Search results for: molecular orbital theory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6626

Search results for: molecular orbital theory

6356 Fundamental Theory of the Evolution Force: Gene Engineering utilizing Synthetic Evolution Artificial Intelligence

Authors: L. K. Davis

Abstract:

The effects of the evolution force are observable in nature at all structural levels ranging from small molecular systems to conversely enormous biospheric systems. However, the evolution force and work associated with formation of biological structures has yet to be described mathematically or theoretically. In addressing the conundrum, we consider evolution from a unique perspective and in doing so we introduce the “Fundamental Theory of the Evolution Force: FTEF”. We utilized synthetic evolution artificial intelligence (SYN-AI) to identify genomic building blocks and to engineer 14-3-3 ζ docking proteins by transforming gene sequences into time-based DNA codes derived from protein hierarchical structural levels. The aforementioned served as templates for random DNA hybridizations and genetic assembly. The application of hierarchical DNA codes allowed us to fast forward evolution, while dampening the effect of point mutations. Natural selection was performed at each hierarchical structural level and mutations screened using Blosum 80 mutation frequency-based algorithms. Notably, SYN-AI engineered a set of three architecturally conserved docking proteins that retained motion and vibrational dynamics of native Bos taurus 14-3-3 ζ.

Keywords: 14-3-3 docking genes, synthetic protein design, time-based DNA codes, writing DNA code from scratch

Procedia PDF Downloads 94
6355 Analyzing Music Theory in Different Countries: Compare with Greece and China

Authors: Baoshan Wang

Abstract:

The present study investigates how music theory has developed across different countries due to their diverse histories, religions, and cultural differences. It is unknown how these various factors may contribute to differences in music theory across countries. Therefore, we examine the differences between China and Greece, which have developed unique music theories over time. Specifically, our analysis looks at musical notation and scales. For example, Tonal music originates from Greece, which harbors quite complex notation and scaling. There exist seven notes in each scale within seven modes of scales. Each mode of the diatonic scale has a unique temperament, two of which are most commonly used in modern music. In contrast, we find that Chinese music has only five notes in its scales. Interestingly, a unique feature of Chinese music theory is that there is no half-step, resulting in a highly divergent and culture-specific sound. Fascinatingly, these differences may arise from the contrasting ways that Western and Eastern musicians perceive music. While Western musicians tend to believe in music “without borders,” Eastern musicians generally embrace differing perspectives. Yet, the vast majority of colleges or music conservatories teach the borderless theory of Western music, which renders the music educational system incomplete. This is critically important because learning music is not simply a profession for musicians. Rather, it is an intermediary to facilitate understanding and appreciation for different countries’ cultures and religions. Education is undoubtedly the optimal mode to promote different countries’ music theory so people across the world can learn more about music and, in turn, each other. Even though Western music theory is predominantly taught, it is crucial we also pursue an understanding of other countries’ music because their unique aspects contribute to the systematic completeness of Music Theory in its entirety.

Keywords: culture, development, music theory, music history, religion, western music

Procedia PDF Downloads 80
6354 Understanding Nanocarrier Efficacy in Drug Delivery Systems Using Molecular Dynamics

Authors: Maedeh Rahimnejad, Bahman Vahidi, Bahman Ebrahimi Hoseinzadeh, Fatemeh Yazdian, Puria Motamed Fath, Roghieh Jamjah

Abstract:

Introduction: The intensive labor and high cost of developing new vehicles for controlled drug delivery highlights the need for a change in their discovery process. Computational models can be used to accelerate experimental steps and control the high cost of experiments. Methods: In this work, to better understand the interaction of anti-cancer drug and the nanocarrier with the cell membrane, we have done molecular dynamics simulation using NAMD. We have chosen paclitaxel for the drug molecule and dipalmitoylphosphatidylcholine (DPPC) as a natural phospholipid nanocarrier. Results: Next, center of mass (COM) between molecules and the van der Waals interaction energy close to the cell membrane has been analyzed. Furthermore, the simulation results of the paclitaxel interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane have been compared. Discussion: Analysis by molecular dynamics (MD) showed that not only the energy between the nanocarrier and the cell membrane is low, but also the center of mass amount decreases in the nanocarrier and the cell membrane system during the interaction; therefore they show significantly better interaction in comparison to the individual drug with the cell membrane.

Keywords: anti-cancer drug, center of mass, interaction energy, molecular dynamics simulation, nanocarrier

Procedia PDF Downloads 278
6353 Modern Nahwu's View about the Theory of Amil

Authors: Kisno Umbar

Abstract:

Arabic grammar (nahwu) is one of the most important disciplines to learn about the Islamic literature (kitab al-turats). In the last century, learning Arabic grammar was difficult for both the Arabian or non-Arabian native. Most of the traditional nahwu scholars viewed that the theory of amil is a major problem. The views had influenced large number of modern nahwu scholars, and some of them refuse the theory of amil to simplify Arabic grammar to make it easier. The aim of the study is to compare many views of the modern nahwu scholars about the theory of amil including their reasons. In addition, the study is to reveal whether they follow classic scholars or give a view. The author uses literature study approach to get data of modern nahwu scholars from their books as a primary resource. As a secondary resource, the author uses the updated relevant researches from journals about the theory of amil. Besides, the author put on several resources from the traditional nahwu scholars to compare the views. The analysis showed the contrasting views about the theory of amil. Most of the scholars refuse the amil because it isn’t originally derived from Arabic tradition, but it is influenced by Aristotelian philosophy. The others persistently use the amil inasmuch as it is one of the characteristics that differ Arabic language and other languages.

