Search results for: oxygen extraction fraction; TIA
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4195

Search results for: oxygen extraction fraction; TIA

1225 Corporate Social Responsibility and Competitiveness: An Empirical Research Applied to Food and Beverage Industry in Croatia

Authors: Mirjana Dragas, Marli Gonan Bozac, Morena Paulisic

Abstract:

Corporate social responsibility (CSR) is a balance between strategic and financial goals of companies, as well as social needs. The integration of competitive strategy and CSR in food and beverage industry has allowed companies to find new sources of competitive advantage. The paper discusses the fact that socially responsible companies encourage co-operation with socially responsible suppliers in order to strengthen market competitiveness. In addition to the descriptive interpretation of the results obtained by a questionnaire, factor analysis was used, while principal components analysis was applied as a factor extraction method. The research results based on two multiple regression analyses show that: (1) selecting the CSR supplier explains a statistically significant part of the variance of the results on the scale of financial aspects of competitiveness (as much as 44.7% of the explained variance); and (2) selecting the CSR supplier is a significant predictor of non-financial aspects of competitiveness (explains 43.9% of the variance of the results on the scale of non-financial aspects of competitiveness). A successful competitive strategy must ultimately support the growth strategy. This implies an analytical approach to finding factors that influence competitiveness through socially sustainable solutions and satisfactory top management decisions.

Keywords: competitiveness, corporate social responsibility, food and beverage industry, supply chain decision making

Procedia PDF Downloads 339
1224 Utilization of Whey for the Production of β-Galactosidase Using Yeast and Fungal Culture

Authors: Rupinder Kaur, Parmjit S. Panesar, Ram S. Singh

Abstract:

Whey is the lactose rich by-product of the dairy industry, having good amount of nutrient reservoir. Most abundant nutrients are lactose, soluble proteins, lipids and mineral salts. Disposing of whey by most of milk plants which do not have proper pre-treatment system is the major issue. As a result of which, there can be significant loss of potential food and energy source. Thus, whey has been explored as the substrate for the synthesis of different value added products such as enzymes. β-galactosidase is one of the important enzymes and has become the major focus of research due to its ability to catalyze both hydrolytic as well as transgalactosylation reaction simultaneously. The enzyme is widely used in dairy industry as it catalyzes the transformation of lactose to glucose and galactose, making it suitable for the lactose intolerant people. The enzyme is intracellular in both bacteria and yeast, whereas for molds, it has an extracellular location. The present work was carried to utilize the whey for the production of β-galactosidase enzyme using both yeast and fungal cultures. The yeast isolate Kluyveromyces marxianus WIG2 and various fungal strains have been used in the present study. Different disruption techniques have also been investigated for the extraction of the enzyme produced intracellularly from yeast cells. Among the different methods tested for the disruption of yeast cells, SDS-chloroform showed the maximum β-galactosidase activity. In case of the tested fungal cultures, Aureobasidium pullulans NCIM 1050, was observed to be the maximum extracellular enzyme producer.

Keywords: β-galactosidase, fungus, yeast, whey

Procedia PDF Downloads 308
1223 Dairy Wastewater Treatment by Electrochemical and Catalytic Method

Authors: Basanti Ekka, Talis Juhna

Abstract:

Dairy industrial effluents originated by the typical processing activities are composed of various organic and inorganic constituents, and these include proteins, fats, inorganic salts, antibiotics, detergents, sanitizers, pathogenic viruses, bacteria, etc. These contaminants are harmful to not only human beings but also aquatic flora and fauna. Because consisting of large classes of contaminants, the specific targeted removal methods available in the literature are not viable solutions on the industrial scale. Therefore, in this on-going research, a series of coagulation, electrochemical, and catalytic methods will be employed. The bulk coagulation and electrochemical methods can wash off most of the contaminants, but some of the harmful chemicals may slip in; therefore, specific catalysts designed and synthesized will be employed for the removal of targeted chemicals. In the context of Latvian dairy industries, presently, work is under progress on the characterization of dairy effluents by total organic carbon (TOC), Inductively Coupled Plasma Mass Spectrometry (ICP-MS)/ Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), High-Performance Liquid Chromatography (HPLC), Gas Chromatography-Mass Spectrometry (GC-MS), and Mass Spectrometry. After careful evaluation of the dairy effluents, a cost-effective natural coagulant will be employed prior to advanced electrochemical technology such as electrocoagulation and electro-oxidation as a secondary treatment process. Finally, graphene oxide (GO) based hybrid materials will be used for post-treatment of dairy wastewater as graphene oxide has been widely applied in various fields such as environmental remediation and energy production due to the presence of various oxygen-containing groups. Modified GO will be used as a catalyst for the removal of remaining contaminants after the electrochemical process.

Keywords: catalysis, dairy wastewater, electrochemical method, graphene oxide

Procedia PDF Downloads 126
1222 Characterization of Electrical Transport across Ultra-Thin SrTiO₃ and BaTiO₃ Barriers in Tunnel Junctions

Authors: Henry Navarro, Martin Sirena, Nestor Haberkorn

Abstract:

We report the electrical transport through voltage-current curves (I-V) in tunnels junction GdBa₂Cu₃O₇-d/ insulator/ GdBa₂Cu₃O₇-d, and Nb/insulator/ GdBa₂Cu₃O₇-d is analyzed using a conducting atomic force microscope (CAFM) at room temperature. The measurements were obtained on tunnel junctions with different areas (900 μm², 400 μm² and 100 μm²). Trilayers with GdBa₂Cu₃O₇-d (GBCO) as the bottom electrode, SrTiO₃ (STO) or BaTiO₃ (BTO) as the insulator barrier (thicknesses between 1.6 nm and 4 nm), and GBCO or Nb as the top electrode were grown by DC sputtering on (100) SrTiO₃ substrates. For STO and BTO barriers, asymmetric IV curves at positive and negative polarization can be obtained using electrodes with different work function. The main difference is that the BTO is a ferroelectric material, while in the STO the ferroelectricity can be produced by stress or deformation at the interfaces. In addition, hysteretic IV curves are obtained for BTO barriers, which can be ascribed to a combined effect of the FE reversal switching polarization and an oxygen vacancy migration. For GBCO/ BTO/ GBCO heterostructures, the IV curves correspond to that expected for asymmetric interfaces, which indicates that the disorder affects differently the properties at the bottom and top interfaces. Our results show the role of the interface disorder on the electrical transport of conducting/ insulator/ conduction heterostructures, which is relevant for different applications, going from resistive switching memories (at room temperature) to Josephson junctions (at low temperatures). The superconducting transition of the GBCO electrode was characterized by electrical transport using the 4-prong configuration with low density of topological defects and with Tc over liquid N₂ can be obtained for thicknesses of 16 nm, our results demonstrate that GBCO films with an average root-mean-square (RMS) smaller than 1 nm and areas (up 100 um²) free of 3-D topological defects can be obtained.

