Search results for: medi-cal data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27303

Search results for: medi-cal data

27033 Nanoparticles in Diagnosis and Treatment of Cancer, and Medical Imaging Techniques Using Nano-Technology

Authors: Rao Muhammad Afzal Khan

Abstract:

Nano technology is emerging as a useful technology in nearly all areas of Science and Technology. Its role in medical imaging is attracting the researchers towards existing and new imaging modalities and techniques. This presentation gives an overview of the development of the work done throughout the world. Furthermore, it lays an idea into the scope of the future use of this technology for diagnosing different diseases. A comparative analysis has also been discussed with an emphasis to detect diseases, in general, and cancer, in particular.

Keywords: medical imaging, cancer detection, diagnosis, nano-imaging, nanotechnology

Procedia PDF Downloads 480
27032 Bridging the Gap between Teaching and Learning: A 3-S (Strength, Stamina, Speed) Model for Medical Education

Authors: Mangala. Sadasivan, Mary Hughes, Bryan Kelly

Abstract:

Medical Education must focus on bridging the gap between teaching and learning when training pre-clinical year students in skills needed to keep up with medical knowledge and to meet the demands of health care in the future. The authors were interested in showing that a 3-S Model (building strength, developing stamina, and increasing speed) using a bridged curriculum design helps connect teaching and learning and improves students’ retention of basic science and clinical knowledge. The authors designed three learning modules using the 3-S Model within a systems course in a pre-clerkship medical curriculum. Each module focused on a bridge (concept map) designed by the instructor for specific content delivered to students in the course. This with-in-subjects design study included 304 registered MSU osteopathic medical students (3 campuses) ranked by quintile based on previous coursework. The instructors used the bridge to create self-directed learning exercises (building strength) to help students master basic science content. Students were video coached on how to complete assignments, and given pre-tests and post-tests designed to give them control to assess and identify gaps in learning and strengthen connections. The instructor who designed the modules also used video lectures to help students master clinical concepts and link them (building stamina) to previously learned material connected to the bridge. Boardstyle practice questions relevant to the modules were used to help students improve access (increasing speed) to stored content. Unit Examinations covering the content within modules and materials covered by other instructors teaching within the units served as outcome measures in this study. This data was then compared to each student’s performance on a final comprehensive exam and their COMLEX medical board examinations taken some time after the course. The authors used mean comparisons to evaluate students’ performances on module items (using 3-S Model) to non-module items on unit exams, final course exam and COMLEX medical board examination. The data shows that on average, students performed significantly better on module items compared to non-module items on exams 1 and 2. The module 3 exam was canceled due to a university shut down. The difference in mean scores (module verses non-module) items disappeared on the final comprehensive exam which was rescheduled once the university resumed session. Based on Quintile designation, the mean scores were higher for module items than non-module items and the difference in scores between items for Quintiles 1 and 2 were significantly better on exam 1 and the gap widened for all Quintile groups on exam 2 and disappeared in exam 3. Based on COMLEX performance, all students on average as a group, whether they Passed or Failed, performed better on Module items than non-module items in all three exams. The gap between scores of module items for students who passed COMLEX to those who failed was greater on Exam 1 (14.3) than on Exam 2 (7.5) and Exam 3 (10.2). Data shows the 3-S Model using a bridge effectively connects teaching and learning

Keywords: bridging gap, medical education, teaching and learning, model of learning

Procedia PDF Downloads 62
27031 Medical Surveillance Management

Authors: Jina K., Kittinan C. Athitaya J., Weerapat B., Amornrat T., Waraphan N.

Abstract:

Working in the exploration and production of petroleum exposed workers to various health risks, including but not limited to physical and chemical risks. Although lots of barriers have been put in place, e.g., hazard monitoring in the workplace, appropriate training on health hazards, proper personal protective equipment (PPE), the health hazard may harm the workers if the barriers are not effectively implemented. To prove the effectiveness of these barriers, it is necessary to monitor exposure by putting in place the medical surveillance program via biological monitoring of chemical hazards and physical check-ups for physical hazards. Medical surveillance management is the systematic assessment and monitoring of employees exposed or potentially exposed to occupational hazards with the goal of reducing and ultimately preventing occupational illness and injury. The paper aims to demonstrate the effectiveness of medical surveillance management in mitigating health risks associated with physical and chemical hazards in the petroleum industry by focusing on implementing programs for biological monitoring and physical examinations, including defining procedures for biological monitoring, urine sample collection, physical examinations, and result management on offshore petroleum platforms. The implementation of medical surveillance management has proven effective in monitoring worker exposure to physical and chemical hazards, leading to reduced medical expenses and the risk associated with work-related diseases significantly.

