the dominant or indigenous gender roles of their new place of residence. In the economic context, the study finds that gender roles influence economic participation, including the types of jobs individuals pursue based on their gender roles. The results of the study provide valuable insights into the complexities and nuances of gender roles and the different factors that influence their evolution and adaptation over time. The research also highlights the influence of globalization on traditional societies and settler populations and the ways in which individuals navigate the competing cultural norms and expectations surrounding gender roles. The research contributes to a better understanding of the interplay between culture, globalization, and gender roles and the implications of these changes for individuals and communities.

Keywords: gender roles, culture, settler communities, family, economy, Guam, Bali, globalization

Procedia PDF Downloads 86
6971 A Cognitive Semantic Analysis of the Metaphorical Extensions of Come out and Take Over

Authors: Raquel Rossini, Edelvais Caldeira

Abstract:

The aim of this work is to investigate the motivation for the metaphorical uses of two verb combinations: come out and take over. Drawing from cognitive semantics theories, image schemas and metaphors, it was attempted to demonstrate that: a) the metaphorical senses of both 'come out' and 'take over' extend from both the verbs and the particles central (spatial) senses in such verb combinations; and b) the particles 'out' and 'over' also contribute to the whole meaning of the verb combinations. In order to do so, a random selection of 579 concordance lines for come out and 1,412 for take over was obtained from the Corpus of Contemporary American English – COCA. One of the main procedures adopted in the present work was the establishment of verb and particle central senses. As per the research questions addressed in this study, they are as follows: a) how does the identification of trajector and landmark help reveal patterns that contribute for the identification of the semantic network of these two verb combinations?; b) what is the relationship between the schematic structures attributed to the particles and the metaphorical uses found in empirical data?; and c) what conceptual metaphors underlie the mappings from the source to the target domains? The results demonstrated that not only the lexical verbs come and take, but also the particles out and over play an important whole in the different meanings of come out and take over. Besides, image schemas and conceptual metaphors were found to be helpful in order to establish the motivations for the metaphorical uses of these linguistic structures.

Keywords: cognitive linguistics, English syntax, multi-word verbs, prepositions

Procedia PDF Downloads 155
6970 Improving Psychological Safety in Teaching and Social Organizations in Finland

Authors: Eija Raatikainen

Abstract:

The aim of the study is to examine psychological safety in the context of change in working life and continuous learning in social- and educational organizations. The participants in the study are social workers and vocational teachers working as employees and supervisors in the capital region of Finland (public and private sectors). Research data has been collected during 2022-2023 using the qualitative method called empathy-based stories (MEBS). Research participants were asked to write short stories about situations related to their work and work community. As researchers, we created and varied the framework narratives (MEBS) in line with the aim of the study and theoretical background. The data were analyzed with content analysis. According to the results, the barriers and prerequisites for psychological safety at work could be located in four different working culture dimensions. The work culture dimensions were named as follows: 1) a work culture focusing on interaction and emotional culture between colleagues, 2) communal work culture, 3) a work culture that enables learning, and 4) a work culture focused on structures and operating models. All these have detailed elements of barriers and prerequisites of psychological safety at work. The results derived from the enlivening methods can be utilized when working with the work community and have discussed psychological safety at work. Also, the method itself (MEBS) can prevent open discussion and reflection on psychological safety at work because of the sensitivity of the topic. Method aloud to imagine, not just talk and share your experiences directly. Additionally, the results of the study can offer one tool or framework while developing phycological safety at work.

Keywords: psychological safety, empathy, empathy-based stories, working life

Procedia PDF Downloads 72
6969 Point-of-Decision Design (PODD) to Support Healthy Behaviors in the College Campuses

Authors: Michelle Eichinger, Upali Nanda

Abstract:

