Search results for: plant disease classification
8769 3D Receiver Operator Characteristic Histogram
Authors: Xiaoli Zhang, Xiongfei Li, Yuncong Feng
Abstract:
ROC curves, as a widely used evaluating tool in machine learning field, are the tradeoff of true positive rate and negative rate. However, they are blamed for ignoring some vital information in the evaluation process, such as the amount of information about the target that each instance carries, predicted score given by each classification model to each instance. Hence, in this paper, a new classification performance method is proposed by extending the Receiver Operator Characteristic (ROC) curves to 3D space, which is denoted as 3D ROC Histogram. In the histogram, theKeywords: classification, performance evaluation, receiver operating characteristic histogram, hardness prediction
Procedia PDF Downloads 3158768 Combined Odd Pair Autoregressive Coefficients for Epileptic EEG Signals Classification by Radial Basis Function Neural Network
Authors: Boukari Nassim
Abstract:
This paper describes the use of odd pair autoregressive coefficients (Yule _Walker and Burg) for the feature extraction of electroencephalogram (EEG) signals. In the classification: the radial basis function neural network neural network (RBFNN) is employed. The RBFNN is described by his architecture and his characteristics: as the RBF is defined by the spread which is modified for improving the results of the classification. Five types of EEG signals are defined for this work: Set A, Set B for normal signals, Set C, Set D for interictal signals, set E for ictal signal (we can found that in Bonn university). In outputs, two classes are given (AC, AD, AE, BC, BD, BE, CE, DE), the best accuracy is calculated at 99% for the combined odd pair autoregressive coefficients. Our method is very effective for the diagnosis of epileptic EEG signals.Keywords: epilepsy, EEG signals classification, combined odd pair autoregressive coefficients, radial basis function neural network
Procedia PDF Downloads 3468767 Use of Segmentation and Color Adjustment for Skin Tone Classification in Dermatological Images
Authors: Fernando Duarte
Abstract:
The work aims to evaluate the use of classical image processing methodologies towards skin tone classification in dermatological images. The skin tone is an important attribute when considering several factor for skin cancer diagnosis. Currently, there is a lack of clear methodologies to classify the skin tone based only on the dermatological image. In this work, a recent released dataset with the label for skin tone was used as reference for the evaluation of classical methodologies for segmentation and adjustment of color space for classification of skin tone in dermatological images. It was noticed that even though the classical methodologies can work fine for segmentation and color adjustment, classifying the skin tone without proper control of the aquisition of the sample images ended being very unreliable.Keywords: segmentation, classification, color space, skin tone, Fitzpatrick
Procedia PDF Downloads 378766 Integrated Process Modelling of a Thermophilic Biogas Plant
Authors: Obiora E. Anisiji, Jeremiah L. Chukwuneke, Chinonso H. Achebe, Paul C. Okolie
Abstract:
This work developed a mathematical model of a biogas plant from a mechanistic point of view, for urban area clean energy requirement. It aimed at integrating thermodynamics; which deals with the direction in which a process occurs and Biochemical kinetics; which gives the understanding of the rates of biochemical reaction. The mathematical formulation of the proposed gas plant follows the fundamental principles of thermodynamics, and further analysis were accomplished to develop an algorithm for evaluating the plant performance preferably in terms of daily production capacity. In addition, the capacity of the plant is equally estimated for a given cycle of operation and presented in time histories. A nominal 1500m3 biogas plant was studied characteristically and its performance efficiency evaluated. It was observed that the rate of biogas production is essentially a function of enthalpy ratio, the reactor temperature, pH, substrate concentration, rate of degradation of the biomass, and the accumulation of matter in the system due to bacteria growth. The results of this study conform to a very large extent with reported empirical data of some existing plant and further model validations were conducted in line with classical records found in literature.Keywords: anaerobic digestion, biogas plant, biogas production, bio-reactor, energy, fermentation, rate of production, temperature, therm
Procedia PDF Downloads 4378765 Emerging Policy Landscape of Rare Disease Registries in India: An Analysis in Evolutionary Policy Perspective
Authors: Yadav Shyamjeet Maniram
Abstract:
Despite reports of more than seventy million population of India affected by rare diseases, it rarely figured on the agenda of the Indian scientist and policymakers. Hitherto ignored, a fresh initiative is being attempted to establish the first national registry for rare diseases. Though there are registries for rare diseases, established by the clinicians and patient advocacy groups, they are isolated, scattered and lacks information sharing mechanism. It is the first time that there is an effort from the government of India to make an initiative on the rare disease registries, which would be more formal and systemic in nature. Since there is lack of epidemiological evidence for the rare disease in India, it is interesting to note how rare disease policy is being attempted in the vacuum of evidence required for the policy process. The objective of this study is to analyse rare disease registry creation and implementation from the parameters of evolutionary policy perspective in the absence of evidence for the policy process. This study will be exploratory and qualitative in nature, primarily based on the interviews of stakeholders involved in the rare disease registry creation and implementation. Some secondary data will include various documents related to rare disease registry. The expected outcome of this study would be on the role of stakeholders in the generation of evidence for the rare disease registry creation and implementation. This study will also try to capture negotiations and deliberations on the ethical issues in terms of data collection, preservation, and protection.Keywords: evolutionary policy perspective, evidence for policy, rare disease policy, rare disease in India
Procedia PDF Downloads 2078764 Study of Antibacterial Activity of Phenolic Compounds Extracted from Algerian Medicinal Plant
Authors: Khadri Sihem, Abbaci Nafissa, Zerari Labiba
Abstract:
In the context of the search for new bioactive natural products, we were interested in evaluating some antibacterial properties of two plant extracts: total phenols and flavonoids of Algerian medicinal plant. Our study occurs in two axes: The first concerns the extraction of phenolic compounds and flavonoids with methanol by liquid-liquid extraction, followed by quantification of the levels of these compounds in the end the analysis of the chemical composition of extracts. In the second axis, we studied the antibacterial power of the studied plant extracts.Keywords: antibacterial activity, flavonoids, medicinal plants, polyphenols
Procedia PDF Downloads 5548763 Prebiotics and Essential Oils-Enriched Diet Can Increase the Efficiency of Vaccine against Furunculosis in Rainbow Trout (Oncorhynchus Mykiss)
Authors: Niki Hayatgheib, SéGolèNe Calvez, Catherine Fournel, Lionel Pineau, Herve Pouliquen, Emmanuelle Moreau
Abstract:
Furunculosis caused by infection with Aeromonas salmonicida subsp. salmonicida has been a known disease found principally in salmonid aquaculture. Vaccination has been partly successful in preventing this disease, but outbreaks still occur. The application of functional feed additive found to be a promising yield to improve fish health against diseases. In this study, we tested the efficacy of prebiotics and plant essential oils-enriched diet on immune response and disease resistance in vaccinated and non-vaccinated rainbow trout (Oncorhynchus mykiss) against furunculosis. A total of 600 fish were fed with the basal diet or supplement. On 4th week of feeding, fish were vaccinated with an autovaccine. Following 8 weeks, fish were challenged with Aeromonas salmonicida subsp. salmonicida and mortalities were recorded for 3 weeks. Lysozyme activity and antibody titer in serum were measured in different groups. The results of this study showed that lysozyme and circulatory antibody titer in plasma elevated significantly in vaccinated fish fed with additive. The best growth rate and relative percentage survival (62%) were in fish fed with a supplement, while 15% in control fish. Overall, prebiotics and essential oils association can be considered as a potential component for enhancing vaccine efficacy against furunculosis by increasing the growth performance, immune responses and disease resistance in rainbow trout.Keywords: aeromonas salmonicida subsp. salmonicida, aquaculture, disease resistance, fish, immune response, prebiotics-essential oils feed additive, rainbow trout, vaccination
Procedia PDF Downloads 1228762 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis
Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen
Abstract:
The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluate the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.Keywords: convolutional neural network, electronic medical record, feature representation, lexical semantics, semantic decision
Procedia PDF Downloads 1268761 Lifestyle Switching Phenomenon of Plant Associated Fungi
Authors: Gauravi Agarkar, Mahendra Rai
Abstract:
Fungi are closely associated with the plants in various types of interactions such as mycorrhizal, parasitic or endophytic. Some of these interactions are beneficial and a few are harmful to the host plants. It has been suggested that these plant-associated fungi are able to change their lifestyle abd this means endophyte may become parasite or vice versa. This phenomenon may have profound effect on plant-fungal interactions and various ecological niches. Therefore, it is necessary to identify the factors that trigger the change in fungal lifestyle and understand whether these different lifestyles are interconnected at some points either by physiological, biochemical or molecular routes. This review summarizes the factors affecting plant fungal interactions and discusses the possible mechanisms for lifestyles switching of fungi based on available experimental evidences. Research should be boosted in this direction to fetch more advantages in future and to avoid the severe consequences in agriculture and other related fields.Keywords: endophytic, lifestyle switching, mycorrhizal, parasitic, plant-fungal interactions