Keywords: medical surveillance, petroleum industry, occupational hazards, medical surveillance process

Procedia PDF Downloads 19
27030 Meanings and Concepts of Standardization in Systems Medicine

Authors: Imme Petersen, Wiebke Sick, Regine Kollek

Abstract:

In systems medicine, high-throughput technologies produce large amounts of data on different biological and pathological processes, including (disturbed) gene expressions, metabolic pathways and signaling. The large volume of data of different types, stored in separate databases and often located at different geographical sites have posed new challenges regarding data handling and processing. Tools based on bioinformatics have been developed to resolve the upcoming problems of systematizing, standardizing and integrating the various data. However, the heterogeneity of data gathered at different levels of biological complexity is still a major challenge in data analysis. To build multilayer disease modules, large and heterogeneous data of disease-related information (e.g., genotype, phenotype, environmental factors) are correlated. Therefore, a great deal of attention in systems medicine has been put on data standardization, primarily to retrieve and combine large, heterogeneous datasets into standardized and incorporated forms and structures. However, this data-centred concept of standardization in systems medicine is contrary to the debate in science and technology studies (STS) on standardization that rather emphasizes the dynamics, contexts and negotiations of standard operating procedures. Based on empirical work on research consortia that explore the molecular profile of diseases to establish systems medical approaches in the clinic in Germany, we trace how standardized data are processed and shaped by bioinformatics tools, how scientists using such data in research perceive such standard operating procedures and which consequences for knowledge production (e.g. modeling) arise from it. Hence, different concepts and meanings of standardization are explored to get a deeper insight into standard operating procedures not only in systems medicine, but also beyond.

Keywords: data, science and technology studies (STS), standardization, systems medicine

Procedia PDF Downloads 342
27029 The Introduction of a Tourniquet Checklist to Identify and Record Tourniquet Related Complications

Authors: Akash Soogumbur

Abstract:

Tourniquets are commonly used in orthopaedic surgery to provide hemostasis during procedures on the upper and lower limbs. However, there is a risk of complications associated with tourniquet use, such as nerve damage, skin necrosis, and compartment syndrome. The British Orthopaedic Association (BOAST) guidelines recommend the use of tourniquets at a pressure of 300 mmHg or less for a maximum of 2 hours. Research Aim: The aim of this study was to evaluate the effectiveness of a tourniquet checklist in improving compliance with the BOAST guidelines. Methodology: This was a retrospective study of all orthopaedic procedures performed at a single institution over a 12-month period. The study population included patients who had a tourniquet applied during surgery. Data were collected from the patients' medical records, including the duration of tourniquet use, the pressure used, and the method of exsanguination. Findings: The results showed that the use of the tourniquet checklist significantly improved compliance with the BOAST guidelines. Prior to the introduction of the checklist, compliance with the guidelines was 83% for the duration of tourniquet use and 73% for pressure used. After the introduction of the checklist, compliance increased to 100% for both duration of tourniquet use and pressure used. Theoretical Importance: The findings of this study suggest that the use of a tourniquet checklist can be an effective way to improve compliance with the BOAST guidelines. This is important because it can help to reduce the risk of complications associated with tourniquet use. Data Collection: Data were collected from the patients' medical records. The data included the following information: Patient demographics, procedure performed, duration of tourniquet use, pressure used, method of exsanguination. Analysis Procedures: The data were analyzed using descriptive statistics. The compliance with the BOAST guidelines was calculated as the percentage of patients who met the guidelines for the duration of tourniquet use and pressure used. Question Addressed: The question addressed by this study was whether the use of a tourniquet checklist could improve compliance with the BOAST guidelines. Conclusion: The results of this study suggest that the use of a tourniquet checklist can be an effective way to improve compliance with the BOAST guidelines. This is important because it can help to reduce the risk of complications associated with tourniquet use.