Keywords: thin film, sputtering, conductive atomic force microscopy, tunnel junctions

Procedia PDF Downloads 144
1221 The Employees' Classification Method in the Space of Their Job Satisfaction, Loyalty and Involvement

Authors: Svetlana Ignatjeva, Jelena Slesareva

Abstract:

The aim of the study is development and adaptation of the method to analyze and quantify the indicators characterizing the relationship between a company and its employees. Diagnostics of such indicators is one of the most complex and actual issues in psychology of labour. The offered method is based on the questionnaire; its indicators reflect cognitive, affective and connotative components of socio-psychological attitude of employees to be as efficient as possible in their professional activities. This approach allows measure not only the selected factors but also such parameters as cognitive and behavioural dissonances. Adaptation of the questionnaire includes factor structure analysis and suitability analysis of phenomena indicators measured in terms of internal consistency of individual factors. Structural validity of the questionnaire was tested by exploratory factor analysis. Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. Factor analysis allows reduce dimension of the phenomena moving from the indicators to aggregative indexes and latent variables. Aggregative indexes are obtained as the sum of relevant indicators followed by standardization. The coefficient Cronbach's Alpha was used to assess the reliability-consistency of the questionnaire items. The two-step cluster analysis in the space of allocated factors allows classify employees according to their attitude to work in the company. The results of psychometric testing indicate possibility of using the developed technique for the analysis of employees’ attitude towards their work in companies and development of recommendations on their optimization.

Keywords: involved in the organization, loyalty, organizations, method

Procedia PDF Downloads 342
1220 Modelling and Simulation of Aero-Elastic Vibrations Using System Dynamic Approach

Authors: Cosmas Pandit Pagwiwoko, Ammar Khaled Abdelaziz Abdelsamia

Abstract:

Flutter as a phenomenon of flow-induced and self-excited vibration has to be recognized considering its harmful effect on the structure especially in a stage of aircraft design. This phenomenon is also important for a wind energy harvester based on the fluttering surface due to its effective operational velocity range. This multi-physics occurrence can be presented by two governing equations in both fluid and structure simultaneously in respecting certain boundary conditions on the surface of the body. In this work, the equations are resolved separately by two distinct solvers, one-time step of each domain. The modelling and simulation of this flow-structure interaction in ANSYS show the effectiveness of this loosely coupled method in representing flutter phenomenon however the process is time-consuming for design purposes. Therefore, another technique using the same weak coupled aero-structure is proposed by using system dynamics approach. In this technique, the aerodynamic forces were calculated using singularity function for a range of frequencies and certain natural mode shapes are transformed into time domain by employing an approximation model of fraction rational function in Laplace variable. The representation of structure in a multi-degree-of-freedom coupled with a transfer function of aerodynamic forces can then be simulated in time domain on a block-diagram platform such as Simulink MATLAB. The dynamic response of flutter at certain velocity can be evaluated with another established flutter calculation in frequency domain k-method. In this method, a parameter of artificial structural damping is inserted in the equation of motion to assure the energy balance of flow and vibrating structure. The simulation in time domain is particularly interested as it enables to apply the structural non-linear factors accurately. Experimental tests on a fluttering airfoil in the wind tunnel are also conducted to validate the method.

Keywords: flutter, flow-induced vibration, flow-structure interaction, non-linear structure

Procedia PDF Downloads 294
1219 INNPT Nano Particles Material Technology as Enhancement Technology for Biological WWTP Performance and Capacity

Authors: Medhat Gad

Abstract:

Wastewater treatment became a big issue in this decade due to shortage of water resources, growth of population and modern live requirements. Reuse of treated wastewater in industrial and agriculture sectors has a big demand to substitute the shortage of clean water supply as well as to save the eco system from dangerous pollutants in insufficient treated wastewater In last decades, most of wastewater treatment plants are built using primary or secondary biological treatment technology which almost does not provide enough treatment and removal of phosphorus and nitrogen. those plants which built ten to 15 years ago also now suffering from overflow which decrease the treatment efficiency of the plant. Discharging treated wastewater which contains phosphorus and nitrogen to water reservoirs and irrigation canals destroy ecosystem and aquatic life. Using chemical material to enhance treatment efficiency for domestic wastewater but it leads to huge amount of sludge which cost a lot of money. To enhance wastewater treatment, we used INNPT nano material which consists of calcium, aluminum and iron oxides and compounds plus silica, sodium and magnesium. INNPT nano material used with a dose of 100 mg/l to upgrade SBR treatment plant in Cairo Egypt -which has three treatment tanks each with a capacity of 2500 cubic meters per day - to tertiary treatment level by removing Phosphorus, Nitrogen and increase dissolved oxygen in final effluent. The results showed that the treatment retention time decreased from 9 hours in SBR system to one hour using INNPT nano material with improvement in effluent quality while increasing plant capacity to 20 k cubic meters per day. Nitrogen removal efficiency achieved 77%, while phosphorus removal efficiency achieved 90% and COD removal efficiency was 93% which all comply with tertiary treatment limits according to Egyptian law.