Procedia PDF Downloads 4168760 Diagnosis, Treatment, and Prognosis in Cutaneous Anaplastic Lymphoma Kinase-Positive Anaplastic Large Cell Lymphoma: A Narrative Review Apropos of a Case
Authors: Laura Gleason, Sahithi Talasila, Lauren Banner, Ladan Afifi, Neda Nikbakht
Abstract:
Primary cutaneous anaplastic large cell lymphoma (pcALCL) accounts for 9% of all cutaneous T-cell lymphomas. pcALCL is classically characterized as a solitary papulonodule that often enlarges, ulcerates, and can be locally destructive, but overall exhibits an indolent course with overall 5-year survival estimated to be 90%. Distinguishing pcALCL from systemic ALCL (sALCL) is essential as sALCL confers a poorer prognosis with average 5-year survival being 40-50%. Although extremely rare, there have been several cases of ALK-positive ALCL diagnosed on skin biopsy without evidence of systemic involvement, which poses several challenges in the classification, prognostication, treatment, and follow-up of these patients. Objectives: We present a case of cutaneous ALK-positive ALCL without evidence of systemic involvement, and a narrative review of the literature to further characterize that ALK-positive ALCL limited to the skin is a distinct variant with a unique presentation, history, and prognosis. A 30-year-old woman presented for evaluation of an erythematous-violaceous papule present on her right chest for two months. With the development of multifocal disease and persistent lymphadenopathy, a bone marrow biopsy and lymph node excisional biopsy were performed to assess for systemic disease. Both biopsies were unrevealing. The patient was counseled on pursuing systemic therapy consisting of Brentuximab, Cyclophosphamide, Doxorubicin, and Prednisone given the concern for sALCL. Apropos of the patient we searched for clinically evident, cutaneous ALK-positive ALCL cases, with and without systemic involvement, in the English literature. Risk factors, such as tumor location, number, size, ALK localization, ALK translocations, and recurrence, were evaluated in cases of cutaneous ALK-positive ALCL. The majority of patients with cutaneous ALK-positive ALCL did not progress to systemic disease. The majority of cases that progressed to systemic disease in adults had recurring skin lesions and cytoplasmic localization of ALK. ALK translocations did not influence disease progression. Mean time to disease progression was 16.7 months, and significant mortality (50%) was observed in those cases that progressed to systemic disease. Pediatric cases did not exhibit a trend similar to adult cases. In both the adult and pediatric cases, a subset of cutaneous-limited ALK-positive ALCL were treated with chemotherapy. All cases treated with chemotherapy did not progress to systemic disease. Apropos of an ALK-positive ALCL patient with clinical cutaneous limited disease in the histologic presence of systemic markers, we discussed the literature data, highlighting the crucial issues related to developing a clinical strategy to approach this rare subtype of ALCL. Physicians need to be aware of the overall spectrum of ALCL, including cutaneous limited disease, systemic disease, disease with NPM-ALK translocation, disease with ALK and EMA positivity, and disease with skin recurrence.Keywords: anaplastic large cell lymphoma, systemic, cutaneous, anaplastic lymphoma kinase, ALK, ALCL, sALCL, pcALCL, cALCL
Procedia PDF Downloads 848759 Quality Control Parameters and Pharmacological Aspects of Less Known Medicinal Plant of India: Plumeria pudica Linn.
Authors: Shweta Shriwas, Sumeet Dwivedi, Raghvendra Dubey
Abstract:
Plumeria pudica Linn. Family Apocynaceae commonly known as Nag Chmapa is grown wildly in many parts of India. The plant is medium size shrub, grown up to height of 5-10 feet, evergreen with white flowers. In traditional system of medicine, the plant is widely used in the treatment of worms, infection, inflammation, etc. So, far no any systematic and documented study was done to revealed quality control parameters and pharmacological aspect of the selected plant species, therefore, the attempt was made in present investigation to reveal the same. The parameters such as Ash value, FOM, LOD, SI, etc. were studied using various coarsely dried plant materials of the species. Analgesic, anti-inflammatory, anthelmentic and anti-microbial activity of various extract was investigated and reported in present work.Keywords: Plumeria pudica, quality control, pharmacology, parameters
Procedia PDF Downloads 2188758 Application of ATP7B Gene Mutation Analysis in Prenatal Diagnosis of Wilson’s Disease
Authors: Huong M. T. Nguyen, Hoa A. P. Nguyen, Chi V. Phan, Mai P. T. Nguyen, Ngoc D. Ngo, Van T. Ta, Hai T. Le
Abstract:
Wilson’s disease is an autosomal recessive disorder of copper metabolism, which is caused by mutation in copper- transporting P-type ATPase (ATP7B). The mechanism of this disease is a failure of hepatic excretion of copper to the bile, and it leads to copper deposits in the liver and other organs. Most clinical symptoms of Wilson’s disease can present as liver disease and/or neurologic disease. Objective: The goal of the study is prenatal diagnosis for pregnant women at high risk of Wilson’s disease in Northern Vietnam. Material and method: Three probands with clinically diagnosed liver disease were detected in the mutations of 21 exons and exon-intron boundaries of the ATP7B gene by direct Sanger-sequencing. Prenatal diagnoses were performed by amniotic fluid sampling from pregnant women in the 16th-18th weeks of pregnancy after the genotypes of parents with the probands were identified. Result: A total of three different mutations of the probands, including of S105*, P1052L, P1273G, were detected. Among three fetuses which underwent prenatal genetic testing, one fetus was homozygote; two fetuses were carriers. Conclusion: Genetic testing provided a useful method for prenatal diagnosis, and is a basis for genetic counseling.Keywords: ATP7B gene, genetic testing, prenatal diagnosis, pedigree, Wilson disease
Procedia PDF Downloads 4558757 A Comparison of Convolutional Neural Network Architectures for the Classification of Alzheimer’s Disease Patients Using MRI Scans
Authors: Tomas Premoli, Sareh Rowlands
Abstract:
In this study, we investigate the impact of various convolutional neural network (CNN) architectures on the accuracy of diagnosing Alzheimer’s disease (AD) using patient MRI scans. Alzheimer’s disease is a debilitating neurodegenerative disorder that affects millions worldwide. Early, accurate, and non-invasive diagnostic methods are required for providing optimal care and symptom management. Deep learning techniques, particularly CNNs, have shown great promise in enhancing this diagnostic process. We aim to contribute to the ongoing research in this field by comparing the effectiveness of different CNN architectures and providing insights for future studies. Our methodology involved preprocessing MRI data, implementing multiple CNN architectures, and evaluating the performance of each model. We employed intensity normalization, linear registration, and skull stripping for our preprocessing. The selected architectures included VGG, ResNet, and DenseNet models, all implemented using the Keras library. We employed transfer learning and trained models from scratch to compare their effectiveness. Our findings demonstrated significant differences in performance among the tested architectures, with DenseNet201 achieving the highest accuracy of 86.4%. Transfer learning proved to be helpful in improving model performance. We also identified potential areas for future research, such as experimenting with other architectures, optimizing hyperparameters, and employing fine-tuning strategies. By providing a comprehensive analysis of the selected CNN architectures, we offer a solid foundation for future research in Alzheimer’s disease diagnosis using deep learning techniques. Our study highlights the potential of CNNs as a valuable diagnostic tool and emphasizes the importance of ongoing research to develop more accurate and effective models.Keywords: Alzheimer’s disease, convolutional neural networks, deep learning, medical imaging, MRI
Procedia PDF Downloads 748756 Syndromic Surveillance Framework Using Tweets Data Analytics
Authors: David Ming Liu, Benjamin Hirsch, Bashir Aden
Abstract:
Syndromic surveillance is to detect or predict disease outbreaks through the analysis of medical sources of data. Using social media data like tweets to do syndromic surveillance becomes more and more popular with the aid of open platform to collect data and the advantage of microblogging text and mobile geographic location features. In this paper, a Syndromic Surveillance Framework is presented with machine learning kernel using tweets data analytics. Influenza and the three cities Abu Dhabi, Al Ain and Dubai of United Arabic Emirates are used as the test disease and trial areas. Hospital cases data provided by the Health Authority of Abu Dhabi (HAAD) are used for the correlation purpose. In our model, Latent Dirichlet allocation (LDA) engine is adapted to do supervised learning classification and N-Fold cross validation confusion matrix are given as the simulation results with overall system recall 85.595% performance achieved.Keywords: Syndromic surveillance, Tweets, Machine Learning, data mining, Latent Dirichlet allocation (LDA), Influenza
Procedia PDF Downloads 1168755 Ethnobotanical Study of Medicinal Plants of Leguminosae in Kantharalak Community Forest, Si Sa Ket Province, Thailand
Authors: W. Promprom, W. Chatan
Abstract:
Leguminosae is a large plant family and its members are important for local people utilization in the Northeast of Thailand. This research aimed to survey medicinal plants in this family in Kantharalak Community forest. The plant collection and exploration were made from October 2017 to September 2018. Folk medicinal uses were studied by interviewing villagers and folk medicine healers living around the community forest by asking about local names, using parts, preparation and properties. The results showed that 65 species belonging to 40 genera were found. Among these, 30 species were medicinal plant. The most used plant parts were leaf. Decoction and drinking were mostly preparation method and administration mode used. All medicinal plants could be categorized into 17 diseases/symptoms. Most plant (56.66%) were used for fever. The voucher specimens were deposited in Department of Biology, Faculty of Science, Mahasarakham University, Thailand. Therefore, the data from this study might be widely used by the local area and further scientific study.Keywords: ethnobotany, ethnophamacology, medicinal plant, taxonomy, utilization