Keywords: Arabic grammar, Amil, Arabic tradition, Aristotelian philosophy

Procedia PDF Downloads 135
6352 The Influence of Marxism Theory in Malaka's Perspective in Indonesia

Authors: Farhan Alam Farhan Alam, Fatah Nugroho, Setyawan Wahyu Pradana

Abstract:

Tan Malaka was a great Indonesian Marxism thinker. His idea of Marxism give encouragement to the struggle for Indonesian independence. Furthermore, it refers to what Marx said as the flexibility of a Marxist. Tan Malaka developed the Marxist theory against what have already existed so that Marxism can be harmonized and compatible with the context of Indonesia. For example, Tan Malaka initiated the cooperation between the Marxist movement and Pan-Islamism. The collaboration of Islam with Marxism which is so contradictive at that time was seen by Tan Malaka as a necessity in order to against capitalism. By using study literature and historiography methods, this paper attempts to analyze the application of the Marxism theory in the Tan Malaka’s perspective in Indonesia today in order to counter capitalism currently. His perspective combines Marxism with Islam as a solid collaboration of ideology.

Keywords: Indonesia, Marxism, Islam, Marxist theory, Tan Malaka

Procedia PDF Downloads 287
6351 Molecular Dynamics Simulations of the Structural, Elastic and Thermodynamic Properties of Cubic GaBi

Authors: M. Zemouli, K. Amara, M. Elkeurti, Y. Benallou

Abstract:

We present the molecular dynamic simulations results of the structural and dynamical properties of the zinc-blende GaBi over a wide range of temperature (300-1000) K. Our simulation where performed in the framework of the three-body Tersoff potential, which accurately reproduces the lattice constants and elastic constants of the GaBi. A good agreement was found between our calculated results and the available theoretical data of the lattice constant, the bulk modulus and the cohesive energy. Our study allows us to predict the thermodynamic properties such as the specific heat and the lattice thermal expansion. In addition, this method allows us to check its ability to predict the phase transition of this compound. In particular, the transition pressure to the rock-salt phase is calculated and the results are compared with other available works.

Keywords: Gallium compounds, molecular dynamics simulations, interatomic potential thermodynamic properties, structural phase transition

Procedia PDF Downloads 423
6350 Guided Energy Theory of a Particle: Answered Questions Arise from Quantum Foundation

Authors: Desmond Agbolade Ademola

Abstract:

This work aimed to introduce a theory, called Guided Energy Theory of a particle that answered questions that arise from quantum foundation, quantum mechanics theory, and interpretation such as: what is nature of wavefunction? Is mathematical formalism of wavefunction correct? Does wavefunction collapse during measurement? Do quantum physical entanglement and many world interpretations really exist? In addition, is there uncertainty in the physical reality of our nature as being concluded in the Quantum theory? We have been able to show by the fundamental analysis presented in this work that the way quantum mechanics theory, and interpretation describes nature is not correlated with physical reality. Because, we discovered amongst others that, (1) Guided energy theory of a particle fundamentally provides complete physical observable series of quantized measurement of a particle momentum, force, energy e.t.c. in a given distance and time.In contrast, quantum mechanics wavefunction describes that nature has inherited probabilistic and indeterministic physical quantities, resulting in unobservable physical quantities that lead to many worldinterpretation.(2) Guided energy theory of a particle fundamentally predicts that it is mathematically possible to determine precise quantized measurementof position and momentum of a particle simultaneously. Because, there is no uncertainty in nature; nature however naturally guides itself against uncertainty. Contrary to the conclusion in quantum mechanics theory that, it is mathematically impossible to determine the position and the momentum of a particle simultaneously. Furthermore, we have been able to show by this theory that, it is mathematically possible to determine quantized measurement of force acting on a particle simultaneously, which is not possible on the premise of quantum mechanics theory. (3) It is evidently shown by our theory that, guided energy does not collapse, only describes the lopsided nature of a particle behavior in motion. This pretty offers us insight on gradual process of engagement - convergence and disengagement – divergence of guided energy holders which further highlight the picture how wave – like behavior return to particle-like behavior and how particle – like behavior return to wave – like behavior respectively. This further proves that the particles’ behavior in motion is oscillatory in nature. The mathematical formalism of Guided energy theory shows that nature is certainty whereas the mathematical formalism of Quantum mechanics theory shows that nature is absolutely probabilistics. In addition, the nature of wavefunction is the guided energy of the wave. In conclusion, the fundamental mathematical formalism of Quantum mechanics theory is wrong.