Keywords: INNPT technology, nanomaterial, tertiary wastewater treatment, capacity extending

Procedia PDF Downloads 147
1218 Poultry as a Carrier of Chlamydia gallinacea

Authors: Monika Szymańska-Czerwińsk, Kinga Zaręba-Marchewka, Krzysztof Niemczuk

Abstract:

Chlamydiaceae are Gram-negative bacteria distributed worldwide in animals and humans. One of them is Chlamydia gallinacea recently discovered. Available data show that C. gallinacea is dominant chlamydial agent found in poultry in European and Asian countries. The aim of the studies was screening of poultry flocks in order to evaluate frequency of C. gallinacea shedding and genetic diversity. Sampling was conducted in different regions of Poland in 2019-2020. Overall, 1466 cloacal/oral swabs were collected in duplicate from 146 apparently healthy poultry flocks including chickens, turkeys, ducks, geese and quails. Dry swabs were used for DNA extraction. DNA extracts were screened using a Chlamydiaceae 23S rRNA real-time PCR assay. To identify Chlamydia species, specific real-time PCR assays were performed. Furthermore, selected samples were used for sequencing based on ompA gene fragments and variable domains (VD1-2, VD3-4). In total, 10.3% of the tested flocks were Chlamydiaceae-positive (15/146 farms). The presence of Chlamydiaceae was confirmed mainly in chickens (13/92 farms) but also in turkey (1/19 farms) and goose (1/26 farms) flocks. Eleven flocks were identified as C. gallinacea-positive while four flocks remained unclassified. Phylogenetic analysis revealed at least 16 genetic variants of C. gallinacea. Research showed that Chlamydiaceae occur in a poultry flock in Poland. The strains of C. gallinacea as dominant species show genetic variability.

Keywords: C. gallinacea, emerging agent, poultry, real-time PCR

Procedia PDF Downloads 85
1217 Quality Assessment and Classification of Recycled Aggregates from CandDW According to the European Standards

Authors: M. Eckert, D. Mendes, J P. Gonçalves, C. Moço, M. Oliveira

Abstract:

The intensive extraction of natural aggregates leads to both depletion of natural resources and unwanted environmental impacts. On the other hand, uncontrolled disposal of Construction and Demolition Wastes (C&DW) causes the lifetime reduction of landfills. It is known that the European Union produces, each year, about 850 million tons of C&DW. For all the member States of the European Union, one of the milestones to be reached by 2020, according to the Resource Efficiency Roadmap (COM (2011) 571) of the European Commission, is to recycle 70% of the C&DW. In this work, properties of different types of recycled C&DW aggregates and natural aggregates were compared. Assays were performed according to European Standards (EN 13285; EN 13242+A1; EN 12457-4; EN 12620; EN 13139) for the characterization of there: physical, mechanical and chemical properties. Not standardized tests such as water absorption over time, mass stability and post compaction sieve analysis were also carried out. The tested recycled C&DW aggregates were classified according to the requirements of the European Standards regarding there potential use in concrete, mortar, unbound layers of road pavements and embankments. The results of the physical and mechanical properties of recycled C&DW aggregates indicated, in general, lower quality properties when compared to natural aggregates, particularly, for concrete preparation and unbound layers of road pavements. The results of the chemical properties attested that the C&DW aggregates constitute no environmental risk. It was concluded that recycled aggregates produced from C&DW have the potential to be used in many applications.

Keywords: recycled aggregate, sustainability, aggregate properties, European Standard Classification

Procedia PDF Downloads 646
1216 Separation, Identification, and Measuring Gossypol in the Cottonseed Oil and Investigating the Performance of Drugs Prepared from the Combination of Plant Extract and Oil in the Treatment of Cutaneous Leishmaniasis Resistant to Drugs

Authors: Sara Taghdisi, M. Mirmohammadi, M. Mokhtarian

Abstract:

In 2013, the World Health Organization announced the cases of Cutaneous leishmaniasis infection in Iran between 69,000 to 113,000. The most common chemical drugs for Cutaneous leishmaniasis treatment are sodium stibogluconate, and meglumine antimonate, which not only have relatively many side effects, but also some species of the Leishmania genus have become resistant to them .The most prominent compound existing in different parts of the cotton plant is a yellow polyphenol called Gossypol. Gossypol is an extremely valuable compound and has anti-cancer properties. In the current project, Gossypol was extracted with a liquid-liquid extraction method in 120 minutes in the presence of Phosphoric acid from the cotton seed oil of Golestan beach varieties, then got crystallized in darkness using Acetic acid and isolated as Gossypol Acetic acid. The efficiency of the extracted crystal was obtained at 0.12+- 1.28. the cotton plant could be efficient in the treatment of Cutaneous leishmaniasis. The extract of the green-leaf cotton boll of Jargoyeh varieties was tested as an ointment on the target group of patients suffering from Cutaneous leishmaniasis resistant to drugs esistant to drugs by our colleagues in the research team. The results showed the Pearson's correlation coefficient of 0.72 between the two variables of wound diameter and the extract use over time which indicated the positive effect of this extract on the treatment of Cutaneous leishmaniasis was resistant to drugs.

Keywords: cottonseed oil, crystallization, gossypol, green-leaf

Procedia PDF Downloads 84
1215 Application of KL Divergence for Estimation of Each Metabolic Pathway Genes

Authors: Shohei Maruyama, Yasuo Matsuyama, Sachiyo Aburatani

Abstract:

The development of the method to annotate unknown gene functions is an important task in bioinformatics. One of the approaches for the annotation is The identification of the metabolic pathway that genes are involved in. Gene expression data have been utilized for the identification, since gene expression data reflect various intracellular phenomena. However, it has been difficult to estimate the gene function with high accuracy. It is considered that the low accuracy of the estimation is caused by the difficulty of accurately measuring a gene expression. Even though they are measured under the same condition, the gene expressions will vary usually. In this study, we proposed a feature extraction method focusing on the variability of gene expressions to estimate the genes' metabolic pathway accurately. First, we estimated the distribution of each gene expression from replicate data. Next, we calculated the similarity between all gene pairs by KL divergence, which is a method for calculating the similarity between distributions. Finally, we utilized the similarity vectors as feature vectors and trained the multiclass SVM for identifying the genes' metabolic pathway. To evaluate our developed method, we applied the method to budding yeast and trained the multiclass SVM for identifying the seven metabolic pathways. As a result, the accuracy that calculated by our developed method was higher than the one that calculated from the raw gene expression data. Thus, our developed method combined with KL divergence is useful for identifying the genes' metabolic pathway.