Procedia PDF Downloads 1618754 An Organic Dye-Based Staining for Plant DNA
Authors: Begüm Terzi, Özlem Ateş Sönmezoğlu, Kerime Özkay, Ahmet Yıldırım
Abstract:
In plant biotechnology, electrophoresis is used to detect nucleic acids. Ethidium bromide (EtBr) is used as an intercalator dye to stain DNA in agarose gel electrophoresis, but this dye is mutagenic and carcinogenic. In this study, a visible, reliable and organic Ruthenium-based dye (N-719) for staining plant DNA in comparison to EtBr. When prestaining and post-staining for gel electrophoresis, N-719 stained both DNA and PCR product bands with the same clarity as EtBr. The organic dye N-719 stained DNA bands as sensitively and as clearly as EtBr. The organic dye was found to have staining activity suitable for the identification of DNA.Consequently, N-719 organic dye can be used to stain and visualize DNA during gel electrophoresis as alternatives to EtBr in plant biotechnology studies.Keywords: agarose gel, DNA staining, organic dye, N-719
Procedia PDF Downloads 2678753 Some Agricultural Characteristics of Cephalaria syriaca Lines Selected from a Population and Developed as Winter Type
Authors: Rahim Ada, Ahmet Tamkoç
Abstract:
The research was conducted in the “Randomized Complete Block Design” with three replications in research field of Agricultural Faculty, Selcuk University, Konya, Turkey. In study, a total of 9 Cephalaria syriaca promised lines (9, 37, 38, 42, Beyaz 4, 5 Beyaz, 13 Beyaz, 27 Beyaz, Başaklar 2), which were taken from Sivas population, and 1 population were evaluated in two growing seasons (2012-13 and 2013-14). According to the results, the highest plant height, first branch height, first head height, number of branches per plant, number of head per plant, head diameter,1000 seed weight, seed yield, oil content and oil yield were obtained respectively from Başaklar 2 (68.37 cm), Başaklar 2 (37.80 cm), Başaklar 2 (54.83 cm), 37 (7.73 number/plant), 42 (18.03 number/plant), 9 (10.30 mm), Başaklar 2 (19.33 g), 27 Beyaz (1254.2 kg ha-1), Başaklar 2 (28.77%), and 27 Beyaz (357.9 kg ha-1).Keywords: Cephalaria syriaca, yield, oil, population
Procedia PDF Downloads 4748752 Automatic Classification Using Dynamic Fuzzy C Means Algorithm and Mathematical Morphology: Application in 3D MRI Image
Authors: Abdelkhalek Bakkari
Abstract:
Image segmentation is a critical step in image processing and pattern recognition. In this paper, we proposed a new robust automatic image classification based on a dynamic fuzzy c-means algorithm and mathematical morphology. The proposed segmentation algorithm (DFCM_MM) has been applied to MR perfusion images. The obtained results show the validity and robustness of the proposed approach.Keywords: segmentation, classification, dynamic, fuzzy c-means, MR image
Procedia PDF Downloads 4818751 Detection of COVID-19 Cases From X-Ray Images Using Capsule-Based Network
Authors: Donya Ashtiani Haghighi, Amirali Baniasadi
Abstract:
Coronavirus (COVID-19) disease has spread abruptly all over the world since the end of 2019. Computed tomography (CT) scans and X-ray images are used to detect this disease. Different Deep Neural Network (DNN)-based diagnosis solutions have been developed, mainly based on Convolutional Neural Networks (CNNs), to accelerate the identification of COVID-19 cases. However, CNNs lose important information in intermediate layers and require large datasets. In this paper, Capsule Network (CapsNet) is used. Capsule Network performs better than CNNs for small datasets. Accuracy of 0.9885, f1-score of 0.9883, precision of 0.9859, recall of 0.9908, and Area Under the Curve (AUC) of 0.9948 are achieved on the Capsule-based framework with hyperparameter tuning. Moreover, different dropout rates are investigated to decrease overfitting. Accordingly, a dropout rate of 0.1 shows the best results. Finally, we remove one convolution layer and decrease the number of trainable parameters to 146,752, which is a promising result.Keywords: capsule network, dropout, hyperparameter tuning, classification
Procedia PDF Downloads 798750 Classification of Construction Projects
Authors: M. Safa, A. Sabet, S. MacGillivray, M. Davidson, K. Kaczmarczyk, C. T. Haas, G. E. Gibson, D. Rayside
Abstract:
To address construction project requirements and specifications, scholars and practitioners need to establish a taxonomy according to a scheme that best fits their need. While existing characterization methods are continuously being improved, new ones are devised to cover project properties which have not been previously addressed. One such method, the Project Definition Rating Index (PDRI), has received limited consideration strictly as a classification scheme. Developed by the Construction Industry Institute (CII) in 1996, the PDRI has been refined over the last two decades as a method for evaluating a project's scope definition completeness during front-end planning (FEP). The main contribution of this study is a review of practical project classification methods, and a discussion of how PDRI can be used to classify projects based on their readiness in the FEP phase. The proposed model has been applied to 59 construction projects in Ontario, and the results are discussed.Keywords: project classification, project definition rating index (PDRI), risk, project goals alignment