Keywords: tourniquet, pressure, duration, complications, surgery

Procedia PDF Downloads 71
27028 The Lived Experiences of Paramedical Students Engaged in Virtual Hands-on Learning

Authors: Zyra Cheska Hidalgo, Joehiza Mae Renon, Kzarina Buen, Girlie Mitrado

Abstract:

ABSTRACT: The global coronavirus disease (COVID-19) has dramatically impacted the lives of many, including education and our economy. Thus, it presents a massive challenge for medical education as instructors are mandated to deliver their lectures virtually to ensure the continuity of the medical education process and ensure students' safety. The purpose of this research paper is to determine the lived experiences of paramedical students who are engaged in virtual hands-on learning and to determine the different coping strategies they used to deal with virtual hands-on learning. The researchers used the survey method of descriptive research design to determine the lived experiences and coping strategies of twenty (20) paramedical students from Lorma Colleges (particularly the College of Medicine Department). The data were collected through online questionnaires, particularly with the use of google forms. This study shows technical issues, difficulty in adapting styles, distractions and time management issues, mental and physical health issues, and lack of interest and motivation are the most common problems and challenges experienced by paramedical students. On the other hand, the coping strategies used by paramedical students to deal with those challenges include time management, engagement in leisure activities, acceptance of responsibilities, studying, and adapting. With the data gathered, the researchers concluded that virtual hands-on learning effectively increases the knowledge of paramedical students. However, teaching and learning barriers must have to be considered to implement virtual hands-on learning successfully.

Keywords: virtual hands-on learning, E-learning, paramedical students, medical education

Procedia PDF Downloads 131
27027 Improvement of Microscopic Detection of Acid-Fast Bacilli for Tuberculosis by Artificial Intelligence-Assisted Microscopic Platform and Medical Image Recognition System

Authors: Hsiao-Chuan Huang, King-Lung Kuo, Mei-Hsin Lo, Hsiao-Yun Chou, Yusen Lin

Abstract:

The most robust and economical method for laboratory diagnosis of TB is to identify mycobacterial bacilli (AFB) under acid-fast staining despite its disadvantages of low sensitivity and labor-intensive. Though digital pathology becomes popular in medicine, an automated microscopic system for microbiology is still not available. A new AI-assisted automated microscopic system, consisting of a microscopic scanner and recognition program powered by big data and deep learning, may significantly increase the sensitivity of TB smear microscopy. Thus, the objective is to evaluate such an automatic system for the identification of AFB. A total of 5,930 smears was enrolled for this study. An intelligent microscope system (TB-Scan, Wellgen Medical, Taiwan) was used for microscopic image scanning and AFB detection. 272 AFB smears were used for transfer learning to increase the accuracy. Referee medical technicians were used as Gold Standard for result discrepancy. Results showed that, under a total of 1726 AFB smears, the automated system's accuracy, sensitivity and specificity were 95.6% (1,650/1,726), 87.7% (57/65), and 95.9% (1,593/1,661), respectively. Compared to culture, the sensitivity for human technicians was only 33.8% (38/142); however, the automated system can achieve 74.6% (106/142), which is significantly higher than human technicians, and this is the first of such an automated microscope system for TB smear testing in a controlled trial. This automated system could achieve higher TB smear sensitivity and laboratory efficiency and may complement molecular methods (eg. GeneXpert) to reduce the total cost for TB control. Furthermore, such an automated system is capable of remote access by the internet and can be deployed in the area with limited medical resources.

Keywords: TB smears, automated microscope, artificial intelligence, medical imaging

Procedia PDF Downloads 230
27026 Ethnographic Exploration of Elderly Residents' Perceptions and Utilization of Health Care to Improve Their Quality of Life

Authors: Seyed Ziya Tabatabaei, Azimi Bin Hj Hamzah, Fatemeh Ebrahimi

Abstract:

The increase in proportion of older people in Malaysia has led to a significant growth of health care demands. The aim of this study is to explore how perceived health care needs influence on quality of life among elderly Malay residents who reside in a Malaysian residential home. This study employed a method known as ethnographic research from May 2011 to January 2012. Four data collection strategies were selected as the main data-collecting tools including participant observation, field notes, in-depth interviews, and review of related documents. The nine knowledgeable participants for the present study were selected using the purposive sampling method. Two themes were identified: (1) Medical concerns: Feeling secure, lack of information, inadequate medical staff; and (2) Health promotion: Body condition, health education, physiotherapy and rehabilitation. These results could evoke the attention of policy-makers and care providers to better meet elderly residents’ health care needs.