Keywords: metabolic pathways, gene expression data, microarray, Kullback–Leibler divergence, KL divergence, support vector machines, SVM, machine learning

Procedia PDF Downloads 386
1214 Relationship between Left Ventricle Position and Hemodynamic Parameters during Cardiopulmonary Resuscitation in a Pig Model

Authors: Hyun Chang Kim, Yong Hun Jung, Kyung Woon Jeung

Abstract:

Background: From the viewpoint of cardiac pump theory, the area of the left ventricle (LV) subjected to compression increases as the LV lies closer to the sternum, possibly resulting in higher blood flow in patients with LV closer to the sternum. However, no study has evaluated LV position during cardiac arrest or its relationship with hemodynamic parameters during cardiopulmonary resuscitation (CPR). The objectives of this study were to determine whether the position of the LV relative to the anterior-posterior axis representing the direction of chest compression shifts during cardiac arrest and to examine the relationship between LV position and hemodynamic parameters during CPR. Methods: Subcostal view echocardiograms were obtained from 15 pigs with the transducer parallel to the long axis of the sternum before inducing ventricular fibrillation (VF) and during cardiac arrest. Computed tomography was performed in three pigs to objectively observe LV position during cardiac arrest. LV position parameters including the shortest distance between the anterior-posterior axis and the mid-point of the LV chamber (DAP-MidLV), the shortest distance between the anterior-posterior axis and the LV apex (DAP-Apex), and the area fraction of the LV located on the right side of the anterior-posterior axis (LVARight/LVATotal) were measured. Results: DAP-MidLV, DAP-Apex, and LVARight/LVATotal decreased progressively during untreated VF and basic life support (BLS), and then increased during advanced cardiovascular life support (ACLS). A repeated measures analysis of variance revealed significant time effects for these parameters. During BLS, the end-tidal carbon dioxide and systolic right atrial pressure were significantly correlated with the LV position parameters. During ACLS, systolic arterial pressure and systolic right atrial pressure were significantly correlated with DAP-MidLV and DAP-Apex. Conclusions: LV position changed significantly during cardiac arrest compared to the pre-arrest baseline. LV position during CPR had significant correlations with hemodynamic parameters.

Keywords: heart arrest, cardiopulmonary resuscitation, heart ventricle, hemodynamics

Procedia PDF Downloads 173
1213 Determining Cellular Biomarkers Sensitive to Low Damaging Exposure

Authors: Svetlana Guryeva, Inna Kornienko, Elena Petersen

Abstract:

At present, translational medicine is a rapidly developing branch of biomedicine. The main idea of translational medicine is a practical application of fundamental research. One of the possible applications for translational medicine is researching therapies that improve human age-related organism condition. To fill the gap between experiments and clinical practice, it is necessary to create the standardized system for the investigation of different effects on cellular aging models. In this study, primary human fibroblasts derived from patients of different ages were used as a cellular aging model. The senescence-associated β-galactosidase activity, lipofuscin, γ-H2AX, the reactive oxygen species level, and cell death markers (annexin V/propidium iodide) were used as biomarkers of the cell functional state. The effects of damaging exposures (oxidative stress and heat shock), potential positive factors (metformin and acetaminophen), and their combinations were investigated using the described biomarkers. Oxidative stress and heat shock caused the increase in the levels of all biomarkers, and only the cells from young patients partly coped with stress 3 days after the exposures. Metformin improved the state of pretreatment cells from young and old patients. The acetaminophen did not show significant changes in the biomarker levels compare to the action of metformin. This study proved the opportunity to develop a standardized screening system based on biomarkers of the cell functional state to identify potential positive or negative effects of some physical and chemical exposures. Moreover, such a system can be useful for the aims of regenerative medicine to determine the effect of cell pretreatment before transplantation.

Keywords: biomarkers, primary fibroblasts, regenerative medicine, senescence, test system, translational medicine

Procedia PDF Downloads 387
1212 Geochemical and Mineralogical Characters of the Coastal Plain Sediments of the Arabian Gulf, Kuwait

Authors: Adel Ahmed Aly Elhabab, Ibrahim Adsani

Abstract:

The present study deals with detailed geochemical and mineralogical studies of the coastal plain sediments formed along the shoreline of the Arabian Gulf area, Kuwait. These deposits are mainly fluviomarine and beach sands. The coastal plain deposits of the central Kuwait shoreline zone were found to consist of average medium-grained sand. The sand composed, on average of about 90% sand, and about 10% or less is mud, and has a unimodal distribution with a mode of medium sand (1-2 ф). The sediments consist mainly quartz, Feldspar, clay minerals with carbonate minerals (detritus calcite and dolomite) and rock fragments (chert). The mineralogy of the clay fractions of the sediments is dominated by illite, palygorskite, mixed layer illite-montmorillonite with minor amounts of chlorite and Kaolinite Heavy minerals are concentrated in the very fine sand fraction and are dominated by opaque minerals, and non opaque minerals which represented by amphiboles, pyroxenes, epidotes, dolomite, zircon, tourmaline, rutile, garnet and other which represented by Staurolite, Kyanite, Andalusite and Sillimenite as a trace amounts. The chemical analysis for the detrital amphibole grains from sandstone of coastal plain sediments shows the following features; the grains which have (Na+K) <0.50 its composition ranges from actino hornblende to magnesio hornblende, but the grains which have (Na+K) >0.50 its composition have wide variation and on the (Na+K)-AlIV diagram can be characterized two association: Association 1 which characterized by low amount of AlIV and low amount of (Na+K), by comparing the chemical composition of this association and the chemical composition of amphibole grains from older basement rock, can be say, these association may be derived from metamorphic source rocks and association 2 which characterized by high amount of AlIV and low amount of (Na+K), may be derived from volcanic source rocks.

Keywords: chemical composition, clay minerals, coastal area, electro probe micro analyzer (EPMA), fluviomarine sediments, heavy minerals

Procedia PDF Downloads 379
1211 Colloidal Gas Aphron Generated by a Cationic Surfactant as an Alternative Technique to Recovery Natural Colorants from Fermented Broth

Authors: V. C. Santos-Ebinuma, J. F. B. Pereira, M. F. S. Teixeira, A. Pessoa Jr., P. Jauregi

Abstract:

There is worldwide interest in process development for colorants production from natural sources. Microorganisms provide an alternative source of natural colorants which can be produced by cultivation technology and extracted from fermented broth. The aim of the present work was to study the recovery of red colorants from fermented broth of Penicillium purpurogenum DPUA 1275 using the technique of Colloidal Gas Aphrons (CGA); CGA are surfactant-stabilized microbubbles generated by intense stirring of a surfactant solution. CGA were generated by the cationic, hexadecyl trimethyl ammonium bromide (CTAB) surfactant. Firstly, experiments were carried out at different surfactant/fermented broth volumetric ratios (VCGA/VFB, VRATIO) varying between 3 and 18 at pH 6.9. Secondly, the experiments were carried out at VRATIO of 6 and 12 in different pH, namely, 6.9, 8.0, 9.0 and 10.0. The first results of recovery showed that an increase in the VRATIO from 3 to 6 and 12 promoted an increase as recovery as partition coefficient. However, at VRATIO of 18 the lowest partition coefficient was obtained. The best results were achieved at VRATIO of 6 and 12, namely recovery, Re, around 60% and partition coefficient, K, of 2.5 and 3.0 to 6 and 12 VRATIO, respectively. The second set of experiments showed that the pH 9.0 promoted the best results at VRATIO of 12 as follow: Re=70%, K=5.39, proteins and sugar selectivity (SePROT, 3.75 and SeSUGAR, 7.20, respectively). These results indicate that with CTAB the recovery is mainly driven by electrostatic interactions. In conclusion, the results above show that CGA employing a cationic surfactant is a promissory technique and it can be used as the first step of purification to recovery red colorants from fermented broth.

Keywords: liquid-liquid extraction, colloidal gas aphrons, recovery, natural colorants

Procedia PDF Downloads 342
1210 Automatic Registration of Rail Profile Based Local Maximum Curvature Entropy

Authors: Hao Wang, Shengchun Wang, Weidong Wang

Abstract:

On the influence of train vibration and environmental noise on the measurement of track wear, we proposed a method for automatic extraction of circular arc on the inner or outer side of the rail waist and achieved the high-precision registration of rail profile. Firstly, a polynomial fitting method based on truncated residual histogram was proposed to find the optimal fitting curve of the profile and reduce the influence of noise on profile curve fitting. Then, based on the curvature distribution characteristics of the fitting curve, the interval search algorithm based on dynamic window’s maximum curvature entropy was proposed to realize the automatic segmentation of small circular arc. At last, we fit two circle centers as matching reference points based on small circular arcs on both sides and realized the alignment from the measured profile to the standard designed profile. The static experimental results show that the mean and standard deviation of the method are controlled within 0.01mm with small measurement errors and high repeatability. The dynamic test also verified the repeatability of the method in the train-running environment, and the dynamic measurement deviation of rail wear is within 0.2mm with high repeatability.

Keywords: curvature entropy, profile registration, rail wear, structured light, train-running

Procedia PDF Downloads 246
1209 One Pot Synthesis of Ultrasmall NiMo Catalysts Supported on Amorphous Alumina with Enhanced type 2 Sites for Hydrodesulfurization Reaction: A Combined Experimental and Theoretical Study

Authors: Shalini Arora, Sri Sivakumar

Abstract:

The deep removal of high molecular weight sulphur compounds (e.g., 4,6, dimethyl dibenzothiophene) is challenging due to their steric hindrance. Hydrogenation desulfurization (HYD) pathway is the main pathway to remove these sulfur compounds, and it is mainly governed by the number of type 2 sites. The formation of type 2 sites can be enhanced by modulating the pore structure and the interaction between the active metal and support. To this end, we report the enhanced HDS catalytic activity of ultrasmall NiMo supported on amorphous alumina (A-Al₂O₃) catalysts by one pot colloidal synthesis method followed by calcination and sulfidation. The amorphous alumina (A-Al₂O₃) was chosen as the support due to its lower surface energy, better physicochemical properties, and enhanced acidic sites (due to the dominance of tetra and penta coordinated [Al] sites) than crystalline alumina phase. At 20% metal oxide composition, NiMo supported on A-Al₂O₃ catalyst showed 1.4 and 1.2 times more reaction rate constant and turn over frequency (TOF) respectively than the conventional catalyst (wet impregnated NiMo catalysts) for HDS reaction of dibenzothiophene reactant molecule. A-Al₂O₃ supported catalysts represented enhanced type 2 sites formation (because this catalystpossesses higher sulfidation degree (80%) and NiMoS sites (19.3 x 10¹⁷ sites/mg) with desired optimum stacking degree (2.5) than wet impregnated catalyst at same metal oxide composition 20%) along with higher active metal dispersion, Mo edge site fraction. The experimental observations were also supported by DFT simulations. Lower heat of adsorption (< 4.2 ev for MoS2 interaction and < 3.15 ev for Ni doped MoS2 interaction) values for A-Al₂O₃ confirmed the presence of weaker metal-support interaction in A-Al₂O₃ in contrast to crystalline ℽ-Al₂O3. The weak metal-support interaction for prepared catalysts clearly suggests the higher formation of type 2 sites which leads to higher catalytic activity for HDS reaction.

Keywords: amorphous alumina, colloidal, desulfurization, metal-support interaction

Procedia PDF Downloads 252
1208 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection

Authors: Muhammad Ali

Abstract:

Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.

Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection

Procedia PDF Downloads 101
1207 Assessment of the Standard of Referrals for Extraction of Carious Primary Teeth under General Anaesthetic

Authors: Emma Carr, Jennifer Morrison, Peter Walker

Abstract:

Background: Due to COVID-19, there was a significant reduction in the number of children being treated under general anaesthetic (GA) within the health board, which led to a backlog of referrals. The referrals were being triaged and added to a waiting list in order of priority -determined by the information given. By implementing a checklist, it is anticipated that at least 70% of referrals will have the majority of the information required to effectively prioritise patients. The gold standard, as defined in ‘Guidelines For The Management Of Children Referred For Dental Extractions Under General Anaesthesia’, indicates that all referrals should mention: (i) Inability of the child to cooperate, (ii) Previously tried anxiety management techniques, (iii) Existence of psychological disorders, (iv) Presence of acute dental infection, (v) Requirement for extractions in multiple quadrants. Method: 130 referrals were examined over three months and compared to the recommended standard. A letter was emailed to referring dentists within Ayrshire & Arran outlining the recommended information to be included within the referral. The second round of data collection was then carried out, which involved an examination of 105 referrals. Results: The first round revealed that only 28% of referrals mentioned at least four defined standards outlined above. Following issuing a checklist to all dentists, this increased to 72%. Conclusion: As many of the children referred for extractions under GA have suffered pain and infection because of dental caries, it is important that delay of treatment is minimised, where possible. The implementation of a standardised checklist has enabled more effective prioritisation of patients.

