Search results for: mixing process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15383

Search results for: mixing process

15113 Metal-Oxide-Semiconductor-Only Process Corner Monitoring Circuit

Authors: Davit Mirzoyan, Ararat Khachatryan

Abstract:

A process corner monitoring circuit (PCMC) is presented in this work. The circuit generates a signal, the logical value of which depends on the process corner only. The signal can be used in both digital and analog circuits for testing and compensation of process variations (PV). The presented circuit uses only metal-oxide-semiconductor (MOS) transistors, which allow increasing its detection accuracy, decrease power consumption and area. Due to its simplicity the presented circuit can be easily modified to monitor parametrical variations of only n-type and p-type MOS (NMOS and PMOS, respectively) transistors, resistors, as well as their combinations. Post-layout simulation results prove correct functionality of the proposed circuit, i.e. ability to monitor the process corner (equivalently die-to-die variations) even in the presence of within-die variations.

Keywords: detection, monitoring, process corner, process variation

Procedia PDF Downloads 497
15112 Efficiency of a Molecularly Imprinted Polymer for Selective Removal of Chlorpyrifos from Water Samples

Authors: Oya A. Urucu, Aslı B. Çiğil, Hatice Birtane, Ece K. Yetimoğlu, Memet Vezir Kahraman

Abstract:

Chlorpyrifos is an organophosphorus pesticide which can be found in environmental water samples. The efficiency and reuse of a molecularly imprinted polymer (chlorpyrifos - MIP) were investigated for the selective removal of chlorpyrifos residues. MIP was prepared with UV curing thiol-ene polymerization technology by using multifunctional thiol and ene monomers. The thiol-ene curing reaction is a radical induced process, however unlike other photoinitiated polymerization processes, this polymerization process is a free-radical reaction that proceeds by a step-growth mechanism, involving two main steps; a free-radical addition followed by a chain transfer reaction. It assures a very rapidly formation of a uniform crosslinked network with low shrinkage, reduced oxygen inhibition during curing and excellent adhesion. In this study, thiol-ene based UV-curable polymeric materials were prepared by mixing pentaerythritol tetrakis(3-mercaptopropionate), glyoxal bis diallyl acetal, polyethylene glycol diacrylate (PEGDA) and photoinitiator. Chlorpyrifos was added at a definite ratio to the prepared formulation. Chemical structure and thermal properties were characterized by FTIR and thermogravimetric analysis (TGA), respectively. The pesticide analysis was performed by gas chromatography-mass spectrometry (GC-MS). The influences of some analytical parameters such as pH, sample volume, amounts of analyte concentration were studied for the quantitative recoveries of the analyte. The proposed MIP method was applied to the determination of chlorpyrifos in river and tap water samples. The use of the MIP provided a selective and easy solution for removing chlorpyrifos from the water.

Keywords: molecularly imprinted polymers, selective removal, thilol-ene, uv-curable polymer

Procedia PDF Downloads 279
15111 Comprehensive Assessment of Energy Efficiency within the Production Process

Authors: S. Kreitlein, N. Eder, J. Franke

Abstract:

The importance of energy efficiency within the production process increases steadily. Unfortunately, so far no tools for a comprehensive assessment of energy efficiency within the production process exist. Therefore the Institute for Factory Automation and Production Systems of the Friedrich-Alexander-University Erlangen-Nuremberg has developed two methods with the goal of achieving transparency and a quantitative assessment of energy efficiency: EEV (Energy Efficiency Value) and EPE (Energetic Process Efficiency). This paper describes the basics and state of the art as well as the developed approaches.

Keywords: energy efficiency, energy efficiency value, energetic process efficiency, production

Procedia PDF Downloads 696
15110 Removal of Heavy Metals from Water in the Presence of Organic Wastes: Fruit Peels

Authors: Özge Yılmaz Gel, Berk Kılıç, Derin Dalgıç, Ela Mia Sevilla Levi, Ömer Aydın

Abstract:

In this experiment, our goal was to remove heavy metals from water. Most recent studies have used removing toxic heavy elements: Cu⁺², Cr⁺³ and Fe⁺³ ions from aqueous solutions has been previously investigated with different kinds of plants like kiwi and tangerines. However, in this study, three different fruit peels were used. We tested banana, peach, and potato peels to remove heavy metal ions from their solution. The first step of the experiment was to wash the peels with distilled water and then dry the peels in an oven for 48 hrs at 80°C. Once the peels were washed and dried, 0.2 grams were weighed and added into 200 mL of %0.1 percent heavy metal solutions by mass. The mixing process was done via a magnetic stirrer. Each sample was taken in 15-minute intervals, and absorbance changes of the solutions were detected using a UV-Vis Spectrophotometer. Among the used waste products, banana peel was the most efficient one. Moreover, the amount of fruit peel, pH values of the initial heavy metal solution, and initial concentration of heavy metal solutions were investigated to determine the effect of fruit peels.

Keywords: absorbance, heavy metal, removal of heavy metals, fruit peels

Procedia PDF Downloads 56
15109 Towards Incorporating Context Awareness into Business Process Management

Authors: Xiaohui Zhao, Shahan Mafuz

Abstract:

Context-aware technologies provide system applications with the awareness of environmental conditions, customer behaviour, object movements, etc. Further, with such capability system applications can be smart to adapt intelligently their responses to the changing conditions. Concerning business operations, this promises businesses that their business processes can run more intelligently, adaptively and flexibly, and thereby either improve customer experience, enhance reliability of service delivery, or lower operational cost, to make the business more competitive and sustainable. Aiming at realizing such context-aware business process management, this paper firstly explores its potential benefit and then identifies some gaps between the current business process management support and the expected. In addition, some preliminary solutions are also discussed with context definition, rule-based process execution, run-time process evolution, etc. A framework is also presented to give a conceptual architecture of context-aware business process management system to guide system implementation.