Behavior choices during college years can establish the pattern of lifelong healthy living. Nearly 1/3rd of American college students are either overweight (25 < BMI < 30) or obese (BMI > 30). In addition, overweight/obesity contributes to depression, which is a rising epidemic among college students, affecting academic performance and college drop-out rates. Overweight and obesity result in an imbalance of energy consumption (diet) and energy expenditure (physical activity). Overweight/obesity is a significant contributor to heart disease, diabetes, stroke, physical disabilities and some cancers, which are the leading causes of death and disease in the US. There has been a significant increase in obesity and obesity-related disorders such as type 2 diabetes, hypertension, and dyslipidemia among people in their teens and 20s. Historically, the evidence-based interventions for obesity prevention focused on changing the health behavior at the individual level and aimed at increasing awareness and educating people about nutrition and physical activity. However, it became evident that the environmental context of where people live, work and learn was interdependent to healthy behavior change. As a result, a comprehensive approach was required to include altering the social and built environment to support healthy living. College campus provides opportunities to support lifestyle behavior and form a health-promoting culture based on some key point of decisions such as stairs/ elevator, walk/ bike/ car, high-caloric and fast foods/balanced and nutrient-rich foods etc. At each point of decision, design, can help/hinder the healthier choice. For example, stair well design and motivational signage support physical activity; grocery store/market proximity influence healthy eating etc. There is a need to collate the vast information that is in planning and public health domains on a range of successful point of decision prompts, and translate it into architectural guidelines that help define the edge condition for critical point of decision prompts. This research study aims to address healthy behaviors through the built environment with the questions, how can we make the healthy choice an easy choice through the design of critical point of decision prompts? Our hypothesis is that well-designed point of decision prompts in the built environment of college campuses can promote healthier choices by students, which can directly impact mental and physical health related to obesity. This presentation will introduce a combined health and architectural framework aimed to influence healthy behaviors through design applied for college campuses. The premise behind developing our concept, point-of-decision design (PODD), is healthy decision-making can be built into, or afforded by our physical environments. Using effective design intervention strategies at these 'points-of-decision' on college campuses to make the healthy decision the default decision can be instrumental in positively impacting health at the population level. With our model, we aim to advance health research by utilizing point-of-decision design to impact student health via core sectors of influences within college settings, such as campus facilities and transportation. We will demonstrate how these domains influence patterns/trends in healthy eating and active living behaviors among students. how these domains influence patterns/trends in healthy eating and active living behaviors among students.

Keywords: architecture and health promotion, college campus, design strategies, health in built environment

Procedia PDF Downloads 222
6968 Weibull Cumulative Distribution Function Analysis with Life Expectancy Endurance Test Result of Power Window Switch

Authors: Miky Lee, K. Kim, D. Lim, D. Cho

Abstract:

This paper presents the planning, rationale for test specification derivation, sampling requirements, test facilities, and result analysis used to conduct lifetime expectancy endurance tests on power window switches (PWS) considering thermally induced mechanical stress under diurnal cyclic temperatures during normal operation (power cycling). The detail process of analysis and test results on the selected PWS set were discussed in this paper. A statistical approach to ‘life time expectancy’ was given to the measurement standards dealing with PWS lifetime determination through endurance tests. The approach choice, within the framework of the task, was explained. The present task was dedicated to voltage drop measurement to derive lifetime expectancy while others mostly consider contact or surface resistance. The measurements to perform and the main instruments to measure were fully described accordingly. The failure data from tests were analyzed to conclude lifetime expectancy through statistical method using Weibull cumulative distribution function. The first goal of this task is to develop realistic worst case lifetime endurance test specification because existing large number of switch test standards cannot induce degradation mechanism which makes the switches less reliable. 2nd goal is to assess quantitative reliability status of PWS currently manufactured based on test specification newly developed thru this project. The last and most important goal is to satisfy customer’ requirement regarding product reliability.

Keywords: power window switch, endurance test, Weibull function, reliability, degradation mechanism

Procedia PDF Downloads 235
6967 Personal Characteristics and Personality Traits as Predictors of Compassion Fatigue among Counselors from Dominican Schools in the Philippines

Authors: Neil Jordan M. Uy, Fe Pelilia V. Hernandez

Abstract:

A counselor is always regarded as a professional who embodies the willingness to help others through the process of counseling. He is knowledgeable and skillful of the different theories, tools, and techniques that are useful in aiding the client to cope with their dilemmas. The negative experiences of the clients that are shared during the counseling session can affect the professional counselor. Compassion fatigue, a professional impairment, is characterized by the decline of one’s productivity and the feeling of anxiety and stress brought about as the counselor empathizes, listens, and cares for others. This descriptive type of research aimed to explore variables that are predictors of compassion fatigue utilizing three research instruments; Demographic Profile Sheet, Professional Quality of Life Scale, and Neo-Pi-R. The 52 respondents of this study were counselors from the different Dominican schools in the Philippines. Generally, the counselors have low level of compassion fatigue across personal characteristics (age, gender, years of service, highest educational attainment, and professional status) and personality traits (extraversion, agreeableness, conscientiousness, openness, and neuroticism). ANOVA validated the findings of this that among the personal characteristics and personality traits, extraversion with f-value of 3.944 and p-value of 0.026, and conscientiousness, with f-value of 4.125 and p-value of 0.022 were found to have significant difference in the level of compassion fatigue. A very significant difference was observed with neuroticism with f-value of 6.878 and p-value 0.002. Among the personal characteristics and personal characteristics, only neuroticism was found to predict compassion fatigue. The computed r2 value of 0.204 using multiple regression analysis suggests that 20.4 percent of compassion fatigue can be predicted by neuroticism. The predicting power of neuroticism can be computed from the regression model Y=0.156x+26.464; where x is the number of neuroticism.