Keywords: momentum, physical entanglement, wavefunction, uncertainty

Procedia PDF Downloads 275
6349 The Use of Network Theory in Heritage Cities

Authors: J. L. Oliver, T. Agryzkov, L. Tortosa, J. Vicent, J. Santacruz

Abstract:

This paper aims to demonstrate how the use of Network Theory can be applied to a very interesting and complex urban situation: The parts of a city which may have some patrimonial value, but because of their lack of relevant architectural elements, they are not considered to be historic in a conventional sense. In this paper, we use the suburb of La Villaflora in the city of Quito, Ecuador as our case study. We first propose a system of indicators as a tool to characterize and quantify the historic value of a geographic area. Then, we apply these indicators to the suburb of La Villaflora and use Network Theory to understand and propose actions.

Keywords: graphs, mathematics, networks, urban studies

Procedia PDF Downloads 349
6348 Preparation of Low-Molecular-Weight 6-Amino-6-Deoxychitosan (LM6A6DC) for Immobilization of Growth Factor

Authors: Koo-Yeon Kim, Eun-Hye Kim, Tae-Il Son

Abstract:

Epidermal Growth Factor (EGF, Mw=6,045) has been reported to have high efficiency of wound repair and anti-wrinkle effect. However, the half-life of EGF in the body is too short to exert the biological activity effectively when applied in free form. Growth Factors can be stabilized by immobilization with carbohydrates from thermal and proteolytic degradation. Low molecular weight chitosan (LMCS) and its derivate prepared by hydrogen peroxide has high solubility. LM6A6DC was successfully prepared as a reactive carbohydrate for the stabilization of EGF by the reactions of LMCS with alkalization, tosylation, azidation and reduction. The structure of LM6A6DC was confirmed by FT-IR, 1H NMR and elementary analysis. For enhancing the stability of free EGF, EGF was attached with LM6A6DC by using water-soluble carbodiimide. EGF-LM6A6DC conjugates did not show any cytotoxicity on the Normal Human Dermal Fibroblast(NHDF) 3T3 proliferation at least under 100 ㎍/㎖. In the result, it was considered that LM6A6DC is suitable to immobilize of growth factor.

Keywords: epidermal growth factor (EGF), low-molecular-weight chitosan, immobilization

Procedia PDF Downloads 458
6347 Discussing Concept Gratitude of Muslim Consumers Based on Islamic Law: A Confirmation on the Theory of Consumer Satisfaction through Imam Al-Ghazali's Thought

Authors: Suprihatin Soewarto

Abstract:

The background of writing this paper is to assess the truth of rejection of some Muslim scholars who develop Islamic economics on the concept of consumer satisfaction and replace it with the concept of maslahah. In the perspective of Islamic law, this rejection attitude needs to be verified in order to know the accuracy of the replacement of this concept of satisfaction with maslahah as part of consumer behavior. This is done so that replacement of rejection of the term satisfaction with maslahah is objective. This objective replacement of the term will surely be more enlightening and more just than the subjective substitution. Therefore the writing of this paper aims to get an answer whether the concept of satisfaction needs to be replaced? is it possible for Islamic law to confirm the theory of consumer satisfaction? The method of writing this paper using the method of literature with a critical analysis approach. The results of this study is an explanation of the similarities and differences of consumer satisfaction theory and consumer theory maslahah according to Islamic law. disclosure of the concept of consumer gratitude according to Islamic law and its implementation in Muslim consumer demand theory.

Keywords: consumer's gratitude, islamic law, confirmation, satisfaction consumer's

Procedia PDF Downloads 182
6346 Implementation in Python of a Method to Transform One-Dimensional Signals in Graphs

Authors: Luis Andrey Fajardo Fajardo

Abstract:

We are immersed in complex systems. The human brain, the galaxies, the snowflakes are examples of complex systems. An area of interest in Complex systems is the chaos theory. This revolutionary field of science presents different ways of study than determinism and reductionism. Here is where in junction with the Nonlinear DSP, chaos theory offer valuable techniques that establish a link between time series and complex theory in terms of complex networks, so that, the study of signals can be explored from the graph theory. Recently, some people had purposed a method to transform time series in graphs, but no one had developed a suitable implementation in Python with signals extracted from Chaotic Systems or Complex systems. That’s why the implementation in Python of an existing method to transform one dimensional chaotic signals from time domain to graph domain and some measures that may reveal information not extracted in the time domain is proposed.