Keywords: business process adaptation, business process evolution, business process modelling, and context awareness

Procedia PDF Downloads 389
15108 Experience Report about the Inclusion of People with Disabilities in the Process of Testing an Accessible System for Learning Management

Authors: Marcos Devaner, Marcela Alves, Cledson Braga, Fabiano Alves, Wilton Bezerra

Abstract:

This article discusses the inclusion of people with disabilities in the process of testing an accessible system solution for distance education. The accessible system, team profile, methodologies and techniques covered in the testing process are presented. The testing process shown in this paper was designed from the experience with user. The testing process emerged from lessons learned from past experiences and the end user is present at all stages of the tests. Also, lessons learned are reported and how it was possible the maturing of the team and the methods resulting in a simple, productive and effective process.

Keywords: experience report, accessible systems, software testing, testing process, systems, e-learning

Procedia PDF Downloads 363
15107 Application of Large Eddy Simulation-Immersed Boundary Volume Penalization Method for Heat and Mass Transfer in Granular Layers

Authors: Artur Tyliszczak, Ewa Szymanek, Maciej Marek

Abstract:

Flow through granular materials is important to a vast array of industries, for instance in construction industry where granular layers are used for bulkheads and isolators, in chemical engineering and catalytic reactors where large surfaces of packed granular beds intensify chemical reactions, or in energy production systems, where granulates are promising materials for heat storage and heat transfer media. Despite the common usage of granulates and extensive research performed in this field, phenomena occurring between granular solid elements or between solids and fluid are still not fully understood. In the present work we analyze the heat exchange process between the flowing medium (gas, liquid) and solid material inside the granular layers. We consider them as a composite of isolated solid elements and inter-granular spaces in which a gas or liquid can flow. The structure of the layer is controlled by shapes of particular granular elements (e.g., spheres, cylinders, cubes, Raschig rings), its spatial distribution or effective characteristic dimension (total volume or surface area). We will analyze to what extent alteration of these parameters influences on flow characteristics (turbulent intensity, mixing efficiency, heat transfer) inside the layer and behind it. Analysis of flow inside granular layers is very complicated because the use of classical experimental techniques (LDA, PIV, fibber probes) inside the layers is practically impossible, whereas the use of probes (e.g. thermocouples, Pitot tubes) requires drilling of holes inside the solid material. Hence, measurements of the flow inside granular layers are usually performed using for instance advanced X-ray tomography. In this respect, theoretical or numerical analyses of flow inside granulates seem crucial. Application of discrete element methods in combination with the classical finite volume/finite difference approaches is problematic as a mesh generation process for complex granular material can be very arduous. A good alternative for simulation of flow in complex domains is an immersed boundary-volume penalization (IB-VP) in which the computational meshes have simple Cartesian structure and impact of solid objects on the fluid is mimicked by source terms added to the Navier-Stokes and energy equations. The present paper focuses on application of the IB-VP method combined with large eddy simulation (LES). The flow solver used in this work is a high-order code (SAILOR), which was used previously in various studies, including laminar/turbulent transition in free flows and also for flows in wavy channels, wavy pipes and over various shape obstacles. In these cases a formal order of approximation turned out to be in between 1 and 2, depending on the test case. The current research concentrates on analyses of the flows in dense granular layers with elements distributed in a deterministic regular manner and validation of the results obtained using LES-IB method and body-fitted approach. The comparisons are very promising and show very good agreement. It is found that the size, number of elements and their distribution have huge impact on the obtained results. Ordering of the granular elements (or lack of it) affects both the pressure drop and efficiency of the heat transfer as it significantly changes mixing process.

Keywords: granular layers, heat transfer, immersed boundary method, numerical simulations

Procedia PDF Downloads 104
15106 Transporting the Setting of the Beloved Musical, Peter Pan, to Colonial India

Authors: R. Roznowski

Abstract:

This paper is an examination of a recent Michigan State University production of the classic musical, Peter Pan. In this production, approved by the licensor, the action was moved to Colonial India transforming the musical’s message to include themes of cultural identity, racism, classism and ultimately inclusion. Major character changes and casting decisions expanded the scope of the musical while still retaining the original book and score. Major changes included reframing the Darlings as British Colonials stationed in India. The Lost Boy’s as mixed race children of British officials and their Indian nannies, the Pirates were a female 'fishing fleet' a group of women sent from England to keep the British soldiers from mixing with the locals and the Michigan State University Bhangra Dance Team played the Indians in the production. Traditional Indian theatrical techniques were also employed in the storytelling. The presentation will cover the key changes to the musical, the rehearsal process, historical accuracy and audience reaction. A final analysis of cultural appropriation versus historical reframing will be examined.