Keywords: ethnographic study, health care needs, Malay elderly people, Malaysia, Quality of life, Residential home

Procedia PDF Downloads 299
27025 Being a Doctor and Being Ethical: An Existentialist's Approach to a Meaningful Doctor-Patient Relationship

Authors: Gamith Mendis

Abstract:

Even though the doctors are knowledgeable, there's a gap between knowing and being ethical. This is a barrier to establish an ethical doctor-patient relationship. Current health system has oriented in a way that gives a meaning to both the doctor and the patient through intermediate entities. For the doctor, the meaning of the doctor-patient relationship is given through the financial benefits, promotions, and social status. For the patient, the meaning is given through curing of the disease. It is obvious that both are independent entities between the doctor and the patient. As the philosophers like Husserl and Heidegger have pointed out, our subjective world will give the immediate meaningfulness to us. We should seek this immediate meaningfulness of the doctor-patient relationship. The present research has used the existential methodology as guided self-reflections on the lived experiences of a doctor and his students. In this approach, two important aspects have been understood. The first is, establishing the fact that being ethical is itself giving meaningfulness to the doctor’s being without any mediate entities. Simply, it is enjoying being an honest being. The second is by being-with-the-patient while treating the disease; both the doctor and the patient can enjoy the meaningfulness of their human relationship. The medical students and the doctors should focus on this meaningfulness. For that, this discussion should be actively incorporated into the medical curriculum with programs of practical guidance to medical students and should be discussed in patient-care reviews in the health setting within a satisfactory framework.

Keywords: doctor-patient relationship, medical education, medical ethics, medical humanities, qualitative health research

Procedia PDF Downloads 150
27024 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection

Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada

Abstract:

With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.

Keywords: machine learning, imbalanced data, data mining, big data

Procedia PDF Downloads 132
27023 The Effect of Values on Social Innovativeness in Nursing and Medical Faculty Students

Authors: Betül sönmez, Fatma Azizoğlu, S. Bilge Hapçıoğlu, Aytolan Yıldırım

Abstract:

Background: Social innovativeness contains the procurement of a sustainable benefit for a number of problems from working conditions to education, social development, health, and from environmental control to climate change, as well as the development of new social productions and services. Objectives: This study was conducted to determine the correlation between the social innovation tendency of nursing and medical faculty students and value types. Methods and participants: The population of this correlational study consisted of third-year students studying at a medical faculty and a nursing faculty in a public university in Istanbul. Ethics committee approval and permission from the school administrations were obtained in order to conduct the study and voluntary participation of the students in the study was ensured. 524 questionnaires were obtained with a total return rate of 57.1% (65.0% in nurse student and 52.1% in physic students). The data of the study were collected by using the Portrait Values Questionnaire and a questionnaire containing the Social Innovativeness Scale. Results: The effect of the subscale scores of Portrait Values Questionnaire on the total score of Social Innovativeness Scale was 26.6%. In the model where a significance was determined (F=37.566; p<0.01), the highest effect was observed in the subscale of universalism. The effect of subscale scores obtained from the Portrait Values Questionnaire, as well as age, gender and number of siblings was 25% on the Social Innovativeness in nursing students and 30.8% in medical faculty students. In both models where a significance was determined (p<0.01), the nursing students had the values of power, universalism and kindness, whereas the medical faculty students had the values of self-direction, stimulation, hedonism and universalism showed the highest effect in both models. Conclusions: Universalism is the value with the highest effect upon the social innovativeness in both groups, which is an expected result by the nature of professions. The effect of the values of independent thinking and self-direction, as well as openness to change involving quest for innovation (stimulation), which are observed in medical faculty students, also supports the literature of innovative behavior. These results are thought to guide educators and administrators in terms of developing socially innovative behaviors.