Keywords: big five personality traits, compassion fatigue, counselors, professional quality of life scale

Procedia PDF Downloads 378
6966 Enhancing Scalability in Ethereum Network Analysis: Methods and Techniques

Authors: Stefan K. Behfar

Abstract:

The rapid growth of the Ethereum network has brought forth the urgent need for scalable analysis methods to handle the increasing volume of blockchain data. In this research, we propose efficient methodologies for making Ethereum network analysis scalable. Our approach leverages a combination of graph-based data representation, probabilistic sampling, and parallel processing techniques to achieve unprecedented scalability while preserving critical network insights. Data Representation: We develop a graph-based data representation that captures the underlying structure of the Ethereum network. Each block transaction is represented as a node in the graph, while the edges signify temporal relationships. This representation ensures efficient querying and traversal of the blockchain data. Probabilistic Sampling: To cope with the vastness of the Ethereum blockchain, we introduce a probabilistic sampling technique. This method strategically selects a representative subset of transactions and blocks, allowing for concise yet statistically significant analysis. The sampling approach maintains the integrity of the network properties while significantly reducing the computational burden. Graph Convolutional Networks (GCNs): We incorporate GCNs to process the graph-based data representation efficiently. The GCN architecture enables the extraction of complex spatial and temporal patterns from the sampled data. This combination of graph representation and GCNs facilitates parallel processing and scalable analysis. Distributed Computing: To further enhance scalability, we adopt distributed computing frameworks such as Apache Hadoop and Apache Spark. By distributing computation across multiple nodes, we achieve a significant reduction in processing time and enhanced memory utilization. Our methodology harnesses the power of parallelism, making it well-suited for large-scale Ethereum network analysis. Evaluation and Results: We extensively evaluate our methodology on real-world Ethereum datasets covering diverse time periods and transaction volumes. The results demonstrate its superior scalability, outperforming traditional analysis methods. Our approach successfully handles the ever-growing Ethereum data, empowering researchers and developers with actionable insights from the blockchain. Case Studies: We apply our methodology to real-world Ethereum use cases, including detecting transaction patterns, analyzing smart contract interactions, and predicting network congestion. The results showcase the accuracy and efficiency of our approach, emphasizing its practical applicability in real-world scenarios. Security and Robustness: To ensure the reliability of our methodology, we conduct thorough security and robustness evaluations. Our approach demonstrates high resilience against adversarial attacks and perturbations, reaffirming its suitability for security-critical blockchain applications. Conclusion: By integrating graph-based data representation, GCNs, probabilistic sampling, and distributed computing, we achieve network scalability without compromising analytical precision. This approach addresses the pressing challenges posed by the expanding Ethereum network, opening new avenues for research and enabling real-time insights into decentralized ecosystems. Our work contributes to the development of scalable blockchain analytics, laying the foundation for sustainable growth and advancement in the domain of blockchain research and application.

Keywords: Ethereum, scalable network, GCN, probabilistic sampling, distributed computing

Procedia PDF Downloads 76
6965 Investigating Methanol Interaction on Hexagonal Ceria-BTC Microrods

Authors: Jamshid Hussain, Kuen Song Lin

Abstract:

For prospective applications, chemists and materials scientists are particularly interested in creating 3D-micro/nanocomposite structures with shapes and unique characteristics. Ceria has recently been produced with a variety of morphologies, including one-dimensional structures (nanoparticles, nanorods, nanowires, and nanotubes). It is anticipated that this material can be used in different fields, such as catalysis, methanol decomposition, carbon monoxide oxidation, optical materials, and environmental protection. Distinct three-dimensional hydrated ceria-BTC (CeO₂-1,3,5-Benzenetricarboxylic-acid) microstructures were successfully synthesized via a hydrothermal route in an aqueous solution. FE-SEM and XRD patterns reveal that a ceria-BTC framework diameter and length are approximately 1.45–2.4 and 5.5–6.5 µm, respectively, at 130 oC and with pH 2 for 72 h. It was demonstrated that the reaction conditions affected the 3D ceria-BTC architecture. The hexagonal ceria-BTC microrod comprises organic linkers, which are transformed into hierarchical ceria microrod in the presences of air at 400 oC was confirmed by Fourier transform infrared spectroscopy. The Ce-O bonding of the hierarchical ceria microrod (HCMs) species has a bond distance and coordination number of 2.44 and 6.89, respectively, which attenuates the EXAFS spectra. Compared to the ceria powder, the HCMs produced more oxygen vacancies and Ce3+ as shown by the XPS and XANES/EXAFS analyses.

Keywords: hierarchical ceria microrod, three-dimensional ceria, methanol decomposition, reaction mechanism, XANES/EXAFS

Procedia PDF Downloads 8