Search results for: atomic force spectroscopy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4383

Search results for: atomic force spectroscopy

1413 In-situ Monitoring of Residual Stress Behavior-Temperature Profiles in Transparent Polyimide/Tetrapod Zinc Oxide Whisker Composites

Authors: Ki-Ho Nam, Haksoo Han

Abstract:

Tetrapod zinc oxide whiskers (TZnO-Ws) were successfully synthesized by a thermal oxidation method. A series of transparent polyimide (PI)/TZnO-W composites were successfully synthesized via a solution-blending method. The structural and morphological features of TZnO-Ws and PI/TZnO-W composites were characterized by Fourier transform infrared spectroscopy (FT-IR), wide-angle X-Ray diffraction (WAXD), and field emission scanning electron microscope (FE-SEM). Dynamic stress behaviors were investigated in-situ during thermal imidization of the soft-baked PI/TZnO-W composite precursor and thermally cured composite films using a thin film stress analyzer (TFSA) by wafer bending technique. The PI/TZnO-W composite films exhibited an optical transparency greater than 80% at 550 nm (≤ 0.5 wt% TZnO-W content), a low coefficient of thermal expansion (CTE), and enhanced glass transition temperature. However, the thermal decomposition temperature decreased as the TZnO-W content increased. The water diffusion coefficient and water uptake of the PI/TZNO-W composite films were obtained by best fits to a Fickian diffusion model. The water resistance capacity of PI was greatly enhanced and moisture diffusion in the pure PI was retarded by incorporating the TZnO-W. The PI composite films based on TZNO-W resultantly may have potential applications in optoelectronic manufacturing processes as a flexible transparent substrate.

Keywords: polyimide (PI), tetrapod ZnO whisker (TZnO-W), transparent, dynamic stress behavior, water resistance

Procedia PDF Downloads 509
1412 Mixed Number Algebra and Its Application

Authors: Md. Shah Alam

Abstract:

Mushfiq Ahmad has defined a Mixed Number, which is the sum of a scalar and a Cartesian vector. He has also defined the elementary group operations of Mixed numbers i.e. the norm of Mixed numbers, the product of two Mixed numbers, the identity element and the inverse. It has been observed that Mixed Number is consistent with Pauli matrix algebra and a handy tool to work with Dirac electron theory. Its use as a mathematical method in Physics has been studied. (1) We have applied Mixed number in Quantum Mechanics: Mixed Number version of Displacement operator, Vector differential operator, and Angular momentum operator has been developed. Mixed Number method has also been applied to Klein-Gordon equation. (2) We have applied Mixed number in Electrodynamics: Mixed Number version of Maxwell’s equation, the Electric and Magnetic field quantities and Lorentz Force has been found. (3) An associative transformation of Mixed Number numbers fulfilling Lorentz invariance requirement is developed. (4) We have applied Mixed number algebra as an extension of Complex number. Mixed numbers and the Quaternions have isomorphic correspondence, but they are different in algebraic details. The multiplication of unit Mixed number and the multiplication of unit Quaternions are different. Since Mixed Number has properties similar to those of Pauli matrix algebra, Mixed Number algebra is a more convenient tool to deal with Dirac equation.

Keywords: mixed number, special relativity, quantum mechanics, electrodynamics, pauli matrix

Procedia PDF Downloads 340
1411 Determination of Poisson’s Ratio and Elastic Modulus of Compression Textile Materials

Authors: Chongyang Ye, Rong Liu

Abstract:

Compression textiles such as compression stockings (CSs) have been extensively applied for the prevention and treatment of chronic venous insufficiency of lower extremities. The involvement of multiple mechanical factors such as interface pressure, frictional force, and elastic materials make the interactions between lower limb and CSs to be complex. Determination of Poisson’s ratio and elastic moduli of CS materials are critical for constructing finite element (FE) modeling to numerically simulate a complex interactive system of CS and lower limb. In this study, a mixed approach, including an analytic model based on the orthotropic Hooke’s Law and experimental study (uniaxial tension testing and pure shear testing), has been proposed to determine Young’s modulus, Poisson’s ratio, and shear modulus of CS fabrics. The results indicated a linear relationship existing between the stress and strain properties of the studied CS samples under controlled stretch ratios (< 100%). The newly proposed method and the determined key mechanical properties of elastic orthotropic CS fabrics facilitate FE modeling for analyzing in-depth the effects of compression material design on their resultant biomechanical function in compression therapy.

Keywords: elastic compression stockings, Young’s modulus, Poisson’s ratio, shear modulus, mechanical analysis

Procedia PDF Downloads 102
1410 Lightweight Concrete Fracture Energy Derived by Inverse Analysis

Authors: Minho Kwon, Seonghyeok Lee, Wooyoung Jung

Abstract:

In recent years, with increase of construction of skyscraper structures, the study of concrete materials to improve their weight and performance has been emerging as a key of research area. Typically, the concrete structures has disadvantage of increasing the weight due to its mass in comparison to the strength of the materials. Therefore, in order to improve such problems, the light-weight aggregate concrete and high strength concrete materials have been studied during the past decades. On the other hand, the study of light-weight aggregate concrete materials has lack of data in comparison to the concrete structure using high strength materials, relatively. Consequently, this study presents the performance characteristics of light-weight aggregate concrete materials due to the material properties and strength. Also, this study conducted the experimental tests with respect to normal and lightweight aggregate materials, in order to indentify the tensile crack failure of the concrete structures. As a result, the Crack Mouth Opening Displacement (CMOD) from the experimental tests was constructed and the fracture energy using inverse problem analysis was developed from the force-CMOD relationship in this study, respectively.