Keywords: caries, dentistry, general anaesthetic, paediatrics

Procedia PDF Downloads 92
1206 Occurrence of Broiler Chicken Breast White Striping Meat in Brazilian Commercial Plant

Authors: Talita Kato, Moises Grespan, Elza I. Ida, Massami Shimokomaki, Adriana L. Soares

Abstract:

White Striping (WS) is becoming a concern for the poultry industry, as it affects the look of breast broiler chicken meat leading it to rejection by the consumers. It is characterized by the appearance of varying degrees of white striations on the Pectoralis major muscle surface following the direction of the muscle fiber. The etiology of this myopathy is still unknown, however it is suggested to be associated with increased weight gain rate and age of the bird, attributing the phenomenon to the genetically bird’s selection for efficiently higher meat production. The aim of this study was to evaluate the occurrence of Pectoralis major WS in a commercial plant in southern Brazil and its chemical characterization. The breast meat samples (n=660) from birds of 47 days of age, were classified as: Normal NG (no apparent white striations), Moderate MG (when the fillets present thin lines <1 mm) and Severe SG (white striations present ˃1 mm thick covering a large part of the fillet surface). Thirty samples (n = 10 for each level of severity) were analyzed for pH, color (L*, a*, b*), proximate chemical composition (moisture, protein, ash and lipids contents) and hydroxyproline in order to determine the collagen content. The results revealed the occurrence for NG group was 16.97%, 51.67% for MG group and 31.36% for SG group. Although the total protein content did not differ significantly, the collagen index was 42% higher in favor to SG in relation to NG. Also the lipid fraction was 27% higher for SG group. The NG presented the lowest values of the parameters L* and a* (P ≤ 0.05), as there was no white striations on its surface and highest b* value in SG, because of the maximum lipid contents. These results indicate there was a contribution of the SG muscle cells to oversynthesize connective tissue components on the muscle fascia. In conclusion, this study revealed a high incidence of White Striping on broiler commercial line in Brazil thus, there is a need to identify the causes of this abnormality in order to diminish or to eliminate it.

Keywords: collagen content, commercial line, pectoralis major muscle, proximate composition

Procedia PDF Downloads 242
1205 A Dynamic Solution Approach for Heart Disease Prediction

Authors: Walid Moudani

Abstract:

The healthcare environment is generally perceived as being information rich yet knowledge poor. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. In fact, valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, a proficient methodology for the extraction of significant patterns from the coronary heart disease warehouses for heart attack prediction, which unfortunately continues to be a leading cause of mortality in the whole world, has been presented. For this purpose, we propose to enumerate dynamically the optimal subsets of the reduced features of high interest by using rough sets technique associated to dynamic programming. Therefore, we propose to validate the classification using Random Forest (RF) decision tree to identify the risky heart disease cases. This work is based on a large amount of data collected from several clinical institutions based on the medical profile of patient. Moreover, the experts’ knowledge in this field has been taken into consideration in order to define the disease, its risk factors, and to establish significant knowledge relationships among the medical factors. A computer-aided system is developed for this purpose based on a population of 525 adults. The performance of the proposed model is analyzed and evaluated based on set of benchmark techniques applied in this classification problem.

Keywords: multi-classifier decisions tree, features reduction, dynamic programming, rough sets

Procedia PDF Downloads 396
1204 Efficient Compact Micro Dielectric Barrier Discharge (DBD) Plasma Reactor for Ozone Generation for Industrial Application in Liquid and Gas Phase Systems

Authors: D. Kuvshinov, A. Siswanto, J. Lozano-Parada, W. Zimmerman

Abstract:

Ozone is well known as a powerful fast reaction rate oxidant. The ozone based processes produce no by-product left as a non-reacted ozone returns back to the original oxygen molecule. Therefore an application of ozone is widely accepted as one of the main directions for a sustainable and clean technologies development. There are number of technologies require ozone to be delivered to specific points of a production network or reactors construction. Due to space constrains, high reactivity and short life time of ozone the use of ozone generators even of a bench top scale is practically limited. This requires development of mini/micro scale ozone generator which can be directly incorporated into production units. Our report presents a feasibility study of a new micro scale rector for ozone generation (MROG). Data on MROG calibration and indigo decomposition at different operation conditions are presented. At selected operation conditions with residence time of 0.25 s the process of ozone generation is not limited by reaction rate and the amount of ozone produced is a function of power applied. It was shown that the MROG is capable to produce ozone at voltage level starting from 3.5kV with ozone concentration of 5.28E-6 (mol/L) at 5kV. This is in line with data presented on numerical investigation for a MROG. It was shown that in compare to a conventional ozone generator, MROG has lower power consumption at low voltages and atmospheric pressure. The MROG construction makes it applicable for emerged and dry systems. With a robust compact design MROG can be used as incorporated unit for production lines of high complexity.

Keywords: dielectric barrier discharge (DBD), micro reactor, ozone, plasma

Procedia PDF Downloads 320
1203 Extraction of Amorphous SiO₂ From Equisetnm Arvense Plant for Synthesis of SiO₂/Zeolitic Imidazolate Framework-8 Nanocomposite and Its Photocatalytic Activity

Authors: Babak Azari, Afshin Pourahmad, Babak Sadeghi, Masuod Mokhtari

Abstract:

In this work, Equisetnm arvense plant extract was used for preparing amorphous SiO₂. For preparing of SiO₂/zeolitic imidazolate framework-8 (ZIF-8) nanocomposite by solvothermal method, the synthesized SiO₂ was added to the synthesis mixture ZIF-8. The nanocomposite was characterized using a range of techniques. The photocatalytic activity of SiO₂/ZIF-8 was investigated systematically by degrading crystal violet as a cationic dye under Ultraviolet light irradiation. Among synthesized samples (SiO₂, ZIF-8 and SiO₂/ZIF-8), the SiO₂/ZIF-8 exhibited the highest photocatalytic activity and improved stability compared to pure SiO₂ and ZIF-8. As evidenced by Scanning Electron Microscopy and Transmission electron microscopy images, ZIF-8 particles without aggregation are located over SiO₂. The SiO₂ not only provides structured support for ZIF-8 but also prevents the aggregation of ZIF-8 Metal-organic framework in comparison to the isolated ZIF-8. The superior activity of this photocatalyst was attributed to the synergistic effects from SiO₂ owing to (I) an electron acceptor (from ZIF-8) and an electron donor (to O₂ molecules), (II) preventing recombination of electron-hole in ZIF-8, and (III) maximum interfacial contact ZIF-8 with the SiO₂ surface without aggregation or prevent the accumulation of ZIF-8. The results demonstrate that holes (h+) and •O₂- are primary reactive species involved in the photocatalytic oxidation process. Moreover, the SiO₂/ZIF-8 photocatalyst did not show any obvious loss of photocatalytic activity during five-cycle tests, which indicates that the heterostructured photocatalyst was highly stable and could be used repeatedly.