Keywords: Python, complex systems, graph theory, dynamical systems

Procedia PDF Downloads 493
6345 Investigation of Chlorophylls a and b Interaction with Inner and Outer Surfaces of Single-Walled Carbon Nanotube Using Molecular Dynamics Simulation

Authors: M. Dehestani, M. Ghasemi-Kooch

Abstract:

In this work, adsorption of chlorophylls a and b pigments in aqueous solution on the inner and outer surfaces of single-walled carbon nanotube (SWCNT) has been studied using molecular dynamics simulation. The linear interaction energy algorithm has been used to calculate the binding free energy. The results show that the adsorption of two pigments is fine on the both positions. Although there is the close similarity between these two pigments, their interaction with the nanotube is different. This result is useful to separate these pigments from one another. According to interaction energy between the pigments and carbon nanotube, interaction between these pigments-SWCNT on the inner surface is stronger than the outer surface. The interaction of SWCNT with chlorophylls phytol tail is stronger than the interaction of SWCNT with porphyrin ring of chlorophylls.

Keywords: adsorption, chlorophyll, interaction, molecular dynamics simulation, nanotube

Procedia PDF Downloads 216
6344 A Look at the Quantum Theory of Atoms in Molecules from the Discrete Morse Theory

Authors: Dairo Jose Hernandez Paez

Abstract:

The quantum theory of atoms in molecules (QTAIM) allows us to obtain topological information on electronic density in quantum mechanical systems. The QTAIM starts by considering the electron density as a continuous mathematical object. On the other hand, the discretization of electron density is also a mathematical object, which, from discrete mathematics, would allow a new approach to its topological study. From this point of view, it is necessary to develop a series of steps that provide the theoretical support that guarantees its application. Some of the steps that we consider most important are mentioned below: (1) obtain good representations of the electron density through computational calculations, (2) design a methodology for the discretization of electron density, and construct the simplicial complex. (3) Make an analysis of the discrete vector field associating the simplicial complex. (4) Finally, in this research, we propose to use the discrete Morse theory as a mathematical tool to carry out studies of electron density topology.

Keywords: discrete mathematics, Discrete Morse theory, electronic density, computational calculations

Procedia PDF Downloads 89
6343 Molecular Dynamics Simulations of the Structural, Elastic, and Thermodynamic Properties of Cubic AlBi

Authors: M. Zemouli, K. Amara, M. Elkeurti, Y. Benallou

Abstract:

We present a theoretical study of the structural, elastic and thermodynamic properties of the zinc-blende AlBi for a wide temperature range. The simulation calculation is performed in the framework of the molecular dynamics method using the three-body Tersoff potential which reproduces provide, with reasonable accuracy, the lattice constants and elastic constants. Our results for the lattice constant, the bulk modulus and cohesive energy are in good agreement with other theoretical available works. Other thermodynamic properties such as the specific heat and the lattice thermal expansion can also be predicted. In addition, this method allows us to check its ability to predict the phase transition of this compound. In particular, the transition pressure to the rock-salt phase is calculated and the results are compared with other available works.

Keywords: aluminium compounds, molecular dynamics simulations, interatomic potential, thermodynamic properties, structural phase transition

Procedia PDF Downloads 290
6342 First Earth Size

Authors: Ibrahim M. Metwally

Abstract:

Have you ever thought that earth was not the same earth we live on? Was it bigger or smaller? Was it a great continent surrounded by huge ocean as Alfred Wegener (1912) claimed? Earth is the most amazing planet in our Milky Way galaxy and may be in the universe. It is the only deformed planet that has a variable orbit around the sun and the only planet that has water on its surface. How did earth deformation take place? What does cause earth to deform? What are the results of earth deformation? How does its orbit around the sun change? First earth size computation can be achieved only considering the quantum of iron and nickel rested into earth core. This paper introduces a new theory “Earth expansion Theory”. The principles of “Earth Expansion Theory” are leading to new approaches and concepts to interpret whole earth dynamics and its geological and environmental changes. This theory is not an attempt to unify the two divergent dominant theories of continental drift, plate tectonic theory and earth expansion theory. The new theory is unique since it has a mathematical derivation, explains all the change to and around earth in terms of geological and environmental changes, and answers all unanswered questions in other theories. This paper presents the basic of the introduced theory and discusses the mechanism of earth expansion and how it took place, the forces that made the expansion. The mechanisms of earth size change from its spherical shape with radius about 3447.6 km to an elliptic shape of major radius about 6378.1 km and minor radius of about 6356.8 km and how it took place, are introduced and discussed. This article also introduces, in a more realistic explanation the formation of oceans and seas, the preparation of river formation. It also addresses the role of iron in earth size enlargement process within the continuum mechanics framework.