Keywords: lightweight aggregate concrete, crack mouth opening displacement, inverse analysis, fracture energy

Procedia PDF Downloads 342
1409 Mediation in Turkish Health Law for Healthcare Disputes

Authors: V. Durmus, M. Uydaci

Abstract:

In order to prevent overburdened courts, rising costs of litigation, and lengthy trial resolutions, the Law on Mediation for Civil Disputes was enacted, which was aimed at defining the procedure and guiding principles for dispute resolutions under Civil Law, in 2012. This “Mediation Code” also applies for civil healthcare disputes in Turkey. Aside from mediation, reconciliation, governed by Articles 253-255 of Criminal Procedure Law, has emerged as an alternative way to resolve criminal medical disputes, but the difference between mediation and conciliation is mostly procedural. This article deals with mediation in Turkish health law and aspect of medical malpractice mediation in Turkey. In addition, this study examines the issue of mediation in health law from both a legal and normative point of view, including codes of mediation which regulate both the structural and professional practice of mediation providers. As a result, although there is not official record about success rate of medical malpractice litigations and malpractice mediation in Turkey, it is widely accepted that the success rate for medical malpractice cases is relatively low compared to other personal injury cases even if it is generally considered that medical malpractice case filings have gradually increased recently. According to the Justice Ministry’s Department of Mediation in Turkey, 719 civil disputes have referred to mediators since 2013 (when the first mediation law came into force) with a 98% success rate.

Keywords: malpractice mediation, medical disputes, reconciliation, health litigation, Turkish health law

Procedia PDF Downloads 295
1408 Islam, Forced Marriages and Pakistani Culture: An Analytical Overview

Authors: Naseem Akhter, Rozina Khattak, Arshad Munir

Abstract:

The Islamic social and family system is very clear concerning will, choice, consent and negation of compulsion and force in human life. Marriage is not only a civil contract but also a religious and spiritual contract between spouse (man and woman), which allows them for each other to live gladly, joyfully and legally in the society. It is an immortal and perpetual association between man and woman, which is filled with sympathetic affection, kindness, compassion and security. Islam gives specific rights to parents and guardians to set up the marriage ceremony and get done it as a respectful family occasion, confer their blessing and advice for a life partner of their children. The rights of parents and guardians are summed up in the term of "Willayah”. Islam does not permit parents, guardians and other relatives to compel their children regarding the marriage of their choice, because the groom and the bride are the real parties of the contract. Therefore, their willingness is of prime importance in order to spend whole life with each other. The Holy Prophet (peace and blessings of Allah be upon him) prohibits forcing a virgin to marriage without her permission, whether this is her father or someone else. The right of free consent to choose a life partner is the basic right for the human which is God (Allah) gifted. Unfortunately, forced marriage is a common practice in Pakistani society that has no link with Islam. This article is being written in the same context.

Keywords: choice, consent, forced marriage, Islam, parents, spouse

Procedia PDF Downloads 300
1407 Gender Role Attitudes and Work-Life Balance among Dual-Earner Couples: A Case Study of Pakistan

Authors: Tipu Sultan

Abstract:

The proposed research intends to explore the gender role attitudes and work-life balance among dual-earner couples in Pakistan. With the increase of female labor force participation in Pakistan, the trend of dual-earner couples has been increased than ever before. This new trend of dual-earner families has significantly affected the personal life of dual-earner couples. Due to major change in household structures, the traditions and the routine activities are in continuous transition. Balancing work and family life is more complex in the patriarchal society of Pakistan because of the social expectations of gender roles. A dichotomous behavioral reflection is being observed in Pakistani society. The one group of people having an egalitarian attitude are supporting the new gender roles of females, whereas the other group of people having a traditional mindset is still in the favor of patriarchy. Therefore, gender roles are re-evaluated, and it would be more interesting to raise questions on the interplay of new gender roles and work-life balance among dual-earners. The semi-structured interview guide will be utilized to explore gender role attitudes, ideal and in-practice gender roles, experiences of work-life imbalances/balances, possible strategies to create a balance between work and family life among dual-earner couples.

Keywords: dual-earner couples, gender role attitudes, Pakistan, work-life balance

Procedia PDF Downloads 130
1406 Studying the Load Sharing and Failure Mechanism of Hybrid Composite Joints Using Experiment and Finite Element Modeling

Authors: Seyyed Mohammad Hasheminia, Heoung Jae Chun, Jong Chan Park, Hong Suk Chang

Abstract:

Composite joints have been getting attention recently due to their high specific mechanical strength to weight ratio that is crucial for structures such as aircrafts and automobiles. In this study on hybrid joints, quasi-static experiments and finite element analysis were performed to investigate the failure mechanism of hybrid composite joint with respect to the joint properties such as the adhesive material, clamping force, and joint geometry. The outcomes demonstrated that the stiffness of the adhesive is the most imperative design parameter. In this investigation, two adhesives with various stiffness values were utilized. Regarding the joints utilizing the adhesive with the lower stiffness modulus, it was observed that the load was exchanged promptly through the adhesive since it was shared more proficiently between the bolt and adhesive. This phenomenon permitted the hybrid joints with low-modulus adhesive to support more prominent loads before failure when contrasted with the joints that utilize the stiffer adhesive. In the next step, the stress share between the bond and bolt as a function of various design parameters was studied using a finite element model in which it was understood that the geometrical parameters such as joint overlap and width have a significant influence on the load sharing between the bolt and the adhesive.