Keywords: nano, zeolit, potocatalist, nanocomposite

Procedia PDF Downloads 64
1202 Nondestructive Acoustic Microcharacterisation of Gamma Irradiation Effects on Sodium Oxide Borate Glass X2Na2O-X2B2O3 by Acoustic Signature

Authors: Ibrahim Al-Suraihy, Abdellaziz Doghmane, Zahia Hadjoub

Abstract:

We discuss in this work the elastic properties by using acoustic microscopes to measure Rayleigh and longitudinal wave velocities in a no radiated and radiated sodium borate glasses X2Na2O-X2B2O3 with 0 ≤ x ≤ 27 (mol %) at microscopic resolution. The acoustic material signatures were first measured, from which the characteristic surface velocities were determined.Longitudinal and shear ultrasonic velocities were measured in a different composition of sodium borate glass samples before and after irradiation with γ-rays. Results showed that the effect due to increasing sodium oxide content on the ultrasonic velocity appeared more clearly than due to γ-radiation. It was found that as Na2O composition increases, longitudinal velocities vary from 3832 to 5636 m/s in irradiated sample and it vary from 4010 to 5836 m/s in high radiated sample by 10 dose whereas shear velocities vary from 2223 to 3269 m/s in irradiated sample and it vary from 2326 m/s in low radiation to 3385 m/s in high radiated sample by 10 dose. The effect of increasing sodium oxide content on ultrasonic velocity was very clear. The increase of velocity was attributed to the gradual increase in the rigidity of glass and hence strengthening of network due to gradual change of boron atoms from the three-fold to the four-fold coordination of oxygen atoms. The ultrasonic velocities data of glass samples have been used to find the elastic modulus. It was found that ultrasonic velocity, elastic modulus and microhardness increase with increasing barium oxide content and increasing γ-radiation dose.

Keywords: mechanical properties X2Na2O-X2B2O3, acoustic signature, SAW velocities, additives, gamma-radiation dose

Procedia PDF Downloads 386
1201 Use of a New Multiplex Quantitative Polymerase Chain Reaction Based Assay for Simultaneous Detection of Neisseria Meningitidis, Escherichia Coli K1, Streptococcus agalactiae, and Streptococcus pneumoniae

Authors: Nastaran Hemmati, Farhad Nikkhahi, Amir Javadi, Sahar Eskandarion, Seyed Mahmuod Amin Marashi

Abstract:

Neisseria meningitidis, Escherichia coli K, Streptococcus agalactiae, and Streptococcus pneumoniae cause 90% of bacterial meningitis. Almost all infected people die or have irreversible neurological complications. Therefore, it is essential to have a diagnostic kit with the ability to quickly detect these fatal infections. The project involved 212 patients from whom cerebrospinal fluid samples were obtained. After total genome extraction and performing multiplex quantitative polymerase chain reaction (qPCR), the presence or absence of each infectious factor was determined by comparing with standard strains. The specificity, sensitivity, positive predictive value, and negative predictive value calculated were 100%, 92.9%, 50%, and 100%, respectively. So, due to the high specificity and sensitivity of the designed primers, they can be used instead of bacterial culture that takes at least 24 to 48 hours. The remarkable benefit of this method is associated with the speed (up to 3 hours) at which the procedure could be completed. It is also worth noting that this method can reduce the personnel unintentional errors which may occur in the laboratory. On the other hand, as this method simultaneously identifies four common factors that cause bacterial meningitis, it could be used as an auxiliary method diagnostic technique in laboratories particularly in cases of emergency medicine.

Keywords: cerebrospinal fluid, meningitis, quantitative polymerase chain reaction, simultaneous detection, diagnosis testing

Procedia PDF Downloads 93
1200 Arsenic Speciation in Cicer arietinum: A Terrestrial Legume That Contains Organoarsenic Species

Authors: Anjana Sagar

Abstract:

Arsenic poisoned ground water is a major concern in South Asia. The arsenic enters the food chain not only through drinking but also by using arsenic polluted water for irrigation. Arsenic is highly toxic in its inorganic forms; however, organic forms of arsenic are comparatively less toxic. In terrestrial plants, inorganic form of arsenic is predominantly found; however, we found that significant proportion of organic arsenic was present in root and shoot of a staple legume, chickpea (Cicer arientinum L) plants. Chickpea plants were raised in pot culture on soils spiked with arsenic ranging from 0-70 mg arsenate per Kg soil. Total arsenic concentrations of chickpea shoots and roots were determined by inductively coupled plasma-mass-spectrometry (ICP-MS) ranging from 0.76 to 20.26, and 2.09 to 16.43 µg g⁻¹ dry weight, respectively. Information on arsenic species was acquired by methanol/water extraction method, with arsenic species being analyzed by high-performance liquid chromatography (HPLC) coupled with ICP-MS. Dimethylarsinic acid (DMA) was the only organic arsenic species found in amount from 0.02 to 3.16 % of total arsenic shoot concentration and 0 to 6.93 % of total arsenic root concentration, respectively. To investigate the source of the organic arsenic in chickpea plants, arsenic species in the rhizosphere of soils of plants were also examined. The absence of organic arsenic in soils would suggest the possibility of formation of DMA in plants. The present investigation provides useful information for better understanding of distribution of arsenic species in terrestrial legume plants.