Procedia PDF Downloads 6798749 Comparing Image Processing and AI Techniques for Disease Detection in Plants
Authors: Luiz Daniel Garay Trindade, Antonio De Freitas Valle Neto, Fabio Paulo Basso, Elder De Macedo Rodrigues, Maicon Bernardino, Daniel Welfer, Daniel Muller
Abstract:
Agriculture plays an important role in society since it is one of the main sources of food in the world. To help the production and yield of crops, precision agriculture makes use of technologies aiming at improving productivity and quality of agricultural commodities. One of the problems hampering quality of agricultural production is the disease affecting crops. Failure in detecting diseases in a short period of time can result in small or big damages to production, causing financial losses to farmers. In order to provide a map of the contributions destined to the early detection of plant diseases and a comparison of the accuracy of the selected studies, a systematic literature review of the literature was performed, showing techniques for digital image processing and neural networks. We found 35 interesting tool support alternatives to detect disease in 19 plants. Our comparison of these studies resulted in an overall average accuracy of 87.45%, with two studies very closer to obtain 100%.Keywords: pattern recognition, image processing, deep learning, precision agriculture, smart farming, agricultural automation
Procedia PDF Downloads 3808748 New Approach to Construct Phylogenetic Tree
Authors: Ouafae Baida, Najma Hamzaoui, Maha Akbib, Abdelfettah Sedqui, Abdelouahid Lyhyaoui
Abstract:
Numerous scientific works present various methods to analyze the data for several domains, specially the comparison of classifications. In our recent work, we presented a new approach to help the user choose the best classification method from the results obtained by every method, by basing itself on the distances between the trees of classification. The result of our approach was in the form of a dendrogram contains methods as a succession of connections. This approach is much needed in phylogeny analysis. This discipline is intended to analyze the sequences of biological macro molecules for information on the evolutionary history of living beings, including their relationship. The product of phylogeny analysis is a phylogenetic tree. In this paper, we recommend the use of a new method of construction the phylogenetic tree based on comparison of different classifications obtained by different molecular genes.Keywords: hierarchical classification, classification methods, structure of tree, genes, phylogenetic analysis
Procedia PDF Downloads 5118747 Brainwave Classification for Brain Balancing Index (BBI) via 3D EEG Model Using k-NN Technique
Authors: N. Fuad, M. N. Taib, R. Jailani, M. E. Marwan
Abstract:
In this paper, the comparison between k-Nearest Neighbor (kNN) algorithms for classifying the 3D EEG model in brain balancing is presented. The EEG signal recording was conducted on 51 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, maximum PSD values were extracted as features from the model. There are three indexes for the balanced brain; index 3, index 4 and index 5. There are significant different of the EEG signals due to the brain balancing index (BBI). Alpha-α (8–13 Hz) and beta-β (13–30 Hz) were used as input signals for the classification model. The k-NN classification result is 88.46% accuracy. These results proved that k-NN can be used in order to predict the brain balancing application.Keywords: power spectral density, 3D EEG model, brain balancing, kNN
Procedia PDF Downloads 4898746 Artificial Intelligence in Disease Diagnosis
Authors: Shalini Tripathi, Pardeep Kumar
Abstract:
The method of translating observed symptoms into disease names is known as disease diagnosis. The ability to solve clinical problems in a complex manner is critical to a doctor's effectiveness in providing health care. The accuracy of his or her expertise is crucial to the survival and well-being of his or her patients. Artificial Intelligence (AI) has a huge economic influence depending on how well it is applied. In the medical sector, human brain-simulated intellect can help not only with classification accuracy, but also with reducing diagnostic time, cost and pain associated with pathologies tests. In light of AI's present and prospective applications in the biomedical, we will identify them in the paper based on potential benefits and risks, social and ethical consequences and issues that might be contentious but have not been thoroughly discussed in publications and literature. Current apps, personal tracking tools, genetic tests and editing programmes, customizable models, web environments, virtual reality (VR) technologies and surgical robotics will all be investigated in this study. While AI holds a lot of potential in medical diagnostics, it is still a very new method, and many clinicians are uncertain about its reliability, specificity and how it can be integrated into clinical practice without jeopardising clinical expertise. To validate their effectiveness, more systemic refinement of these implementations, as well as training of physicians and healthcare facilities on how to effectively incorporate these strategies into clinical practice, will be needed.Keywords: Artificial Intelligence, medical diagnosis, virtual reality, healthcare ethical implications