Keywords: composite joints, composite materials, hybrid joints, single-lap joint

Procedia PDF Downloads 388
1405 Soil Moisture Control System: A Product Development Approach

Authors: Swapneel U. Naphade, Dushyant A. Patil, Satyabodh M. Kulkarni

Abstract:

In this work, we propose the concept and geometrical design of a soil moisture control system (SMCS) module by following the product development approach to develop an inexpensive, easy to use and quick to install product targeted towards agriculture practitioners. The module delivers water to the agricultural land efficiently by sensing the soil moisture and activating the delivery valve. We start with identifying the general needs of the potential customer. Then, based on customer needs we establish product specifications and identify important measuring quantities to evaluate our product. Keeping in mind the specifications, we develop various conceptual solutions of the product and select the best solution through concept screening and selection matrices. Then, we develop the product architecture by integrating the systems into the final product. In the end, the geometric design is done using human factors engineering concepts like heuristic analysis, task analysis, and human error reduction analysis. The result of human factors analysis reveals the remedies which should be applied while designing the geometry and software components of the product. We find that to design the best grip in terms of comfort and applied force, for a power-type grip, a grip-diameter of 35 mm is the most ideal.

Keywords: agriculture, human factors, product design, soil moisture control

Procedia PDF Downloads 159
1404 Improvement of Frictional Coefficient of Modified Shoe Soles onto Icy and Snowy Road by Tilting of Added Glass Fibers into Rubber

Authors: Wakayama Shunya, Okubo Kazuya, Fujii Toru, Sakata Daisuke, Kado Noriyuki, Furutachi Hiroshi

Abstract:

The purpose of this study is to propose an effective method to improve frictional coefficient of modified shoe rubber soles with added glass fibers onto the icy and snowy road surfaces in order to prevent slip-and-fall accidents by the users. Added fibers in the rubber were uniformly tilted to the perpendicular direction of the frictional surface, where tilting angle was -60, -30, +30, +60, 90 degrees and 0 for usual specimen, respectively. It was found that horizontal arraignment was effective to improve the frictional coefficient when glass fibers were embedded in the shoe rubber, while the standing in normal direction of the embedded glass fibers on the shoe surface was also effective to do that once after they were exposed from the shoe rubber with its abrasion. These improvements were explained by the increase of stiffness against the shear deformation of the rubber at the critical frictional state and the enlargement of resistance force for extracting exposed fibers from the ice and snow, respectively. Current study suggested that effective arraignments in the tilting angle of the added fibers should be applied in designing rubber shoe soles to keep the safeties for uses in regions of cold climates.

Keywords: frictional coefficient, shoe soles, icy and snowy road, glass fibers, tilting angle

Procedia PDF Downloads 482
1403 Predictive Functional Control with Disturbance Observer for Tendon-Driven Balloon Actuator

Authors: Jun-ya Nagase, Toshiyuki Satoh, Norihiko Saga, Koichi Suzumori

Abstract:

In recent years, Japanese society has been aging, engendering a labour shortage of young workers. Robots are therefore expected to perform tasks such as rehabilitation, nursing elderly people, and day-to-day work support for elderly people. The pneumatic balloon actuator is a rubber artificial muscle developed for use in a robot hand in such environments. This actuator has a long stroke, and a high power-to-weight ratio compared with the present pneumatic artificial muscle. Moreover, the dynamic characteristics of this actuator resemble those of human muscle. This study evaluated characteristics of force control of balloon actuator using a predictive functional control (PFC) system with disturbance observer. The predictive functional control is a model-based predictive control (MPC) scheme that predicts the future outputs of the actual plants over the prediction horizon and computes the control effort over the control horizon at every sampling instance. For this study, a 1-link finger system using a pneumatic balloon actuator is developed. Then experiments of PFC control with disturbance observer are performed. These experiments demonstrate the feasibility of its control of a pneumatic balloon actuator for a robot hand.

Keywords: disturbance observer, pneumatic balloon, predictive functional control, rubber artificial muscle

Procedia PDF Downloads 432
1402 Implementing Service Innovation in Public Transport Sector: Drivers and Challenges

Authors: Chaoren Lu

Abstract:

Public policy is playing as one driving force that influencing service innovation implementation in public sector. However, public policy implications cannot be automatically derived from the analyses of innovation issues, and there lacks of researches about the influences of public policy onto innovation. Moreover, innovation in service system is hard to predictable and whether policy encourages or hidden innovation is still lack of study. Especially, by given the context that multiple actors are active involving within the service delivery process in public transport sector, the complex driving forces and challenges are emerged towards the service operation. This study is aim to analysis the service innovation practices within service operating organizations to understand the drivers and challenges of service operation based on policy requirements, and where the innovation idea generating from. The case studies of Changzhou Transit Group and Nanjing Jiangnan Public Transit Group will be launched. This paper reveals the ambidexterity between top-down and bottom-up demands within the public transport service operating organizations contribute to the innovation ideas. Meanwhile, it contributes to the understanding of fundamental elements of service innovation is the new relationship creation and new way of sharing knowledge. The policy contributes to the trigger of creation of such relationship. The research question is: what are the sources of service innovation practices in local public transport system in China in in facing the policy implementation?

Keywords: public value, service innovation, public transport service, China

Procedia PDF Downloads 302
1401 Embedment Design Concept of Signature Tower in Chennai

Authors: M. Gobinath, S. Balaji

Abstract:

Assumptions in model inputs: Grade of concrete=40 N/mm2 (for slab), Grade of concrete=40 N/mm2 (for shear wall), Grade of Structural steel (plate girder)=350 N/mm2 (yield strength), Ultimate strength of structural steel=490 N/mm2, Grade of rebar=500 N/mm2 (yield strength), Applied Load=1716 kN (un-factored). Following assumptions are made for the mathematical modelling of RCC with steel embedment: (1) The bond between the structural steel and concrete is neglected. (2) The stiffener is provided with shear studs to transfer the shear force. Hence nodal connectivity is established between solid nodes (concrete) and shell elements (stiffener) at those locations. (3) As the end reinforcements transfer either tension/compression, it is modeled as line element and connected to solid nodes. (4) In order to capture the bearing of bottom flange on to the concrete, the line element of plan size of solid equal to the cross section of line elements is connected between solid and shell elements below for bottom flange and above for top flange. (5) As the concrete cannot resist tension at the interface (i.e., between structural steel and RCC), the tensile stiffness is assigned as zero and only compressive stiffness is enabled to take. Hence, non-linear static analysis option is invoked.