Keywords: social innovativeness, portrait values questionnaire, nursing students, medical faculty students

Procedia PDF Downloads 322
27022 Medical Imaging Fusion: A Teaching-Learning Simulation Environment

Authors: Cristina Maria Ribeiro Martins Pereira Caridade, Ana Rita Ferreira Morais

Abstract:

The use of computational tools has become essential in the context of interactive learning, especially in engineering education. In the medical industry, teaching medical image processing techniques is a crucial part of training biomedical engineers, as it has integrated applications with healthcare facilities and hospitals. The aim of this article is to present a teaching-learning simulation tool developed in MATLAB using a graphical user interface for medical image fusion that explores different image fusion methodologies and processes in combination with image pre-processing techniques. The application uses different algorithms and medical fusion techniques in real time, allowing you to view original images and fusion images, compare processed and original images, adjust parameters, and save images. The tool proposed in an innovative teaching and learning environment consists of a dynamic and motivating teaching simulation for biomedical engineering students to acquire knowledge about medical image fusion techniques and necessary skills for the training of biomedical engineers. In conclusion, the developed simulation tool provides real-time visualization of the original and fusion images and the possibility to test, evaluate and progress the student’s knowledge about the fusion of medical images. It also facilitates the exploration of medical imaging applications, specifically image fusion, which is critical in the medical industry. Teachers and students can make adjustments and/or create new functions, making the simulation environment adaptable to new techniques and methodologies.

Keywords: image fusion, image processing, teaching-learning simulation tool, biomedical engineering education

Procedia PDF Downloads 132
27021 Secure Transfer of Medical Images Using Hybrid Encryption Authentication, Confidentiality, Integrity

Authors: Boukhatem Mohammed Belkaid, Lahdir Mourad

Abstract:

In this paper, we propose a new encryption system for security issues medical images. The hybrid encryption scheme is based on AES and RSA algorithms to validate the three security services are authentication, integrity, and confidentiality. Privacy is ensured by AES, authenticity is ensured by the RSA algorithm. Integrity is assured by the basic function of the correlation between adjacent pixels. Our system generates a unique password every new session of encryption, that will be used to encrypt each frame of the medical image basis to strengthen and ensure his safety. Several metrics have been used for various tests of our analysis. For the integrity test, we noticed the efficiencies of our system and how the imprint cryptographic changes at reception if a change affects the image in the transmission channel.

Keywords: AES, RSA, integrity, confidentiality, authentication, medical images, encryption, decryption, key, correlation

Procedia PDF Downloads 540
27020 Implementation of an IoT Sensor Data Collection and Analysis Library

Authors: Jihyun Song, Kyeongjoo Kim, Minsoo Lee

Abstract:

Due to the development of information technology and wireless Internet technology, various data are being generated in various fields. These data are advantageous in that they provide real-time information to the users themselves. However, when the data are accumulated and analyzed, more various information can be extracted. In addition, development and dissemination of boards such as Arduino and Raspberry Pie have made it possible to easily test various sensors, and it is possible to collect sensor data directly by using database application tools such as MySQL. These directly collected data can be used for various research and can be useful as data for data mining. However, there are many difficulties in using the board to collect data, and there are many difficulties in using it when the user is not a computer programmer, or when using it for the first time. Even if data are collected, lack of expert knowledge or experience may cause difficulties in data analysis and visualization. In this paper, we aim to construct a library for sensor data collection and analysis to overcome these problems.

Keywords: clustering, data mining, DBSCAN, k-means, k-medoids, sensor data

Procedia PDF Downloads 378
27019 Sentiment Classification of Documents

Authors: Swarnadip Ghosh

Abstract:

Sentiment Analysis is the process of detecting the contextual polarity of text. In other words, it determines whether a piece of writing is positive, negative or neutral.Sentiment analysis of documents holds great importance in today's world, when numerous information is stored in databases and in the world wide web. An efficient algorithm to illicit such information, would be beneficial for social, economic as well as medical purposes. In this project, we have developed an algorithm to classify a document into positive or negative. Using our algorithm, we obtained a feature set from the data, and classified the documents based on this feature set. It is important to note that, in the classification, we have not used the independence assumption, which is considered by many procedures like the Naive Bayes. This makes the algorithm more general in scope. Moreover, because of the sparsity and high dimensionality of such data, we did not use empirical distribution for estimation, but developed a method by finding degree of close clustering of the data points. We have applied our algorithm on a movie review data set obtained from IMDb and obtained satisfactory results.