Keywords: arsenic, arsenic speciation, dimethylarsinic acid, organoarsenic

Procedia PDF Downloads 119
1199 Understanding the Damage Evolution and the Risk of Failure of Pyrrhotite Containing Concrete Foundations

Authors: Marisa Chrysochoou, James Mahoney, Kay Wille

Abstract:

Pyrrhotite is an iron-sulfide mineral which releases sulfuric acid when exposed to water and oxygen. The presence of this mineral in concrete foundations across Connecticut and Massachusetts in the US is causing in some cases premature failure. This has resulted in a devastating crisis for all parties affected by this type of failure which can take up to 15-25 years before internal damage becomes visible on the surface. This study shares laboratory results aimed to investigate the fundamental mechanisms of pyrrhotite reaction and to further the understanding of its deterioration kinetics within concrete. This includes the following analyses: total sulfur, wavelength dispersive X-ray fluorescence, expansion, reaction rate combined with ion-chromatography, as well as damage evolution using electro-chemical acceleration. This information is coupled to a statistical analysis of over 150 analyzed concrete foundations. Those samples were obtained and process using a developed and validated sampling method that is minimally invasive to the foundation in use, provides representative samples of the concrete matrix across the entire foundation, and is time and cost-efficient. The processed samples were then analyzed using a developed modular testing method based on total sulfur and wavelength dispersive X-ray fluorescence analysis to quantify the amount of pyrrhotite. As part of the statistical analysis the results were grouped into the following three categories: no damage observed and no pyrrhotite detected, no damage observed and pyrrhotite detected and damaged observed and pyrrhotite detected. As expected, a strong correlation between amount of pyrrhotite, age of the concrete and damage is observed. Information from the laboratory investigation and from the statistical analysis of field samples will aid in forming a scientific basis to support the decision process towards sustainable financial and administrative solutions by state and local stakeholders.

Keywords: concrete, pyrrhotite, risk of failure, statistical analysis

Procedia PDF Downloads 53
1198 Bioflocculation Using the Purified Wild Strain of P. aeruginosa Culture in Wastewater Treatment

Authors: Mohammad Hajjartabar, Tahereh Kermani Ranjbar

Abstract:

P. aeruginosa EF2 was isolated and identified from human infection sources before in our previous study. The present study was performed to determine the characteristics and activity role of bioflocculant produced by the bacterium in flocculation of the wastewater active sludge treatment. The bacterium was inoculated and then was grown in an orbital shaker at 250 rpm for 5 days at 35 °C under TSB and peptone water media. After incubation period, culture broths of the bacterial strain was collected and washed. The concentration of the bacteria was adjusted. For the extraction of the bacterial bioflocculant, culture was centrifuged at 6000 rpm for 20 min at 4 °C to remove bacterial cells. Supernatant was decanted and pellet containing bioflocculant was dried at 105 °C to a constant weight according to APHA, 2005. The chemical composition of the extracted bioflocculant from the bacterial sample was then analyzed. Wastewater active sludge sample obtained from aeration tank from one of wastewater treatment plants in Tehran, was first mixed thoroughly. After addition of bioflocculant, improvements in floc density were observed with an increase in bioflocculant. The results of this study strongly suggested that the extracted bioflucculant played a significant role in flocculation of the wastewater sample. The use of wild bacteria and nutrient regulation techniques instead of genetic manipulation opens wide investigation area in the future to improve wastewater treatment processes. Also this may put a new path in front of us to attain and improve the more effective bioflocculant using the purified microbial culture in wastewater treatment.

Keywords: wastewater treatment, P. aeruginosa, sludge treatment

Procedia PDF Downloads 138
1197 Assessment of DNA Degradation Using Comet Assay: A Versatile Technique for Forensic Application

Authors: Ritesh K. Shukla

Abstract:

Degradation of biological samples in terms of macromolecules (DNA, RNA, and protein) are the major challenges in the forensic investigation which misleads the result interpretation. Currently, there are no precise methods available to circumvent this problem. Therefore, at the preliminary level, some methods are urgently needed to solve this issue. In this order, Comet assay is one of the most versatile, rapid and sensitive molecular biology technique to assess the DNA degradation. This technique helps to assess DNA degradation even at very low amount of sample. Moreover, the expedient part of this method does not require any additional process of DNA extraction and isolation during DNA degradation assessment. Samples directly embedded on agarose pre-coated microscopic slide and electrophoresis perform on the same slide after lysis step. After electrophoresis microscopic slide stained by DNA binding dye and observed under fluorescent microscope equipped with Komet software. With the help of this technique extent of DNA degradation can be assessed which can help to screen the sample before DNA fingerprinting, whether it is appropriate for DNA analysis or not. This technique not only helps to assess degradation of DNA but many other challenges in forensic investigation such as time since deposition estimation of biological fluids, repair of genetic material from degraded biological sample and early time since death estimation could also be resolved. With the help of this study, an attempt was made to explore the application of well-known molecular biology technique that is Comet assay in the field of forensic science. This assay will open avenue in the field of forensic research and development.

Keywords: comet assay, DNA degradation, forensic, molecular biology

Procedia PDF Downloads 138
1196 Effects of IMUNO-2865® as Immune Supplement for the Aquaculture Industry

Authors: Ivan Zupan, Tomislav Saric, Suzana Tkalcic

Abstract:

IMUNO-2865® is a commercially available, β–glucan based, natural hemicellulose compound with proven immunostimulative properties in people, domestic and some aquatic animals. During the experimental feeding trial with IMUNO-2865® in juvenile wild-caught chub under laboratory conditions, supplementation resulted in overall higher growth performance for all experimental groups regardless of the concentration of the added compound. The maximum, 5% concentration of the supplement, resulted in highest weight gain and calculated specific growth rate. In sea bream, as economically most important species in the Mediterranean aquaculture, significant increases in numbers of monocytes and heterophils were observed in the group supplemented with 2.5 % of IMUNO-2865® in the feed. An overall increase of erythrocytes was noted by the end of the experiment, although with variable distribution among groups. Blood Ca++ levels, total proteins, and total NH₃ were significantly higher after 60 days of feeding in all treatment groups compared to the control and remained elevated in the treated group following the secession of supplementation. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and serum paraoxonase PON1 (U/L) showed similar trends. All these parameters are playing a significant role in either oxygen supplementation of tissues, or anabolic and catabolic processes that on molecular levels contribute to the overall health and immune-building capacity of cells and tissues. The complete lack of mortality in sea bream and presented increases in cellular, biochemical and oxidative stress parameters in the blood suggest that the IMUNO-2865® represents a safe dietary supplement for in aquaculture, with an overall positive and potentially immunostimulative effect on farmed fish.

Keywords: IMUNO-2865®, β–glucans, Mediterranean aquaculture, fish imunnostimulans

Procedia PDF Downloads 130