Keywords: directing, history, musical theatre, producing

Procedia PDF Downloads 221
15105 Development of new Ecological Cleaning Process of Metal Sheets

Authors: L. M. López López, J. V. Montesdeoca Contreras, A. R. Cuji Fajardo, L. E. Garzón Muñoz, J. I. Fajardo Seminario

Abstract:

In this article a new method of cleaning process of metal sheets for household appliances was developed, using low-pressure cold plasma. In this context, this research consist in analyze the results of metal sheets cleaning process using plasma and compare with pickling process to determinate the efficiency of each process and the level of contamination produced. Surface Cleaning was evaluated by measuring the contact angle with deionized water, diiodo methane and ethylene glycol, for the calculus of the surface free energy by means of the Fowkes theories and Wu. Showing that low-pressure cold plasma is very efficient both in cleaning process how in environment impact.

Keywords: efficient use of plasma, ecological impact of plasma, metal sheets cleaning means, plasma cleaning process.

Procedia PDF Downloads 327
15104 Case-Based Reasoning Approach for Process Planning of Internal Thread Cold Extrusion

Authors: D. Zhang, H. Y. Du, G. W. Li, J. Zeng, D. W. Zuo, Y. P. You

Abstract:

For the difficult issues of process selection, case-based reasoning technology is applied to computer aided process planning system for cold form tapping of internal threads on the basis of similarity in the process. A model is established based on the analysis of process planning. Case representation and similarity computing method are given. Confidence degree is used to evaluate the case. Rule-based reuse strategy is presented. The scheme is illustrated and verified by practical application. The case shows the design results with the proposed method are effective.

Keywords: case-based reasoning, internal thread, cold extrusion, process planning

Procedia PDF Downloads 481
15103 Extraction of Cellulose Nanofibrils from Pulp Using Enzymatic Pretreatment and Evaluation of Their Papermaking Potential

Authors: Ajay Kumar Singh, Arvind Kumar, S. P. Singh

Abstract:

Cellulose nanofibrils (CNF) have shown potential of their extensive use in various fields, including papermaking, due to their unique characteristics. In this study, CNF’s were prepared by fibrillating the pulp obtained from raw materials e.g. bagasse, hardwood and softwood using enzymatic pretreatment followed by mechanical refining. These nanofibrils, when examined under FE-SEM, show that partial fibrillation on fiber surface has resulted in production of nanofibers. Mixing these nanofibers with the unrefined and normally refined fibers show their reinforcing effect. This effect is manifested in observing the improvement in the physical and mechanical properties e.g. tensile index and burst index of paper. Tear index, however, was observed to decrease on blending with nanofibers. The optical properties of paper sheets made from blended fibers showed no significant change in comparison to those made from only mechanically refined pulp. Mixing of normal pulp fibers with nanofibers show increase in ºSR and consequent decrease in drainage rate. These changes observed in mechanical, optical and other physical properties of the paper sheets made from nanofibrils blended pulp have been tried to explain considering the distribution of the nanofibrils alongside microfibrils in the fibrous network. Since usually, paper/boards with higher strength are observed to have diminished optical properties which is a drawback in their quality, the present work has the potential for developing paper/boards having improved strength alongwith undiminished optical properties utilising the concepts of nanoscience and nanotechnology.

Keywords: enzymatic pretreatment, mechanical refining, nanofibrils, paper properties

Procedia PDF Downloads 330
15102 Concept Drifts Detection and Localisation in Process Mining

Authors: M. V. Manoj Kumar, Likewin Thomas, Annappa

Abstract:

Process mining provides methods and techniques for analyzing event logs recorded in modern information systems that support real-world operations. While analyzing an event-log, state-of-the-art techniques available in process mining believe that the operational process as a static entity (stationary). This is not often the case due to the possibility of occurrence of a phenomenon called concept drift. During the period of execution, the process can experience concept drift and can evolve with respect to any of its associated perspectives exhibiting various patterns-of-change with a different pace. Work presented in this paper discusses the main aspects to consider while addressing concept drift phenomenon and proposes a method for detecting and localizing the sudden concept drifts in control-flow perspective of the process by using features extracted by processing the traces in the process log. Our experimental results are promising in the direction of efficiently detecting and localizing concept drift in the context of process mining research discipline.

Keywords: abrupt drift, concept drift, sudden drift, control-flow perspective, detection and localization, process mining

Procedia PDF Downloads 317
15101 Impure CO₂ Solubility Trapping in Deep Saline Aquifers: Role of Operating Conditions

Authors: Seyed Mostafa Jafari Raad, Hassan Hassanzadeh

Abstract:

Injection of impurities along with CO₂ into saline aquifers provides an exceptional prospect for low-cost carbon capture and storage technologies and can potentially accelerate large-scale implementation of geological storage of CO₂. We have conducted linear stability analyses and numerical simulations to investigate the effects of permitted impurities in CO₂ streams on the onset of natural convection and dynamics of subsequent convective mixing. We have shown that the rate of dissolution of an impure CO₂ stream with H₂S highly depends on the operating conditions such as temperature, pressure, and composition of impurity. Contrary to findings of previous studies, our results show that an impurity such as H₂S can potentially reduce the onset time of natural convection and can accelerate the subsequent convective mixing. However, at the later times, the rate of convective dissolution is adversely affected by the impurities. Therefore, the injection of an impure CO₂ stream can be engineered to improve the rate of dissolution of CO₂, which leads to higher storage security and efficiency. Accordingly, we have identified the most favorable CO₂ stream compositions based on the geophysical properties of target aquifers. Information related to the onset of natural convection such as the scaling relations and the most favorable operating conditions for CO₂ storage developed in this study are important in proper design, site screening, characterization and safety of geological storage. This information can be used to either identify future geological candidates for acid gas disposal or reviewing the current operating conditions of licensed injection sites.