Keywords: earth size, earth expansion, continuum mechanics, continental and ocean formation

Procedia PDF Downloads 437
6341 Molecular Characterization of Dirofilaria repens in Dogs from Karnataka, India

Authors: D. S. Malatesh, K. J. Ananda, C. Ansar Kamran, K. Ganesh Udupa

Abstract:

Dirofilaria repens is a mosquito-borne filarioid nematode of dogs and other carnivores and accidentally affects humans. D. repens is reported in many countries, including India. Subcutaneous dirofilariosis caused by D. repens is a zoonotic disease, widely distributed throughout Europe, Asia, and Africa, with higher prevalence reported in dogs from Sri Lanka (30-60%), Iran (61%) and Italy (21-25%). Dirofilariasis in dogs was diagnosed by detection of microfilariae in blood. Identification of different Dirofilaria species was done by using molecular methods like polymerase chain reaction (PCR). Even though many researchers reported molecular evidence of D. repens across India, to our best knowledge there is no data available on molecular diagnosis of D. repens in dogs and its zoonotic implication in Karnataka state a southern state in India. The aim of the present study was to identify the Dirofilaria species occurring in dogs from Karnataka, India. Out of 310 samples screened for the presence of microfilariae using traditional diagnostic methods, 99 (31.93%) were positive for the presence of microfilariae. Based on the morphometry, the microfilariae were identified as D. repens. For confirmation of species, the samples were subjected to PCR using pan filarial primers (DIDR-F1, DIDR-R1) for amplification of internal transcribed spacer region 2 (ITS2) of the ribosomal DNA. The PCR product of 484 base pairs on agarose gel was indicative of D. repens. Hence, a single PCR reaction using pan filarial primers can be used to differentiate filarial species found in dogs. The present study confirms that dirofilarial species occurring in dogs from Karnataka is D. repens and further sequencing studies are needed for genotypic characterization of D. repens.

Keywords: Dirofilaria repens, molecular characterization, polymerase chain reaction, Karnataka, India

Procedia PDF Downloads 129
6340 The Role of the Constructivist Learning Theory and Collaborative Learning Environment on Wiki Classroom and the Relationship between Them

Authors: Ibraheem Alzahrani

Abstract:

This paper seeks to discover the relationship between both the social constructivist learning theory and the collaborative learning environment. This relationship can be identified through given an example of the learning environment. Due to wiki characteristics, wiki can be used to understand the relationship between constructivist learning theory and collaborative learning environment. However, several evidences will come in this paper to support the idea of why wiki is the suitable method to explore the relationship between social constructivist theory and the collaborative learning and their role in learning. Moreover, learning activities in wiki classroom will be discussed in this paper to find out the result of the learners' interaction in the classroom groups, which will be through two types of communication; synchronous and asynchronous.

Keywords: social constructivist, collaborative, environment, wiki, activities

Procedia PDF Downloads 486
6339 The Probability Foundation of Fundamental Theoretical Physics

Authors: Quznetsov Gunn

Abstract:

In the study of the logical foundations of probability theory, it was found that the terms and equations of the fundamental theoretical physics represent terms and theorems of the classical probability theory, more precisely, of that part of this theory, which considers the probability of dot events in the 3 + 1 space-time. In particular, the masses, moments, energies, spins, etc. turn out of parameters of probability distributions such events. The terms and the equations of the electroweak and of the quark-gluon theories turn out the theoretical-probabilistic terms and theorems. Here the relation of a neutrino to his lepton becomes clear, the W and Z bosons masses turn out dynamic ones, the cause of the asymmetry between particles and antiparticles is the impossibility of the birth of single antiparticles. In addition, phenomena such as confinement and asymptotic freedom receive their probabilistic explanation. And here we have the logical foundations of the gravity theory with phenomena dark energy and dark matter.

Keywords: classical theory of probability, logical foundation of fundamental theoretical physics, masses, moments, energies, spins

Procedia PDF Downloads 279
6338 In Silico Exploration of Quinazoline Derivatives as EGFR Inhibitors for Lung Cancer: A Multi-Modal Approach Integrating QSAR-3D, ADMET, Molecular Docking, and Molecular Dynamics Analyses

Authors: Mohamed Moussaoui

Abstract:

A series of thirty-one potential inhibitors targeting the epidermal growth factor receptor kinase (EGFR), derived from quinazoline, underwent 3D-QSAR analysis using CoMFA and CoMSIA methodologies. The training and test sets of quinazoline derivatives were utilized to construct and validate the QSAR models, respectively, with dataset alignment performed using the lowest energy conformer of the most active compound. The best-performing CoMFA and CoMSIA models demonstrated impressive determination coefficients, with R² values of 0.981 and 0.978, respectively, and Leave One Out cross-validation determination coefficients, Q², of 0.645 and 0.729, respectively. Furthermore, external validation using a test set of five compounds yielded predicted determination coefficients, R² test, of 0.929 and 0.909 for CoMFA and CoMSIA, respectively. Building upon these promising results, eighteen new compounds were designed and assessed for drug likeness and ADMET properties through in silico methods. Additionally, molecular docking studies were conducted to elucidate the binding interactions between the selected compounds and the enzyme. Detailed molecular dynamics simulations were performed to analyze the stability, conformational changes, and binding interactions of the quinazoline derivatives with the EGFR kinase. These simulations provided deeper insights into the dynamic behavior of the compounds within the active site. This comprehensive analysis enhances the understanding of quinazoline derivatives as potential anti-cancer agents and provides valuable insights for lead optimization in the early stages of drug discovery, particularly for developing highly potent anticancer therapeutics