Keywords: sentiment, Run's Test, cross validation, higher dimensional pmf estimation

Procedia PDF Downloads 404
27018 Government (Big) Data Ecosystem: Definition, Classification of Actors, and Their Roles

Authors: Syed Iftikhar Hussain Shah, Vasilis Peristeras, Ioannis Magnisalis

Abstract:

Organizations, including governments, generate (big) data that are high in volume, velocity, veracity, and come from a variety of sources. Public Administrations are using (big) data, implementing base registries, and enforcing data sharing within the entire government to deliver (big) data related integrated services, provision of insights to users, and for good governance. Government (Big) data ecosystem actors represent distinct entities that provide data, consume data, manipulate data to offer paid services, and extend data services like data storage, hosting services to other actors. In this research work, we perform a systematic literature review. The key objectives of this paper are to propose a robust definition of government (big) data ecosystem and a classification of government (big) data ecosystem actors and their roles. We showcase a graphical view of actors, roles, and their relationship in the government (big) data ecosystem. We also discuss our research findings. We did not find too much published research articles about the government (big) data ecosystem, including its definition and classification of actors and their roles. Therefore, we lent ideas for the government (big) data ecosystem from numerous areas that include scientific research data, humanitarian data, open government data, industry data, in the literature.

Keywords: big data, big data ecosystem, classification of big data actors, big data actors roles, definition of government (big) data ecosystem, data-driven government, eGovernment, gaps in data ecosystems, government (big) data, public administration, systematic literature review

Procedia PDF Downloads 163
27017 New Advanced Medical Software Technology Challenges and Evolution of the Regulatory Framework in Expert Software, Artificial Intelligence, and Machine Learning

Authors: Umamaheswari Shanmugam, Silvia Ronchi

Abstract:

Software, artificial intelligence, and machine learning can improve healthcare through innovative and advanced technologies that can use the large amount and variety of data generated during healthcare services every day; one of the significant advantages of these new technologies is the ability to get experience and knowledge from real-world use and to improve their performance continuously. Healthcare systems and institutions can significantly benefit because the use of advanced technologies improves the efficiency and efficacy of healthcare. Software-defined as a medical device, is stand-alone software that is intended to be used for patients for one or more of these specific medical intended uses: - diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of a disease, any other health conditions, replacing or modifying any part of a physiological or pathological process–manage the received information from in vitro specimens derived from the human samples (body) and without principal main action of its principal intended use by pharmacological, immunological or metabolic definition. Software qualified as medical devices must comply with the general safety and performance requirements applicable to medical devices. These requirements are necessary to ensure high performance and quality and protect patients' safety. The evolution and the continuous improvement of software used in healthcare must consider the increase in regulatory requirements, which are becoming more complex in each market. The gap between these advanced technologies and the new regulations is the biggest challenge for medical device manufacturers. Regulatory requirements can be considered a market barrier, as they can delay or obstacle the device's approval. Still, they are necessary to ensure performance, quality, and safety. At the same time, they can be a business opportunity if the manufacturer can define the appropriate regulatory strategy in advance. The abstract will provide an overview of the current regulatory framework, the evolution of the international requirements, and the standards applicable to medical device software in the potential market all over the world.

Keywords: artificial intelligence, machine learning, SaMD, regulatory, clinical evaluation, classification, international requirements, MDR, 510k, PMA, IMDRF, cyber security, health care systems

Procedia PDF Downloads 89
27016 GPU Based High Speed Error Protection for Watermarked Medical Image Transmission

Authors: Md Shohidul Islam, Jongmyon Kim, Ui-pil Chong

Abstract:

Medical image is an integral part of e-health care and e-diagnosis system. Medical image watermarking is widely used to protect patients’ information from malicious alteration and manipulation. The watermarked medical images are transmitted over the internet among patients, primary and referred physicians. The images are highly prone to corruption in the wireless transmission medium due to various noises, deflection, and refractions. Distortion in the received images leads to faulty watermark detection and inappropriate disease diagnosis. To address the issue, this paper utilizes error correction code (ECC) with (8, 4) Hamming code in an existing watermarking system. In addition, we implement the high complex ECC on a graphics processing units (GPU) to accelerate and support real-time requirement. Experimental results show that GPU achieves considerable speedup over the sequential CPU implementation, while maintaining 100% ECC efficiency.