Keywords: CO₂ storage, solubility trapping, convective dissolution, storage efficiency

Procedia PDF Downloads 172
15100 Microwave Dielectric Constant Measurements of Titanium Dioxide Using Five Mixture Equations

Authors: Jyh Sheen, Yong-Lin Wang

Abstract:

This research dedicates to find a different measurement procedure of microwave dielectric properties of ceramic materials with high dielectric constants. For the composite of ceramic dispersed in the polymer matrix, the dielectric constants of the composites with different concentrations can be obtained by various mixture equations. The other development of mixture rule is to calculate the permittivity of ceramic from measurements on composite. To do this, the analysis method and theoretical accuracy on six basic mixture laws derived from three basic particle shapes of ceramic fillers have been reported for dielectric constants of ceramic less than 40 at microwave frequency. Similar researches have been done for other well-known mixture rules. They have shown that both the physical curve matching with experimental results and low potential theory error are important to promote the calculation accuracy. Recently, a modified of mixture equation for high dielectric constant ceramics at microwave frequency has also been presented for strontium titanate (SrTiO3) which was selected from five more well known mixing rules and has shown a good accuracy for high dielectric constant measurements. However, it is still not clear the accuracy of this modified equation for other high dielectric constant materials. Therefore, the five more well known mixing rules are selected again to understand their application to other high dielectric constant ceramics. The other high dielectric constant ceramic, TiO2 with dielectric constant 100, was then chosen for this research. Their theoretical error equations are derived. In addition to the theoretical research, experimental measurements are always required. Titanium dioxide is an interesting ceramic for microwave applications. In this research, its powder is adopted as the filler material and polyethylene powder is like the matrix material. The dielectric constants of those ceramic-polyethylene composites with various compositions were measured at 10 GHz. The theoretical curves of the five published mixture equations are shown together with the measured results to understand the curve matching condition of each rule. Finally, based on the experimental observation and theoretical analysis, one of the five rules was selected and modified to a new powder mixture equation. This modified rule has show very good curve matching with the measurement data and low theoretical error. We can then calculate the dielectric constant of pure filler medium (titanium dioxide) by those mixing equations from the measured dielectric constants of composites. The accuracy on the estimating dielectric constant of pure ceramic by various mixture rules will be compared. This modified mixture rule has also shown good measurement accuracy on the dielectric constant of titanium dioxide ceramic. This study can be applied to the microwave dielectric properties measurements of other high dielectric constant ceramic materials in the future.

Keywords: microwave measurement, dielectric constant, mixture rules, composites

Procedia PDF Downloads 341
15099 Surface Acoustic Wave (SAW)-Induced Mixing Enhances Biomolecules Kinetics in a Novel Phase-Interrogation Surface Plasmon Resonance (SPR) Microfluidic Biosensor

Authors: M. Agostini, A. Sonato, G. Greco, M. Travagliati, G. Ruffato, E. Gazzola, D. Liuni, F. Romanato, M. Cecchini

Abstract:

Since their first demonstration in the early 1980s, surface plasmon resonance (SPR) sensors have been widely recognized as useful tools for detecting chemical and biological species, and the interest of the scientific community toward this technology has known a rapid growth in the past two decades owing to their high sensitivity, label-free operation and possibility of real-time detection. Recent works have suggested that a turning point in SPR sensor research would be the combination of SPR strategies with other technologies in order to reduce human handling of samples, improve integration and plasmonic sensitivity. In this light, microfluidics has been attracting growing interest. By properly designing microfluidic biochips it is possible to miniaturize the analyte-sensitive areas with an overall reduction of the chip dimension, reduce the liquid reagents and sample volume, improve automation, and increase the number of experiments in a single biochip by multiplexing approaches. However, as the fluidic channel dimensions approach the micron scale, laminar flows become dominant owing to the low Reynolds numbers that typically characterize microfluidics. In these environments mixing times are usually dominated by diffusion, which can be prohibitively long and lead to long-lasting biochemistry experiments. An elegant method to overcome these issues is to actively perturb the liquid laminar flow by exploiting surface acoustic waves (SAWs). With this work, we demonstrate a new approach for SPR biosensing based on the combination of microfluidics, SAW-induced mixing and the real-time phase-interrogation grating-coupling SPR technology. On a single lithium niobate (LN) substrate the nanostructured SPR sensing areas, interdigital transducer (IDT) for SAW generation and polydimethylsiloxane (PDMS) microfluidic chambers were fabricated. SAWs, impinging on the microfluidic chamber, generate acoustic streaming inside the fluid, leading to chaotic advection and thus improved fluid mixing, whilst analytes binding detection is made via SPR method based on SPP excitation via gold metallic grating upon azimuthal orientation and phase interrogation. Our device has been fully characterized in order to separate for the very first time the unwanted SAW heating effect with respect to the fluid stirring inside the microchamber that affect the molecules binding dynamics. Avidin/biotin assay and thiol-polyethylene glycol (bPEG-SH) were exploited as model biological interaction and non-fouling layer respectively. Biosensing kinetics time reduction with SAW-enhanced mixing resulted in a ≈ 82% improvement for bPEG-SH adsorption onto gold and ≈ 24% for avidin/biotin binding—≈ 50% and 18% respectively compared to the heating only condition. These results demonstrate that our biochip can significantly reduce the duration of bioreactions that usually require long times (e.g., PEG-based sensing layer, low concentration analyte detection). The sensing architecture here proposed represents a new promising technology satisfying the major biosensing requirements: scalability and high throughput capabilities. The detection system size and biochip dimension could be further reduced and integrated; in addition, the possibility of reducing biological experiment duration via SAW-driven active mixing and developing multiplexing platforms for parallel real-time sensing could be easily combined. In general, the technology reported in this study can be straightforwardly adapted to a great number of biological system and sensing geometry.