Keywords: structure, construction, signature tower, embedment design concept

Procedia PDF Downloads 284
1400 Obtaining Bioactive Mg-hydroxyapatite Composite Ceramics From Phosphate Rock For Medical Applications

Authors: Sara Mercedes Barroso Pinzón, Antonio Javier Sanchéz Herencia, Begoña Ferrari, Álvaro Jesús Castro

Abstract:

The current need for durable implants and bone substitutes characterised by biocompatibility, bioactivity and mechanical properties, without immunological rejection, is a major challenge for scientists. Hydroxyapatite (HAp) has been considered for decades as an ideal biomaterial for bone regeneration due to its chemical and crystallographic similarity to the mineral structure bioapatites. However, the lack of trace elements in the hydroxyapatite structure gives it very low mechanical and biological properties. In this sense, the objective of the research is to address the synthesis of hydroxyapatite with Mg from phosphate rock from sedimentary deposits in the central-eastern region of Colombia, taking advantage of the release of the species contained as natural precursors of Ca, P and Mg. The minerals present were studied, fluorapatite as the mineral of interest associated with mineralogical species of magnesium carbonates and quartz. The chemical and mineralogical composition was determined by X-ray fluorescence (XRF) and X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX); as well as the evaluation of the surface physicochemical properties of zeta potential (PZC), with the aim of studying the surface behaviour of the microconstituents present in the phosphate rock and to elucidate the synergistic mechanism between the minerals and establish the optimum conditions for the wet concentration process. From the products obtained and characterised by XRD, XRF, SEM, FTIR, RAMAN, HAp-Mg biocomposite scaffolds are fabricated and the influence of Mg on the morphometric parameters, mechanical and biological properties of the designed materials is evaluated.

Keywords: phosphate rock, hydroxyapatite, magnesium, biomaterials

Procedia PDF Downloads 31
1399 Numerical Evaluation of Shear Strength for Cold-Formed Steel Shear Wall Panel

Authors: Rouaz Idriss, Bourahla Nour-Eddine, Kahlouche Farah, Rafa Sid Ali

Abstract:

The stability of structures made of light-gauge steel depends highly on the contribution of Shear Wall Panel (SWP) systems under horizontal forces due to wind or earthquake loads. Steel plate sheathing is often used with these panels made of cold formed steel (CFS) to improve its shear strength. In order to predict the shear strength resistance, two methods are presented in this paper. In the first method, the steel plate sheathing is modeled with plats strip taking into account only the tension and compression force due to the horizontal load, where both track and stud are modeled according to the geometrical and mechanical characteristics of the specimen used in the experiments. The theoretical background and empirical formulations of this method are presented in this paper. However, the second method is based on a micro modeling of the cold formed steel Shear Wall Panel “CFS-SWP” using Abaqus software. A nonlinear analysis was carried out with an in-plan monotonic load. Finally, the comparison between these two methods shows that the micro modeling with Abaqus gives better prediction of shear resistance of SWP than strips method. However, the latter is easier and less time consuming than the micro modeling method.

Keywords: cold formed steel 'CFS', shear wall panel, strip method, finite elements

Procedia PDF Downloads 289
1398 Waste-Based Surface Modification to Enhance Corrosion Resistance of Aluminium Bronze Alloy

Authors: Wilson Handoko, Farshid Pahlevani, Isha Singla, Himanish Kumar, Veena Sahajwalla

Abstract:

Aluminium bronze alloys are well known for their superior abrasion, tensile strength and non-magnetic properties, due to the co-presence of iron (Fe) and aluminium (Al) as alloying elements and have been commonly used in many industrial applications. However, continuous exposure to the marine environment will accelerate the risk of a tendency to Al bronze alloys parts failures. Although a higher level of corrosion resistance properties can be achieved by modifying its elemental composition, it will come at a price through the complex manufacturing process and increases the risk of reducing the ductility of Al bronze alloy. In this research, the use of ironmaking slag and waste plastic as the input source for surface modification of Al bronze alloy was implemented. Microstructural analysis conducted using polarised light microscopy and scanning electron microscopy (SEM) that is equipped with energy dispersive spectroscopy (EDS). An electrochemical corrosion test was carried out through Tafel polarisation method and calculation of protection efficiency against the base-material was determined. Results have indicated that uniform modified surface which is as the result of selective diffusion process, has enhanced corrosion resistance properties up to 12.67%. This approach has opened a new opportunity to access various industrial utilisations in commercial scale through minimising the dependency on natural resources by transforming waste sources into the protective coating in environmentally friendly and cost-effective ways.