Keywords: 3D-QSAR, CoMFA, CoMSIA, ADMET, molecular docking, quinazoline, molecular dynamic, egfr inhibitors, lung cancer, anticancer

Procedia PDF Downloads 25
6337 Investigation of Interaction between Interferons and Polyethylene Glycol Using Molecular Dynamics Simulation

Authors: M. Dehestani, F. Kamali, M. Klantari Pour, L. Zeidabadi-Nejad

Abstract:

Chemical bonding between polyethylene glycol (PEG) with pharmaceutical proteins called pegylation is one of the most effective methods of improving the pharmacological properties. The covalent attachment of polyethylene glycol (PEG) to proteins will increase their pharmacologic properties. For the formation of a combination of pegylated protein should first be activated PEG and connected to the protein. Interferons(IFNs) are a family of cytokines which show antiviral effects in front of the biological and are responsible for setting safety system. In this study, the nature and properties of the interaction between active positions of IFNs and polyethylene glycol have been investigated using molecular dynamics simulation. The main aspect of this theoretical work focuses on the achievement of valuable data on the reaction pathways of PEG-IFNs and the transition state energy. Our results provide a new perspective on the interactions, chemical properties and reaction pathways between IFNs and PEG.

Keywords: interaction, interferons, molecular dynamics simulation, polyethylene glycol

Procedia PDF Downloads 225
6336 Research on Urban Design Method of Ancient City Guided by Catalyst Theory

Authors: Wang Zhiwei, Wang Weiwu

Abstract:

The process of urbanization in China has entered a critical period of transformation from urban expansion and construction to delicate urban design, thus forming a new direction in the field of urban design. So far, catalyst theory has become a prominent guiding strategy in urban planning and design. In this paper, under the background of urban renewal, catalyst theory is taken as the guiding ideology to explore the method of urban design in shouxian county. Firstly, this study briefly introduces and analyzes the catalyst theory. Through field investigation, it is found that the city has a large number of idle Spaces, such as abandoned factories and schools. In the design, the idle Spaces in the county town are utilized and interlinked in space, and functional interaction is carried out from the pattern of the county town. On the one hand, the results showed that the catalyst theory can enhance the vitality of the linear street space with a small amount of monomer construction. On the other hand, the city can also increase the cultural and economic sites of the city without damaging the historical relics and the sense of alterations of the ancient city, to improve the quality of life and quality of life of citizens. The city micro-transformation represented by catalyst theory can help ancient cities like shouxian to realize the activation of the old city and realize the gradual development.

Keywords: catalytic theory, urban design, China's ancient city, Renaissance

Procedia PDF Downloads 101
6335 Finite Element Molecular Modeling: A Structural Method for Large Deformations

Authors: A. Rezaei, M. Huisman, W. Van Paepegem

Abstract:

Atomic interactions in molecular systems are mainly studied by particle mechanics. Nevertheless, researches have also put on considerable effort to simulate them using continuum methods. In early 2000, simple equivalent finite element models have been developed to study the mechanical properties of carbon nanotubes and graphene in composite materials. Afterward, many researchers have employed similar structural simulation approaches to obtain mechanical properties of nanostructured materials, to simplify interface behavior of fiber-reinforced composites, and to simulate defects in carbon nanotubes or graphene sheets, etc. These structural approaches, however, are limited to small deformations due to complicated local rotational coordinates. This article proposes a method for the finite element simulation of molecular mechanics. For ease in addressing the approach, here it is called Structural Finite Element Molecular Modeling (SFEMM). SFEMM method improves the available structural approaches for large deformations, without using any rotational degrees of freedom. Moreover, the method simulates molecular conformation, which is a big advantage over the previous approaches. Technically, this method uses nonlinear multipoint constraints to simulate kinematics of the atomic multibody interactions. Only truss elements are employed, and the bond potentials are implemented through constitutive material models. Because the equilibrium bond- length, bond angles, and bond-torsion potential energies are intrinsic material parameters, the model is independent of initial strains or stresses. In this paper, the SFEMM method has been implemented in ABAQUS finite element software. The constraints and material behaviors are modeled through two Fortran subroutines. The method is verified for the bond-stretch, bond-angle and bond-torsion of carbon atoms. Furthermore, the capability of the method in the conformation simulation of molecular structures is demonstrated via a case study of a graphene sheet. Briefly, SFEMM builds up a framework that offers more flexible features over the conventional molecular finite element models, serving the structural relaxation modeling and large deformations without incorporating local rotational degrees of freedom. Potentially, the method is a big step towards comprehensive molecular modeling with finite element technique, and thereby concurrently coupling an atomistic domain to a solid continuum domain within a single finite element platform.