Keywords: biosensor, microfluidics, surface acoustic wave, surface plasmon resonance

Procedia PDF Downloads 248
15098 Clay Effect on PET/Clay and PEN/Clay Nanocomposites Properties

Authors: F. Zouai, F. Z. Benabid, S. Bouhelal, D. Benachour

Abstract:

Reinforced plastics or nanocomposites have attracted considerable attention in scientific and industrial fields because a very small amount of clay can significantly improve the properties of the polymer. The polymeric matrices used in this work are two saturated polyesters, i.e., polyethylene terephthalate (PET) and polyethylene naphthalate (PEN). The success of processing compatible blends, based on poly(ethylene terephthalate) (PET)/poly(ethylene naphthalene) (PEN)/clay nanocomposites in one step by reactive melt extrusion is described. Untreated clay was first purified and functionalized ‘in situ’ with a compound based on an organic peroxide/ sulfur mixture and (tetramethylthiuram disulfide) as the activator for sulfur. The PET and PEN materials were first separately mixed in the molten state with functionalized clay. The PET/4 wt% clay and PEN/7.5 wt% clay compositions showed total exfoliation. These compositions, denoted nPET and nPEN, respectively, were used to prepare new n(PET/PEN) nanoblends in the same mixing batch. The n(PET/PEN) nanoblends were compared to neat PET/PEN blends. The blends and nanocomposites were characterized using various techniques. Microstructural and nanostructural properties were investigated. Fourier transform infrared spectroscopy (FTIR) results showed that the exfoliation of tetrahedral clay nanolayers is complete, and the octahedral structure totally disappears. It was shown that total exfoliation, confirmed by wide-angle X-ray scattering (WAXS) measurements, contributes to the enhancement of impact strength and tensile modulus. In addition, WAXS results indicated that all samples are amorphous. The differential scanning calorimetry (DSC) study indicated the occurrence of one glass transition temperature Tg, one crystallization temperature Tc and one melting temperature Tm for every composition.

Keywords: exfoliation, DRX, DSC, montmorillonite, nanocomposites, PEN, PET, plastograph, reactive melt-mixing

Procedia PDF Downloads 301
15097 Transient Electrical Resistivity and Elastic Wave Velocity of Sand-Cement-Inorganic Binder Mixture

Authors: Kiza Rusati Pacifique, Ki-il Song

Abstract:

The cement milk grout has been used for ground improvement. Due to the environmental issues related to cement, the reduction of cement usage is requesting. In this study, inorganic binder is introduced to reduce the use of cement contents for ground improvement. To evaluate transient electrical and mechanical properties of sand-cement-inorganic binder mixture, two non-destructive testing (NDT) methods, Electrical Resistivity (ER) and Free Free Resonant Column (FFRC) tests were adopted in addition to unconfined compressive strength test. Electrical resistivity, longitudinal wave velocity and damping ratio of sand-cement admixture samples improved with addition of inorganic binders were measured. Experimental tests were performed considering four different mixing ratios and three different cement contents depending on the curing time. Results show that mixing ratio and curing time have considerable effects on electrical and mechanical properties of mixture. Unconfined compressive strength (UCS) decreases as the cement content decreases. However, sufficient grout strength can be obtained with increase of content of inorganic binder. From the results, it is found that the inorganic binder can be used to enhance the mechanical properties of mixture and reduce the cement content. It is expected that data and trends proposed in this study can be used as reference in predicting grouting quality in the field.

Keywords: damping ratio, electrical resistivity, ground improvement, inorganic binder, longitudinal wave velocity, unconfined compression strength

Procedia PDF Downloads 323
15096 Towards Accurate Velocity Profile Models in Turbulent Open-Channel Flows: Improved Eddy Viscosity Formulation

Authors: W. Meron Mebrahtu, R. Absi

Abstract:

Velocity distribution in turbulent open-channel flows is organized in a complex manner. This is due to the large spatial and temporal variability of fluid motion resulting from the free-surface turbulent flow condition. This phenomenon is complicated further due to the complex geometry of channels and the presence of solids transported. Thus, several efforts were made to understand the phenomenon and obtain accurate mathematical models that are suitable for engineering applications. However, predictions are inaccurate because oversimplified assumptions are involved in modeling this complex phenomenon. Therefore, the aim of this work is to study velocity distribution profiles and obtain simple, more accurate, and predictive mathematical models. Particular focus will be made on the acceptable simplification of the general transport equations and an accurate representation of eddy viscosity. Wide rectangular open-channel seems suitable to begin the study; other assumptions are smooth-wall, and sediment-free flow under steady and uniform flow conditions. These assumptions will allow examining the effect of the bottom wall and the free surface only, which is a necessary step before dealing with more complex flow scenarios. For this flow condition, two ordinary differential equations are obtained for velocity profiles; from the Reynolds-averaged Navier-Stokes (RANS) equation and equilibrium consideration between turbulent kinetic energy (TKE) production and dissipation. Then different analytic models for eddy viscosity, TKE, and mixing length were assessed. Computation results for velocity profiles were compared to experimental data for different flow conditions and the well-known linear, log, and log-wake laws. Results show that the model based on the RANS equation provides more accurate velocity profiles. In the viscous sublayer and buffer layer, the method based on Prandtl’s eddy viscosity model and Van Driest mixing length give a more precise result. For the log layer and outer region, a mixing length equation derived from Von Karman’s similarity hypothesis provides the best agreement with measured data except near the free surface where an additional correction based on a damping function for eddy viscosity is used. This method allows more accurate velocity profiles with the same value of the damping coefficient that is valid under different flow conditions. This work continues with investigating narrow channels, complex geometries, and the effect of solids transported in sewers.