Keywords: aluminium bronze, waste-based surface modification, tafel polarisation, corrosion resistance

Procedia PDF Downloads 218
1397 Crack Propagation Effect at the Interface of a Composite Beam

Authors: Mezidi Amar

Abstract:

In this research work, crack propagation at the interface of a composite beam is considered. The behavior of composite beams (CB) depends upon a law based on relationship between tangential or normal efforts with inelastic propagation. Throughout this study, composite beams are classified like composite beams with partial connection or sandwich beams of three layers. These structural systems are controlled by the same nature of differential equations regarding their behavior in the plane, as well as out-of-plane. Multi-layer elements with partial connection are typically met in the field of timber construction where the elements are assembled by joining. The formalism of the behavior in the plane and out-of-plane of these composite beams is obtained and their results concerning the engineering aspect or simple of interpretation are proposed for the case of composite beams made up of rectangular section and simply supported section. An apparent analytical peculiarity or paradox in the bending behavior of elastic–composite beams with interlayer slip, sandwich beam or other similar problems subjected to boundary moments exists. For a fully composite beam subjected to end moments, the partial composite model will render a non-vanishing uniform value for the normal force in the individual subelement. Obtained results are similar to those for the case of vibrations in the plane as well for the composite beams as for the sandwich beams where eigen-frequencies increase with related rigidity.

Keywords: composite beam, behaviour, interface, deflection, propagation

Procedia PDF Downloads 282
1396 Adsorption and Selective Determination Ametryne in Food Sample Using of Magnetically Separable Molecular Imprinted Polymers

Authors: Sajjad Hussain, Sabir Khan, Maria Del Pilar Taboada Sotomayor

Abstract:

This work demonstrates the synthesis of magnetic molecularly imprinted polymers (MMIPs) for determination of a selected pesticide (ametryne) using high performance liquid chromatography (HPLC). Computational simulation can assist the choice of the most suitable monomer for the synthesis of polymers. The (MMIPs) were polymerized at the surface of Fe3O4@SiO2 magnetic nanoparticles (MNPs) using 2-vinylpyradine as functional monomer, ethylene-glycol-dimethacrylate (EGDMA) is a cross-linking agent and 2,2-Azobisisobutyronitrile (AIBN) used as radical initiator. Magnetic non-molecularly imprinted polymer (MNIPs) was also prepared under the same conditions without analyte. The MMIPs were characterized by scanning electron microscopy (SEM), Brunauer, Emmett and Teller (BET) and Fourier transform infrared spectroscopy (FTIR). Pseudo first order and pseudo second order model were applied to study kinetics of adsorption and it was found that adsorption process followed the pseudo first order kinetic model. Adsorption equilibrium data was fitted to Freundlich and Langmuir isotherms and the sorption equilibrium process was well described by Langmuir isotherm mode. The selectivity coefficients (α) of MMIPs for ametryne with respect to atrazine, ciprofloxacin and folic acid were 4.28, 12.32, and 14.53 respectively. The spiked recoveries ranged between 91.33 and 106.80% were obtained. The results showed high affinity and selectivity of MMIPs for pesticide ametryne in the food samples.

Keywords: molecularly imprinted polymer, pesticides, magnetic nanoparticles, adsorption

Procedia PDF Downloads 473
1395 Particle Size Dependent Enhancement of Compressive Strength and Carbonation Efficiency in Steel Slag Cementitious Composites

Authors: Jason Ting Jing Cheng, Lee Foo Wei, Yew Ming Kun, Chin Ren Jie, Yip Chun Chieh

Abstract:

The utilization of industrial by-products, such as steel slag in cementitious materials, not only mitigates environmental impact but also enhances material properties. This study investigates the dual influence of steel slag particle size on the compressive strength and carbonation efficiency of cementitious composites. Through a systematic experimental approach, steel slag particles were incorporated into cement at varying sizes, and the resulting composites were subjected to mechanical and carbonation tests. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) are conducted in this paper. The findings reveal a positive correlation between increased particle size and compressive strength, attributed to the improved interfacial transition zone and packing density. Conversely, smaller particle sizes exhibited enhanced carbonation efficiency, likely due to the increased surface area facilitating the carbonation reaction. The presence of higher silica and calcium content in finer particles was confirmed by EDX, which contributed to the accelerated carbonation process. This study underscores the importance of particle size optimization in designing sustainable cementitious materials with balanced mechanical performance and carbon sequestration potential. The insights gained from the advanced analytical techniques offer a comprehensive understanding of the mechanisms at play, paving the way for the strategic use of steel slag in eco-friendly construction practices.

Keywords: steel slag, carbonation efficiency, particle size enhancement, compressive strength

Procedia PDF Downloads 37
1394 Development and Evaluation of Naringenin Nanosuspension to Improve Antioxidant Potential

Authors: Md. Shadab, Mariyam N. Nashid, Venkata Srikanth Meka, Thiagarajan Madheswaran

Abstract:

Naringenin (NAR), is a naturally occurring plant flavonoid, found predominantly in citrus fruits, that possesses a wide range of pharmacological properties including anti-oxidant, anti-inflammatory behaviour, cholesterol-lowering and anticarcinogenic activities. However, despite the therapeutic potential of naringenin shown in a number of animal models, its clinical development has been hindered due to its low aqueous solubility, slow dissolution rate and inefficient transport across biological membranes resulting in low bioavailability. Naringenin nanosuspension were produced using stabilizers Tween® 80 by high pressure homogenization techniques. The nanosuspensions were characterized with regard to size (photon correlation spectroscopy (PCS), size distribution, charge (zeta potential measurements), morphology, short term physical stability, dissolution profile and antioxidant potential. A nanocrystal PCS size of about 500 nm was obtained after 20 homogenization cycles at 1500 bar. The short-term stability was assessed by storage of the nanosuspensions at 4 ◦C, room temperature and 40 ◦C. Result showed that naringenin nanosuspension was physically unstable due to large fluctuations in the particle size and zeta potential after 30 days. Naringenin nanosuspension demonstrated higher drug dissolution (97.90%) compared to naringenin powder (62.76%) after 120 minutes of testing. Naringenin nanosuspension showed increased antioxidant activity compared to naringenin powder with a percentage DPPH radical scavenging activity of 49.17% and 31.45% respectively at the lowest DPPH concentration.