Keywords: finite element, large deformation, molecular mechanics, structural method

Procedia PDF Downloads 133
6334 Analysis of Kinetin Supramolecular Complex with Glytsirrizinic Acid and Based by Mass-Spectrometry Method

Authors: Bakhtishod Matmuratov, Sakhiba Madraximova, Rakhmat Esanov, Alimjan Matchanov

Abstract:

Studies have been performed to obtain complexes of glycyrrhizic acid and kinetins in a 2:1 ratio. The complex of glycyrrhizic acid and kinetins in a 2:1 ratio was considered evidence of the formation of a molecular complex by determining the molecular masses using chromato-mass spectroscopy and analyzing the IR spectra.

Keywords: monoammonium salt of glycyrrhizic acid, glycyrrhizic acid, supramolecular complex, isomolar series, IR spectroscopy

Procedia PDF Downloads 159
6333 The Instruction of Imagination: A Theory of Language as a Social Communication Technology

Authors: Daniel Dor

Abstract:

The research presents a new general theory of language as a socially-constructed communication technology, designed by cultural evolution for a very specific function: the instruction of imagination. As opposed to all the other systems of intentional communication, which provide materials for the interlocutors to experience, language allows speakers to instruct their interlocutors in the process of imagining the intended meaning-instead of experiencing it. It is thus the only system that bridges the experiential gaps between speakers. This is the key to its enormous success.

Keywords: experience, general theory of language, imagination, language as technology, social essence of language

Procedia PDF Downloads 563
6332 Phase Transition and Molecular Polarizability Studies in Liquid Crystalline Mixtures

Authors: M. Shahina, K. Fakruddin, C. M. Subhan, S. Rangappa

Abstract:

In this work, two mixtures with equal concentrations of 1) 4ꞌ-(6-(4-(pentylamino) methyl)-3-hydroxyphenoxy) hexyloxy) biphenyl-4-carbonitrile+-4-((4-(hexyloxy) benzylidene) amino) phenyl 4-butoxy benzoate and 2) 4ꞌ - (6-(4-(hexylamino) methyl)-3-hydroxyphenoxy) hexyloxy) biphenyl-4-carbonitrile+-4-((4-(octyloxy) benzylidene) amino) phenyl 4-butoxy benzoate, have been prepared. The transition temperature and optical texture are observed by using thermal microscopy. Density and birefringence studies are carried out on the above liquid crystalline mixtures. Using density and refractive indices data, the molecular polarizabilities are evaluated by using well-known Vuks and Neugebauer models. The molecular polarizability is also evaluated theoretically by Lippincott δ function model. The results reveal that the polarizability values are same in both experimental and theoretical methods.

Keywords: liquid crystals, optical textures, transition temperature, birefringence, polarizability

Procedia PDF Downloads 273
6331 Theoretical Insight into Ligand Free Manganese Catalyzed C-O Coupling Protocol for the Synthesis of Biaryl Ethers

Authors: Carolin Anna Joy, Rohith K. R, Rehin Sulay, Parvathy Santhoshkumar, G.Anil Kumar, Vibin Ipe Thomas

Abstract:

Ullmann coupling reactions are gaining great relevance owing to their contribution in the synthesis of biologically and pharmaceutically important compounds. Palladium and many other heavy metals have proven their excellent ability in coupling reaction, but the toxicity matters. The first-row transition metal also possess toxicity, except in the case of iron and manganese. The suitability of manganese as a catalyst is achieving great interest in oxidation, reduction, C-H activation, coupling reaction etc. In this presentation, we discuss the thermo chemistry of ligand free manganese catalyzed C-O coupling reaction between phenol and aryl halide for the synthesis of biaryl ethers using Density functional theory techniques. The mechanism involves an oxidative addition-reductive elimination step. The transition state for both the step had been studied and confirmed using Intrinsic Reaction Coordinate (IRC) calculation. The barrier height for the reaction had also been calculated from the rate determining step. The possibility of other mechanistic way had also been studied. To achieve further insight into the mechanism, substrate having various functional groups is considered in our study to direct their effect on the feasibility of the reaction.

Keywords: Density functional theory, Molecular Modeling, ligand free, biaryl ethers, Ullmann coupling

Procedia PDF Downloads 129
6330 Mechanical Properties of Carbon Nanofiber Reinforced Polymer Composites-Molecular Dynamics Approach

Authors: Sumit Sharma, Rakesh Chandra, Pramod Kumar, Navin Kumar

Abstract:

Molecular dynamics (MD) simulation has been used to study the effect of carbon nanofiber (CNF) volume fraction (Vf) and aspect ratio (l/d) on mechanical properties of CNF reinforced polypropylene (PP) composites. Materials Studio 5.5 has been used as a tool for finding the modulus and damping in composites. CNF composition in PP was varied by volume from 0 to 16%. Aspect ratio of CNF was varied from l/d=5 to l/d=100. To the best of the knowledge of the authors, till date there is no study, either experimental or analytical, which predict damping for CNF-PP composites at the nanoscale. Hence, this will be a valuable addition in the area of nanocomposites. Results show that with only 2% addition by volume of CNF in PP, E11 increases 748%. Increase in E22 is very less in comparison to the increase in E11. With increase in CNF aspect ratio (l/d) till l/d=60, the longitudinal loss factor (η11) decreases rapidly. Results of this study have been compared with those available in literature.