Keywords: accuracy, eddy viscosity, sewers, velocity profile

Procedia PDF Downloads 85
15095 Cavity-Type Periodically-Poled LiNbO3 Device for Highly-Efficient Third-Harmonic Generation

Authors: Isao Tomita

Abstract:

We develop a periodically-poled LiNbO3 (PPLN) device for highly-efficient third-harmonic generation (THG), where the THG efficiency is enhanced with a cavity. THG can usually be produced via χ(3)-nonlinear materials by optical pumping with very high pump-power. Instead, we here propose THG by moderate-power pumping through a specially-designed PPLN device containing only χ(2)-nonlinearity, where sum-frequency generation in the χ(2) process is employed for the mixing of a pump beam and a second-harmonic-generation (SHG) beam produced from the pump beam. The cavity is designed to increase the SHG power with dichroic mirrors attached to both ends of the device that perfectly reflect the SHG beam back to the device and yet let the pump and THG beams pass through the mirrors. This brings about a THG-power enhancement because of THG power proportional to the enhanced SHG power. We examine the THG-efficiency dependence on the mirror reflectance and show that very high THG-efficiency is obtained at moderate pump-power when compared with that of a cavity-free PPLN device.

Keywords: cavity, periodically-poled LiNbO₃, sum-frequency generation, third-harmonic generation

Procedia PDF Downloads 238
15094 Mixed Model Sequencing in Painting Production Line

Authors: Unchalee Inkampa, Tuanjai Somboonwiwat

Abstract:

Painting process of automobiles and automobile parts, which is a continuous process based on EDP (Electrode position paint, EDP). Through EDP, all work pieces will be continuously sent to the painting process. Work process can be divided into 2 groups based on the running time: Painting Room 1 and Painting Room 2. This leads to continuous operation. The problem that arises is waiting for workloads onto Painting Room. The grading process EDP to Painting Room is a major problem. Therefore, this paper aim to develop production sequencing method by applying EDP to painting process. It also applied fixed rate launching for painting room and earliest due date (EDD) for EDP process and swap pairwise interchange for waiting time to a minimum of machine. The result found that the developed method could improve painting reduced waiting time, on time delivery, meeting customers wants and improved productivity of painting unit.

Keywords: sequencing, mixed model lines, painting process, electrode position paint

Procedia PDF Downloads 392
15093 Trace Logo: A Notation for Representing Control-Flow of Operational Process

Authors: M. V. Manoj Kumar, Likewin Thomas, Annappa

Abstract:

Process mining research discipline bridges the gap between data mining and business process modeling and analysis, it offers the process-centric and end-to-end methods/techniques for analyzing information of real-world process detailed in operational event-logs. In this paper, we have proposed a notation called trace logo for graphically representing control-flow perspective (order of execution of activities) of process. A trace logo consists of a stack of activity names at each position, sizes of the activity name indicates their frequency in the traces and the total height of the activity depicts the information content of the position. A trace logo created from a set of aligned traces generated using Multiple Trace Alignment technique.

Keywords: consensus trace, process mining, multiple trace alignment, trace logo

Procedia PDF Downloads 330
15092 Axiomatic Design of Laser Beam Machining Process

Authors: Nikhil Deshpande, Rahul Mahajan

Abstract:

Laser Beam Machining (LBM) is a non-traditional machining process that has inherent problems like dross, striation, and Heat Affected Zone (HAZ) which reduce the quality of machining. In the present day scenario, these problems are controlled only by iteratively adjusting a large number of process parameters. This paper applies Axiomatic Design principles to design LBM process so as to eliminate the problem of dross and striation and minimize the effect of HAZ. Process parameters and their ranges are proposed to set-up the LBM process, execute the cut and finish the workpiece so as to obtain the best quality cut.

Keywords: laser beam machining, dross, striation, heat affected zone, axiomatic design

Procedia PDF Downloads 346
15091 Process Modeling of Electric Discharge Machining of Inconel 825 Using Artificial Neural Network

Authors: Himanshu Payal, Sachin Maheshwari, Pushpendra S. Bharti

Abstract:

Electrical discharge machining (EDM), a non-conventional machining process, finds wide applications for shaping difficult-to-cut alloys. Process modeling of EDM is required to exploit the process to the fullest. Process modeling of EDM is a challenging task owing to involvement of so many electrical and non-electrical parameters. This work is an attempt to model the EDM process using artificial neural network (ANN). Experiments were carried out on die-sinking EDM taking Inconel 825 as work material. ANN modeling has been performed using experimental data. The prediction ability of trained network has been verified experimentally. Results indicate that ANN can predict the values of performance measures of EDM satisfactorily.