Keywords: bioavailability, naringenin, nanosuspension, oral delivery

Procedia PDF Downloads 312
1393 Effect of Friction Pressure on the Properties of Friction Welded Aluminum–Ceramic Dissimilar Joints

Authors: Fares Khalfallah, Zakaria Boumerzoug, Selvarajan Rajakumar, Elhadj Raouache

Abstract:

The ceramic-aluminum bond is strongly present in industrial tools, due to the need to combine the properties of metals, such as ductility, thermal and electrical conductivity, with ceramic properties like high hardness, corrosion and wear resistance. In recent years, some joining techniques have been developed to achieve a good bonding between these materials such as brazing, diffusion bonding, ultrasonic joining and friction welding. In this work, AA1100 aluminum alloy rods were welded with Alumina 99.9 wt% ceramic rods, by friction welding. The effect of friction pressure on mechanical and structural properties of welded joints was studied. The welding was performed by direct friction welding machine. The welding samples were rotated at a constant rotational speed of 900 rpm, friction time of 4 sec, forging strength of 18 MPa, and forging time of 3 sec. Three different friction pressures were applied to 20, 34 and 45 MPa. The three-point bending test and Vickers microhardness measurements were used to evaluate the strength of the joints and investigate the mechanical properties of the welding area. The microstructure of joints was examined by optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results show that bending strength increased, and then decreased after reaching a maximum value, with increasing friction pressure. The SEM observation shows that the increase in friction pressure led to the appearance of cracks in the microstructure of the interface area, which is decreasing the bending strength of joints.

Keywords: welding of ceramic to aluminum, friction welding, alumina, AA1100 aluminum alloy

Procedia PDF Downloads 110
1392 The Effect of Damping Treatment for Noise Control on Offshore Platforms Using Statistical Energy Analysis

Authors: Ji Xi, Cheng Song Chin, Ehsan Mesbahi

Abstract:

Structure-borne noise is an important aspect of offshore platform sound field. It can be generated either directly by vibrating machineries induced mechanical force, indirectly by the excitation of structure or excitation by incident airborne noise. Therefore, limiting of the transmission of vibration energy throughout the offshore platform is the key to control the structure-borne noise. This is usually done by introducing damping treatment to the steel structures. Two types of damping treatment using on-board are presented. By conducting a statistical energy analysis (SEA) simulation on a jack-up rig, the noise level in the source room, the neighboring rooms, and remote living quarter cabins are compared before and after the damping treatments been applied. The results demonstrated that, in the source neighboring room and living quarter area, there is a significant noise reduction with the damping treatment applied, whereas in the source room where air-borne sound predominates that of structure-borne sound, the impact is not obvious. The subsequent optimization design of damping treatment in the offshore platform can be made which enable acoustic professionals to implement noise control during the design stage for offshore crews’ hearing protection and habitant comfortability.

Keywords: statistical energy analysis, damping treatment, noise control, offshore platform

Procedia PDF Downloads 539
1391 Combination Rule for Homonuclear Dipole Dispersion Coefficients

Authors: Giorgio Visentin, Inna S. Kalinina, Alexei A. Buchachenko

Abstract:

In the ambit of intermolecular interactions, a combination rule is defined as a relation linking a potential parameter for the interaction of two unlike species with the same parameters for interaction pairs of like species. Some of their most exemplificative applications cover the construction of molecular dynamics force fields and dispersion-corrected density functionals. Here, an extended combination rule is proposed, relating the dipole-dipole dispersion coefficients for the interaction of like target species to the same coefficients for the interaction of the target and a set of partner species. The rule can be devised in two different ways, either by uniform discretization of the Casimir-Polder integral on a Gauss-Legendre quadrature or by relating the dynamic polarizabilities of the target and the partner species. Both methods return the same system of linear equations, which requires the knowledge of the dispersion coefficients for interaction between the partner species to be solved. The test examples show a high accuracy for dispersion coefficients (better than 1% in the pristine test for the interaction of Yb atom with rare gases and alkaline-earth metal atoms). In contrast, the rule does not ensure correct monotonic behavior of the dynamic polarizability of the target species. Acknowledgment: The work is supported by Russian Science Foundation grant # 17-13-01466.

Keywords: combination rule, dipole-dipole dispersion coefficient, Casimir-Polder integral, Gauss-Legendre quadrature

Procedia PDF Downloads 158
1390 Development of Elementary Literacy in the Czech Republic

Authors: Iva Košek Bartošová

Abstract:

There is great attention being paid in the field of development of first reading, thus early literacy skills in the Czech Republic. Yet inconclusive results of PISA and PIRLS force us to think over the teacher´s work, his/her roles in the education process and methods and forms used in lessons. There is also a significant importance to monitor the family environment and the pupil, themselves. The aim of the publishing output is to focus on one side dealing with methods of practicing reading technique and their results in the process of comprehension. In the first part of the contribution there are the goals of development of reading literacy and the methods used in reading practice in some EU countries and a follow-up comparison of research implemented by the help of modern technology of an eye tracker device in the year 2015 and a research conducted at the Institute of Education and Psychological Counselling of the Czech Republic in the year 2011/12. These are the results of a diagnostic test of reading in first classes of primary schools, taught by the genetic method and analytic-synthetic method. The results show that in the first stage of practice there are no statistically significant differences between any researched subjects taught by different methods of reading practice (with the use of several diagnostic texts focused on reading technique and its comprehension). Different results are shown at the end of Grade One and during Grade Two of primary school.