Keywords: carbon nanofiber, elasticity, mechanical properties, molecular dynamics

Procedia PDF Downloads 468
6329 Synthesis of Pyrimidine-Based Polymers Consist of 2-{4-[4,6-Bis-(4-Hexyl-Thiophen-2-yl)-Pyrimidin-2-yl]-Phenyl}-Thiazolo[5,4-B]Pyridine with Deep HOMO Level for Photovoltaics

Authors: Hyehyeon Lee, Jiwon Yu, Juwon Kim, Raquel Kristina Leoni Tumiar, Taewon Kim, Juae Kim, Hongsuk Suh

Abstract:

Photovoltaics, which have many advantages in cost, easy processing, and light-weight, have attracted attention. We synthesized pyrimidine-based conjugated polymers with 2-{4-[4,6-bis-(4-hexyl-thiophen-2-yl)-pyrimidin-2-yl]-phenyl}-thiazolo[5,4-b]pyridine (pPTP) which have an ability of powerful electron withdrawing and introduced into the PSCs. By Stille polymerization, we designed the conjugated polymers, pPTPBDT-12, pPTPBDT-EH, pPTPBDTT-EH and pPTPTTI. The HOMO energy levels of four polymers (pPTPBDT-12, pPTPBDT-EH, pPTPBDTT-EH and pPTPTTI) were at -5.61 ~ -5.89 eV, their LUMO (Lowest Unoccupied Molecular Orbital) energy levels were at -3.95 ~ -4.09 eV. The device including pPTPBDT-12 and PC71BM (1:2) indicated a V_oc of 0.67 V, a J_sc of 1.33 mA/cm², and a fill factor (FF) of 0.25, giving a power conversion efficiency (PCE) of 0.23%. The device including pPTPBDT-EH and PC71BM (1:2) indicated a V_oc of 0.72 V, a J_sc of 2.56 mA/cm², and a fill factor (FF) of 0.30, giving a power conversion efficiency of 0.56%. The device including pPTPBDTT-EH and PC71BM (1:2) indicated a V_oc of 0.72 V, a J_sc of 3.61 mA/cm², and a fill factor (FF) of 0.29, giving a power conversion efficiency of 0.74%. The device including pPTPTTI and PC71BM (1:2) indicated a V_oc of 0.83 V, a J_sc of 4.41 mA/cm², and a fill factor (FF) of 0.31, giving a power conversion efficiency of 1.13%. Therefore, pPTPBDT-12, pPTPBDT-EH, pPTPBDTT-EH, and pPTPTTI were synthesized by Stille polymerization. And We find one of the best efficiency for these polymers, called pPTPTTI. Their optical properties were measured and the results show that pyrimidine-based polymers especially like pPTPTTI have a great promise to act as the donor of the active layer.

Keywords: polymer solar cells, pyrimidine-based polymers, photovoltaics, conjugated polymer

Procedia PDF Downloads 182
6328 A Study of Families of Bistar and Corona Product of Graph: Reverse Topological Indices

Authors: Gowtham Kalkere Jayanna, Mohamad Nazri Husin

Abstract:

Graph theory, chemistry, and technology are all combined in cheminformatics. The structure and physiochemical properties of organic substances are linked using some useful graph invariants and the corresponding molecular graph. In this paper, we study specific reverse topological indices such as the reverse sum-connectivity index, the reverse Zagreb index, the reverse arithmetic-geometric, and the geometric-arithmetic, the reverse Sombor, the reverse Nirmala indices for the bistar graphs B (n: m) and the corona product Kₘ∘Kₙ', where Kₙ' Represent the complement of a complete graph Kₙ.

Keywords: reverse topological indices, bistar graph, the corona product, graph

Procedia PDF Downloads 80
6327 A Study on Application of Elastic Theory for Computing Flexural Stresses in Preflex Beam

Authors: Nasiri Ahmadullah, Shimozato Tetsuhiro, Masayuki Tai

Abstract:

This paper presents the step-by-step procedure for using Elastic Theory to calculate the internal stresses in composite bridge girders prestressed by the Preflexing Technology, called Prebeam in Japan and Preflex beam worldwide. Elastic Theory approaches preflex beams the same way as it does the conventional composite girders. Since preflex beam undergoes different stages of construction, calculations are made using different sectional and material properties. Stresses are calculated in every stage using the properties of the specific section. Stress accumulation gives the available stress in a section of interest. Concrete presence in the section implies prestress loss due to creep and shrinkage, however; more work is required to be done in this field. In addition to the graphical presentation of this application, this paper further discusses important notes of graphical comparison between the results of an experimental-only research carried out on a preflex beam, with the results of simulation based on the elastic theory approach, for an identical beam using Finite Element Modeling (FEM) by the author.

Keywords: composite girder, Elastic Theory, preflex beam, prestressing

Procedia PDF Downloads 263