Procedia PDF Downloads 1338745 The Use of Plant-Based Natural Fibers in Reinforced Cement Composites
Authors: N. AlShaya, R. Alhomidan, S. Alromizan, W. Labib
Abstract:
Plant-based natural fibers are used more increasingly in construction materials. It is done to reduce the pressure on the built environment, which has been increased dramatically due to the increases world population and their needs. Plant-based natural fibers are abundant in many countries. Despite the low-cost of such environmental friendly renewable material, it has the ability to enhance the mechanical properties of construction materials. This paper presents an extensive discussion on the use of plant-based natural fibers as reinforcement for cement-based composites, with a particular emphasis upon fiber types; fiber characteristics, and fiber-cement composites performance. It also covers a thorough overview on the main factors, affecting the properties of plant-based natural fiber cement composite in it fresh and hardened state. The feasibility of using plant-based natural fibers in producing various construction materials; such as, mud bricks and blocks is investigated. In addition, other applications of using such fibers as internal curing agents as well as durability enhancer are also discussed. Finally, recommendation for possible future work in this area is presented.Keywords: natural fibres, cement composites, construction materia, sustainability, stregth, durability
Procedia PDF Downloads 2228744 Vineyard Soils of Karnataka - Characterization, Classification and Soil Site Suitability Evaluation
Authors: Harsha B. R., K. S. Anil Kumar
Abstract:
Land characterization, classification, and soil suitability evaluation of grapes-growing pedons were assessed at fifteen taluks covering four agro climatic zones of Karnataka. Study on problems and potentials of grapes cultivation in selected agro-climatic zones was carried out along with the plant sample analysis. Twenty soil profiles were excavated as study site based on the dominance of area falling under grapes production and existing spatial variability of soils. The detailed information of profiles and horizon wise soil samples were collected to study the morphological, physical, chemical, and fertility characteristics. Climatic analysis and water retention characteristics of soils of major grapes-growing areas were also done. Based on the characterisation and classification study, it was revealed that soils of Doddaballapur (Bangalore Blue and Wine grapes), Bangalore North (GKVK Farm, Rajankunte, and IIHR Farm), Devanahalli, Magadi, Hoskote, Chikkaballapur (Dilkush and Red globe), Yelaburga, Hagari Bommanahalli, Bagalkot (UHS farm) and Indi fall under the soil order Alfisol. Vijaypur pedon of northern dry zone was keyed out as Vertisols whereas, Jamkhandi and Athani as Inceptisols. Properties of Aridisols were observed in B. Bagewadi (Manikchaman and Thompson Seedless) and Afzalpur. Soil fertility status and its mapping using GIS technique revealed that all the nutrients were found to be in adequate range except nitrogen, potassium, zinc, iron, and boron, which indicated the need for application along with organic matter to improve the SOC status. Varieties differed among themselves in yield and plant nutrient composition depending on their age, climatic, soil, and management requirements. Bangalore North (GKVK farm) and Jamkhandi are having medium soil organic carbon stocks of 6.21 and 6.55 kg m⁻³, respectively. Soils of Bangalore North (Rajankunte) were highly suitable (S1) for grapes cultivation. Under northern Karnataka, Vijayapura, B. Bagewadi, Indi, and Afzalpur vineyards were good performers despite the limitations of fertility and free lime content.Keywords: land characterization, suitability, soil orders, soil organic carbon stock
Procedia PDF Downloads 1148743 Identifying Factors Contributing to the Spread of Lyme Disease: A Regression Analysis of Virginia’s Data
Authors: Fatemeh Valizadeh Gamchi, Edward L. Boone
Abstract:
This research focuses on Lyme disease, a widespread infectious condition in the United States caused by the bacterium Borrelia burgdorferi sensu stricto. It is critical to identify environmental and economic elements that are contributing to the spread of the disease. This study examined data from Virginia to identify a subset of explanatory variables significant for Lyme disease case numbers. To identify relevant variables and avoid overfitting, linear poisson, and regularization regression methods such as a ridge, lasso, and elastic net penalty were employed. Cross-validation was performed to acquire tuning parameters. The methods proposed can automatically identify relevant disease count covariates. The efficacy of the techniques was assessed using four criteria on three simulated datasets. Finally, using the Virginia Department of Health’s Lyme disease data set, the study successfully identified key factors, and the results were consistent with previous studies.Keywords: lyme disease, Poisson generalized linear model, ridge regression, lasso regression, elastic net regression