Keywords: elementary literacy, eye tracker device, diagnostic reading tests, reading teaching method

Procedia PDF Downloads 171
1389 Novel Poly Schiff Bases as Corrosion Inhibitors for Carbon Steel in Sour Petroleum Conditions

Authors: Shimaa A. Higazy, Olfat E. El-Azabawy, Ahmed M. Al-Sabagh, Notaila M. Nasser, Eman A. Khamis

Abstract:

In this work, two novel Schiff base polymers (PSB1 and PSB₂) with extra-high protective barrier features were facilely prepared via Polycondensation reactions. They were applied for the first time as effective corrosion inhibitors in the sour corrosive media of petroleum environments containing hydrogen sulfide (H₂S) gas. For studying the polymers' inhibitive action on the carbon steel, numerous corrosion testing methods including potentiodynamic polarization (PDP), open circuit potential, and electrochemical impedance spectroscopy (EIS) have been employed at various temperatures (298-328 K) in the oil wells formation water with H₂S concentrations of 100, 400, and 700 ppm as aggressive media. The activation energy (Ea) and other thermodynamic parameters were computed to describe the mechanism of adsorption. The corrosion morphological traits and steel samples' surfaces composition were analyzed by field emission scanning electron microscope and energy dispersive X-ray analysis. The PSB2 inhibited sour corrosion more effectively than PSB1 when subjected to electrochemical testing. The 100 ppm concentration of PSB2 exhibited 82.18 % and 81.14 % inhibition efficiencies at 298 K in PDP and EIS measurements, respectively. While at 328 K, the inhibition efficiencies were 61.85 % and 67.4 % at the same dosage and measurements. These poly Schiff bases exhibited fascinating performance as corrosion inhibitors in sour environment. They provide a great corrosion inhibition platform for the sustainable future environment.

Keywords: schiff base polymers, corrosion inhibitors, sour corrosive media, potentiodynamic polarization, H₂S concentrations

Procedia PDF Downloads 76
1388 Fluorescence Effect of Carbon Dots Modified with Silver Nanoparticles

Authors: Anna Piasek, Anna Szymkiewicz, Gabriela Wiktor, Jolanta Pulit-Prociak, Marcin Banach

Abstract:

Carbon dots (CDs) have great potential for application in many fields of science. They are characterized by fluorescent properties that can be manipulated. The nanomaterial has many advantages in addition to its unique properties. CDs may be obtained easily, and they undergo surface functionalization in a simple way. In addition, there is a wide range of raw materials that can be used for their synthesis. An interesting possibility is the use of numerous waste materials of natural origin. In the research presented here, the synthesis of CDs was carried out according to the principles of Green chemistry. Beet molasses was used as a natural raw material. It has a high sugar content. This makes it an excellent high-carbon precursor for obtaining CDs. To increase the fluorescence effect, we modified the surface of CDs with silver (Ag-CDs) nanoparticles. The process of obtaining CQD was based on the hydrothermal method by applying microwave radiation. Silver nanoparticles were formed via the chemical reduction method. The synthesis plans were performed on the Design of the Experimental method (DoE). Variable process parameters such as concentration of beet molasses, temperature and concentration of nanosilver were used in these syntheses. They affected the obtained properties and particle parameters. The Ag-CDs were analyzed by UV-vis spectroscopy. The fluorescence properties and selection of the appropriate excitation light wavelength were performed by spectrofluorimetry. Particle sizes were checked using the DLS method. The influence of the input parameters on the obtained results was also studied.

Keywords: fluorescence, modification, nanosilver, molasses, Green chemistry, carbon dots

Procedia PDF Downloads 70
1387 Immediate Effect of Augmented Feedback on Jumping Performance of the Athletes with Dynamic Knee Valgus

Authors: Mohamadreza Hatefi, Malihe Hadadnezhad

Abstract:

It is well established that jump-landing-related biomechanical deficiencies, such as dynamic knee valgus (DKV), can be improved by using various forms of feedback; However, the effectiveness of these interventions synchronously on athletes' jumping performance remains unknown. Twenty-one recreational athletes with DKV performed countermovement jump (CMJ) and drop vertical jump (DVJ) tasks before and after feedback intervention while the kinematic, force plate and electromyography data of the lower extremity were synchronously captured. The athletes’ jumping performance was calculated by using the reactive strength index-modified (RSIₘₒ𝒹). The athletes at the post-intervention exhibited significantly less hip adduction and more tibial internal rotation during both CMJ and DVJ tasks and maximum knee flexion just during DVJ task. Moreover, athletes exhibited increased time to take-off and consequently decreased RSIₘₒ𝒹 during DVJ task, but no difference was observed in CMJ task. Feedback immediately improved DKV without disturbing the athletes’ jumping height during both tasks, But athletes exhibited increased time to take-off and consequently decreased RSIₘₒ𝒹 only during DVJ task, which suggests that the results may differ according to the nature of jumping task. Nevertheless, the effectiveness of landing-related biomechanical deficiencies improvement on athletes' jumping performance must be investigated in the long-term as a new movement pattern.