Keywords: artificial neural network, EDM, metal removal rate, modeling, surface roughness

Procedia PDF Downloads 385
15090 Numerical Investigation of a Slightly Oblique Round Jet Flowing into a Uniform Counterflow Stream

Authors: Amani Amamou, Sabra Habli, Nejla Mahjoub Saïd, Philippe Bournot, Georges Le Palec

Abstract:

A counterflowing jet is a particular configuration of turbulent jets issuing into a moving ambient which has not carried much attention in literature compared with jet in a coflow or in a crossflow. This is due to the marked instability of the jet in a counterflow coupled with experimental and theoretical difficulties related to the flow inversion phenomenon. Nevertheless, jets in a counterflow are encountered in many engineering applications which required enhanced mixing as combustion, process and environmental engineering. In this work, we propose to investigate a round turbulent jet flowing into a uniform counterflow stream through a numerical approach. A hydrodynamic and thermal study of a slightly oblique round jets issuing into a uniform counterflow stream is carried out for different jet-to-counterflow velocity ratios ranging between 3.1 and 15. It is found that even a slight inclination of the jet in the vertical direction of the flow affects the structure and the velocity field of the counterflowing jet. In addition, the evolution of passive scalar temperature and pertinent length scales are presented at various velocity ratios, confirming that the flow is sensitive to directional perturbations.

Keywords: jet, counterflow, velocity, temperature, jet inclination

Procedia PDF Downloads 243
15089 Programming Systems in Implementation of Process Safety at Chemical Process Industry

Authors: Maryam Shayan

Abstract:

Programming frameworks have been utilized as a part of chemical industry process safety operation and configuration to enhance its effectiveness. This paper gives a brief survey and investigation of the best in class and effects of programming frameworks in process security. A study was completed by talking staff accountable for procedure wellbeing practices in the Iranian chemical process industry and diving into writing of innovation for procedure security. This article investigates the useful and operational attributes of programming frameworks for security and endeavors to sort the product as indicated by its level of effect in the administration chain of importance. The study adds to better comprehension of the parts of Information Communication Technology in procedure security, the future patterns and conceivable gaps for innovative work.

Keywords: programming frameworks, chemical industry process, process security, administration chain, information communication technology

Procedia PDF Downloads 344
15088 Reduction Shrinkage of Concrete without Use Reinforcement

Authors: Martin Tazky, Rudolf Hela, Lucia Osuska, Petr Novosad

Abstract:

Concrete’s volumetric changes are natural process caused by silicate minerals’ hydration. These changes can lead to cracking and subsequent destruction of cementitious material’s matrix. In most cases, cracks can be assessed as a negative effect of hydration, and in all cases, they lead to an acceleration of degradation processes. Preventing the formation of these cracks is, therefore, the main effort. Once of the possibility how to eliminate this natural concrete shrinkage process is by using different types of dispersed reinforcement. For this application of concrete shrinking, steel and polymer reinforcement are preferably used. Despite ordinarily used reinforcement in concrete to eliminate shrinkage it is possible to look at this specific problematic from the beginning by itself concrete mix composition. There are many secondary raw materials, which are helpful in reduction of hydration heat and also with shrinkage of concrete during curing. The new science shows the possibilities of shrinkage reduction also by the controlled formation of hydration products, which could act by itself morphology as a traditionally used dispersed reinforcement. This contribution deals with the possibility of controlled formation of mono- and tri-sulfate which are considered like degradation minerals. Mono- and tri- sulfate's controlled formation in a cementitious composite can be classified as a self-healing ability. Its crystal’s growth acts directly against the shrinking tension – this reduces the risk of cracks development. Controlled formation means that these crystals start to grow in the fresh state of the material (e.g. concrete) but stop right before it could cause any damage to the hardened material. Waste materials with the suitable chemical composition are very attractive precursors because of their added value in the form of landscape pollution’s reduction and, of course, low cost. In this experiment, the possibilities of using the fly ash from fluidized bed combustion as a mono- and tri-sulphate formation additive were investigated. The experiment itself was conducted on cement paste and concrete and specimens were subjected to a thorough analysis of physicomechanical properties as well as microstructure from the moment of mixing up to 180 days. In cement composites, were monitored the process of hydration and shrinkage. In a mixture with the used admixture of fluidized bed combustion fly ash, possible failures were specified by electronic microscopy and dynamic modulus of elasticity. The results of experiments show the possibility of shrinkage concrete reduction without using traditionally dispersed reinforcement.

Keywords: shrinkage, monosulphates, trisulphates, self-healing, fluidized fly ash

Procedia PDF Downloads 165
15087 Investigation of Hydrate Formation of Associated Petroleum Gas From Promoter Solutions for the Purpose of Utilization and Reduction of Its Burning

Authors: Semenov Matvei, Stoporev Andrey, Pavelyev Roman, Varfolomeev Mikhail

Abstract:

Gas hydrates are host-guest compounds. Guest molecules can be low molecular weight components of associated petroleum gas (C1-C4 hydrocarbons), carbon dioxide, hydrogen sulfide, and nitrogen. Gas hydrates have a number of unique properties that make them interesting from a technological point of view, for example, for storing hydrocarbon gases in solid form under moderate thermobaric conditions. The hydrate form of gas has a number of advantages, including a significant gas content in the hydrate, relative safety and environmental friendliness of the process. Such technology could be especially useful in cold regions, where hydrate production, storage and transportation can be more energy efficient. Recently, new developments have been proposed that seek to reduce the number of steps to obtain the finished hydrate, for example, using a pressing device/screw inside the reactor. However, the energy consumption required for the hydrate formation process remains a challenge. Thus, the goal of the current work is to study the patterns and mechanisms of the hydrate formation process using small additions of hydrate formation promoters under static conditions. The study of these aspects will help solve the problem of accelerated production of gas hydrates with minimal energy consumption. Currently, new compounds have been developed that can accelerate the formation of methane hydrate with a small amount of promoter in water, not exceeding 0.1% by weight. To test the influence of promoters on the process of hydrate formation, standard experiments are carried out under dynamic conditions with stirring. During such experiments, the time at which hydrate formation begins (induction period), the temperature at which formation begins (supercooling), the rate of hydrate formation, and the degree of conversion of water to hydrate are assessed. This approach helps to determine the most effective compound in comparative experiments with different promoters and select their optimal concentration. These experimental studies made it possible to study the features of the formation of associated petroleum gas hydrate from promoter solutions under static conditions. Phase transformations were studied using high-pressure micro-differential scanning calorimetry under various experimental conditions. Visual studies of the growth mode of methane hydrate depending on the type of promoter were also carried out. The work is an extension of the methodology for studying the effect of promoters on the process of associated petroleum gas hydrate formation in order to identify new ways to accelerate the formation of gas hydrates without the use of mixing. This work presents the results of a study of the process of associated petroleum gas hydrate formation using high-pressure differential scanning micro-calorimetry, visual investigation, gas chromatography, autoclaves study and stability data. It was found that the synthesized compounds multiply the conversion of water into hydrate under static conditions up to 96% due to a change in the growth mechanism of associated petroleum gas hydrate.

Keywords: gas hydrate, gas storage, promotor, associated petroleum gas

Procedia PDF Downloads 33
15086 Intelligent Process Data Mining for Monitoring for Fault-Free Operation of Industrial Processes

Authors: Hyun-Woo Cho

Abstract:

The real-time fault monitoring and diagnosis of large scale production processes is helpful and necessary in order to operate industrial process safely and efficiently producing good final product quality. Unusual and abnormal events of the process may have a serious impact on the process such as malfunctions or breakdowns. This work try to utilize process measurement data obtained in an on-line basis for the safe and some fault-free operation of industrial processes. To this end, this work evaluated the proposed intelligent process data monitoring framework based on a simulation process. The monitoring scheme extracts the fault pattern in the reduced space for the reliable data representation. Moreover, this work shows the results of using linear and nonlinear techniques for the monitoring purpose. It has shown that the nonlinear technique produced more reliable monitoring results and outperforms linear methods. The adoption of the qualitative monitoring model helps to reduce the sensitivity of the fault pattern to noise.

Keywords: process data, data mining, process operation, real-time monitoring

Procedia PDF Downloads 610
15085 A Process to Support Multidisciplinary Teams to Design Serious Games

Authors: Naza Djafarova, Tony Bates, Margaret Verkuyl, Leonora Zefi, Ozgur Turetken, Alex Ferworn, Mastrilli Paula, Daria Romaniuk, Kosha Bramesfeld, Anastasia Dimitriadou, Cheryl To

Abstract:

Designing serious games for education is a challenging and resource-intensive effort. If a well-designed process that balances pedagogical principles with game mechanics is in place, it can help to simplify the design process of serious games and increase efficiency. Multidisciplinary teams involved in designing serious games can benefit tremendously from such a process in their endeavours to develop and implement these games at undergraduate and graduate levels. This paper presentation will outline research results on identified gaps within existing processes and frameworks and present an adapted process that emerged from the research. The research methodology was based on a survey, semi-structured interviews and workshops for testing the adapted process for game design. Based on the findings, the authors propose a simple process for the pre-production stage of serious game design that may help guide multidisciplinary teams in their work. This process was used to facilitate team brainstorming, and is currently being tested to assess if multidisciplinary teams find value in using it in their process of designing serious games.

Keywords: serious game-design, multidisciplinary team, game design framework, learning games, multidisciplinary game design process

Procedia PDF Downloads 394
15084 Investigating the Properties of Asphalt and Asphalt Mixture Based on the Effect of Waste Toner

Authors: Prince Igor Itoua, Daquan Sun, Shihui Shen

Abstract:

This study aimed at investigating the properties of asphalt and mix asphalt based on the effects of waste toner sources (WT1 and WT2) with 8% dosage waste toner powders (WT). The test results included penetration, softening points, ductility, G*sinδ, G*/sinδ, Ideal cracking test(IDEAL-CT), and Ideal shear rutting test(IDEAL-RT). The results showed that the base binder with WT2 had a significantly higher viscosity value compared to the WT1 modified binder, and thus, higher energy for mixing and compaction is needed. Fur-thermore, the results of penetration, softening points, G*sinδ, and G*/sinδ were all affected by waste toner type. In terms of asphalt mixture, the IDEAL-RT test revealed that the addition of waste toner improved the rutting resistance of the asphalt mixture regardless of toner type. Further, CTindex values for waste toner-modified asphalt mixtures show no significant difference. Above all, WT-modified asphalt mixtures produced by the wet process have better rutting performance.

Keywords: waste toner, waste toner modified asphalt, asphalt mixture properties, IDEAL-RT test, IDEAL-CT test

Procedia PDF Downloads 56