Procedia PDF Downloads 1398742 In vitro and in vivo Assessment of Cholinesterase Inhibitory Activity of the Bark Extracts of Pterocarpus santalinus L. for the Treatment of Alzheimer’s Disease
Authors: K. Biswas, U. H. Armin, S. M. J. Prodhan, J. A. Prithul, S. Sarker, F. Afrin
Abstract:
Alzheimer’s disease (AD) (a progressive neurodegenerative disorder) is mostly predominant cause of dementia in the elderly. Prolonging the function of acetylcholine by inhibiting both acetylcholinesterase and butyrylcholinesterase is most effective treatment therapy of AD. Traditionally Pterocarpus santalinus L. is widely known for its medicinal use. In this study, in vitro acetylcholinesterase inhibitory activity was investigated and methanolic extract of the plant showed significant activity. To confirm this activity (in vivo), learning and memory enhancing effects were tested in mice. For the test, memory impairment was induced by scopolamine (cholinergic muscarinic receptor antagonist). Anti-amnesic effect of the extract was investigated by the passive avoidance task in mice. The study also includes brain acetylcholinesterase activity. Results proved that scopolamine induced cognitive dysfunction was significantly decreased by administration of the extract solution, in the passive avoidance task and inhibited brain acetylcholinesterase activity. These results suggest that bark extract of Pterocarpus santalinus can be better option for further studies on AD via their acetylcholinesterase inhibitory actions.Keywords: Pterocarpus santalinus, cholinesterase inhibitor, passive avoidance, Alzheimer’s disease
Procedia PDF Downloads 2498741 Assessment of the Spatio-Temporal Distribution of Pteridium aquilinum (Bracken Fern) Invasion on the Grassland Plateau in Nyika National Park
Authors: Andrew Kanzunguze, Lusayo Mwabumba, Jason K. Gilbertson, Dominic B. Gondwe, George Z. Nxumayo
Abstract:
Knowledge about the spatio-temporal distribution of invasive plants in protected areas provides a base from which hypotheses explaining proliferation of plant invasions can be made alongside development of relevant invasive plant monitoring programs. The aim of this study was to investigate the spatio-temporal distribution of bracken fern on the grassland plateau of Nyika National Park over the past 30 years (1986-2016) as well as to determine the current extent of the invasion. Remote sensing, machine learning, and statistical modelling techniques (object-based image analysis, image classification and linear regression analysis) in geographical information systems were used to determine both the spatial and temporal distribution of bracken fern in the study area. Results have revealed that bracken fern has been increasing coverage on the Nyika plateau at an estimated annual rate of 87.3 hectares since 1986. This translates to an estimated net increase of 2,573.1 hectares, which was recorded from 1,788.1 hectares (1986) to 4,361.9 hectares (2016). As of 2017 bracken fern covered 20,940.7 hectares, approximately 14.3% of the entire grassland plateau. Additionally, it was observed that the fern was distributed most densely around Chelinda camp (on the central plateau) as well as in forest verges and roadsides across the plateau. Based on these results it is recommended that Ecological Niche Modelling approaches be employed to (i) isolate the most important factors influencing bracken fern proliferation as well as (ii) identify and prioritize areas requiring immediate control interventions so as to minimize bracken fern proliferation in Nyika National Park.Keywords: bracken fern, image classification, Landsat-8, Nyika National Park, spatio-temporal distribution
Procedia PDF Downloads 1818740 Comparative Study of Antioxidant Activity in in vivo and in vitro Samples of Purple Greater Yam (Dioscorea alata L).
Authors: Sakinah Abdullah, Rosna Mat Taha
Abstract:
Antioxidants are compounds that protect cells against the damaging effects of reactive oxygen species such as singlet oxygen, superoxide, peroxyl radicals, and peroxynitrite which result in oxidative stress leading to cellular damage. Natural antioxidant are in high demand because of their potential in health promotion and disease prevention and their improved safety and consumer acceptability. Plants are rich sources of natural antioxidant. Dioscorea alata L. known as 'ubi badak' in Malaysia were well known for their antioxidant content, but this plant was seasonal. Thus, tissue culture technique was used to mass propagate this plant. In the present work, a comparative study between in vitro (from tissue culture) and in vivo (from intact plant) samples of Dioscorea alata L. for their antioxidant potential by 2,2-diphenil -1- picrylhydrazyl (DPPH) radical scavenging activity method and their total phenolic and flavonoid contents were carried out. All samples had better radical scavenging activity but in vivo samples had the strongest radical scavenging activity compared to in vitro samples. Furthermore, tubers from in vivo samples showed the greatest free radical scavenging effect and comparatively greater phenolic content than in vitro samples.Keywords: Dioscorea alata, tissue culture, antioxidant, in vivo, in vitro, DPPH
Procedia PDF Downloads 471