Keywords: reactive strength index, feedback, biomechanics, dynamic knee valgus

Procedia PDF Downloads 86
1386 Utilization of Sludge in the Manufacturing of Fired Clay Bricks

Authors: Anjali G. Pillai, S. Chadrakaran

Abstract:

The extensive amount of sludge generated throughout the world, as a part of water treatment works, have caused various social and economic issues, such as a demand on landfill spaces, increase in environmental pollution and raising the waste management cost. With growing social awareness about toxic incinerator emissions and the increasing concern over the disposal of sludge on the agricultural land, the recovery of sewage sludge as a building and construction raw material can be considered as an innovative approach to tackle the sludge disposal problem. The proposed work aims at studying the recycling ability of the sludge, generated from the water treatment process, by incorporating it into the fired clay brick units. The work involves initial study of the geotechnical characteristics of the brick-clay and the sludge. Chemical compatibility of both the materials will be analyzed by X-ray fluorescence technique. The variation in the strength aspects with varying proportions of sludge i.e. 10%, 20%, 30% and 40% in the sludge-clay mix will also be determined by the proctor density test. Based on the optimum moisture content, the sludge-clay bricks will be manufactured in a brick manufacturing plant and the modified brick units will be tested to determine the variation in compressive strength, bulk density, firing shrinkage, shrinkage loss and initial water absorption rate with respect to the conventional clay bricks. The results will be compared with the specifications given in Indian Standards to arrive at the potential use of the new bricks. The durability aspect will be studied by conducting the leachate analysis test using atomic adsorption spectrometry. The lightweight characteristics of the sludge modified bricks will be ascertained with the scanning electron microscope technique which will be indicative of the variation in pore structure with the increase in sludge content within the bricks. The work will determine the suitable proportion of the sludge – clay mix in the brick which can then be effectively implemented. The feasibility aspect of the work will be determined for commercial production of the units. The work involves providing a strategy for conversion of waste to resource. Moreover, it provides an alternative solution to the problem of growing scarcity of brick-clay for the manufacturing of fired clay bricks.

Keywords: eco-bricks, green construction material, sludge amended bricks, sludge disposal, waste management

Procedia PDF Downloads 289
1385 Synthesis of Zeolites from Bauxite and Kaolin: Effect of Synthesis Parameters on Competing Phases

Authors: Bright Kwakye-Awuah, Elizabeth Von-Kiti, Isaac Nkrumah, Baah Sefa-Ntiri, Craig D. Williams

Abstract:

Bauxite and kaolin from Ghana Bauxite Company mine site were used to synthesize zeolites. Bauxite served as the alumina source and kaolin the silica source. Synthesis variations include variation of aging time at constant crystallization time and variation of crystallization times at constant aging time. Characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDX) and Fourier transform infrared spectroscopy (FTIR) were employed in the characterization of the raw samples as well as the synthesized samples. The results obtained showed that the transformations that occurred and the phase of the resulting products were coordinated by the aging time, crystallization time, alkaline concentration and Si/Al ratio of the system. Zeolites A, X, Y, analcime, Sodalite, and ZK-14 were some of the phases achieved. Zeolite LTA was achieved with short crystallization times of 3, 5, 18 and 24 hours and a maximum aging of 24 hours. Zeolite LSX was synthesized with 24 hr aging followed with 24 hr hydrothermal treatment whilst zeolite Y crystallized after 48 hr of aging and 24 hr crystallization. Prolonged crystallization time produced a mixed phased product. Prolonged aging times, on the other hand, did not yield any zeolite as the sample was amorphous. Increasing the alkaline content of the reaction mixture above 5M introduced sodalite phase in the final product. The properties of the final products were comparable to zeolites synthesized from pure chemical reagents.

Keywords: bauxite, kaolin, aging, crystallization, zeolites

Procedia PDF Downloads 202
1384 Poly(Amidoamine) Dendrimer-Cisplatin Nanocomplex Mixed with Multifunctional Ovalbumin Coated Iron Oxide Nanoparticles for Immuno-Chemotherapeutics with M1 Polarization of Macrophages

Authors: Tefera Worku Mekonnen, Hiseh Chih Tsai

Abstract:

Enhancement of drug efficacy is essential in cancer treatment. The immune stimulator ovalbumin (Ova)-coated citric acid (AC-)-stabilized iron oxide nanoparticles (AC-IO-Ova NPs) and enhanced permeability and retention (EPR) based tumor targeted 4.5 (4.5G) poly(amidoamine) dendrimer-cisplatin nanocomplex (4.5GDP-Cis-pt NC) were used for enhanced anticancer efficiency. The formations of 4.5GDP-Cis-pt NC, AC-IO, and AC-IO-Ova NPs have been examined by FTIR, X-ray diffraction, Raman, and X-ray photoelectron spectroscopy. The conjugation of cisplatin (Cis-pt) with 4.5GDP was confirmed using carbon NMR. The tumor-specific 4.5GDP-Cis-pt NC provided ~45% and 28% cumulative cisplatin release in 72 h at pH 6.5 and 7.4, respectively. A significant immune response with high TNF-α and IL-6 cytokine secretion was confirmed when the co-incubation of AC-IO-Ova with RAW 264.7 or HaCaT cells. AC-IO-Ova NP was biocompatible in different cell lines, even at a high concentration (200 µg mL−1). In contrast, AC-IO-Ova NPs mixed with 4.5GDP-Cis-pt NC (Cis-pt at 15 µg mL−1) significantly increased the cytotoxicity against the cancer cells, which is dose-dependent on the concentration of AC-IO-Ova NPs. The increased anticancer effects may be attributed to the generation of reactive oxygen species (ROS). Moreover, the efficiency of anticancer cells may be further assisted by induction of an innate immune response via M1 macrophage polarization due to the presence of AC-IO-Ova NPs. We provide a better synergestic chemoimmunotherapeutic strategy to enhance the efficiency of anticancer of cisplatin via chemotherapeutic agent 4.5GDP-Cis-pt NC and induction of proinflammatory cytokines to stimulate innate immunity through AC-IO-Ova NPs against tumors.

Keywords: cisplatin-release, iron oxide, ovalbumin, poly(amidoamine) dendrimer

Procedia PDF Downloads 116