Keywords: medical image watermarking, e-health system, error correction, Hamming code, GPU

Procedia PDF Downloads 291
27015 Decision Support System for Diagnosis of Breast Cancer

Authors: Oluwaponmile D. Alao

Abstract:

In this paper, two models have been developed to ascertain the best network needed for diagnosis of breast cancer. Breast cancer has been a disease that required the attention of the medical practitioner. Experience has shown that misdiagnose of the disease has been a major challenge in the medical field. Therefore, designing a system with adequate performance for will help in making diagnosis of the disease faster and accurate. In this paper, two models: backpropagation neural network and support vector machine has been developed. The performance obtained is also compared with other previously obtained algorithms to ascertain the best algorithms.

Keywords: breast cancer, data mining, neural network, support vector machine

Procedia PDF Downloads 347
27014 Data Modeling and Calibration of In-Line Pultrusion and Laser Ablation Machine Processes

Authors: David F. Nettleton, Christian Wasiak, Jonas Dorissen, David Gillen, Alexandr Tretyak, Elodie Bugnicourt, Alejandro Rosales

Abstract:

In this work, preliminary results are given for the modeling and calibration of two inline processes, pultrusion, and laser ablation, using machine learning techniques. The end product of the processes is the core of a medical guidewire, manufactured to comply with a user specification of diameter and flexibility. An ensemble approach is followed which requires training several models. Two state of the art machine learning algorithms are benchmarked: Kernel Recursive Least Squares (KRLS) and Support Vector Regression (SVR). The final objective is to build a precise digital model of the pultrusion and laser ablation process in order to calibrate the resulting diameter and flexibility of a medical guidewire, which is the end product while taking into account the friction on the forming die. The result is an ensemble of models, whose output is within a strict required tolerance and which covers the required range of diameter and flexibility of the guidewire end product. The modeling and automatic calibration of complex in-line industrial processes is a key aspect of the Industry 4.0 movement for cyber-physical systems.

Keywords: calibration, data modeling, industrial processes, machine learning

Procedia PDF Downloads 300
27013 Government Big Data Ecosystem: A Systematic Literature Review

Authors: Syed Iftikhar Hussain Shah, Vasilis Peristeras, Ioannis Magnisalis

Abstract:

Data that is high in volume, velocity, veracity and comes from a variety of sources is usually generated in all sectors including the government sector. Globally public administrations are pursuing (big) data as new technology and trying to adopt a data-centric architecture for hosting and sharing data. Properly executed, big data and data analytics in the government (big) data ecosystem can be led to data-driven government and have a direct impact on the way policymakers work and citizens interact with governments. In this research paper, we conduct a systematic literature review. The main aims of this paper are to highlight essential aspects of the government (big) data ecosystem and to explore the most critical socio-technical factors that contribute to the successful implementation of government (big) data ecosystem. The essential aspects of government (big) data ecosystem include definition, data types, data lifecycle models, and actors and their roles. We also discuss the potential impact of (big) data in public administration and gaps in the government data ecosystems literature. As this is a new topic, we did not find specific articles on government (big) data ecosystem and therefore focused our research on various relevant areas like humanitarian data, open government data, scientific research data, industry data, etc.

Keywords: applications of big data, big data, big data types. big data ecosystem, critical success factors, data-driven government, egovernment, gaps in data ecosystems, government (big) data, literature review, public administration, systematic review

Procedia PDF Downloads 231
27012 A Machine Learning Decision Support Framework for Industrial Engineering Purposes

Authors: Anli Du Preez, James Bekker

Abstract:

Data is currently one of the most critical and influential emerging technologies. However, the true potential of data is yet to be exploited since, currently, about 1% of generated data are ever actually analyzed for value creation. There is a data gap where data is not explored due to the lack of data analytics infrastructure and the required data analytics skills. This study developed a decision support framework for data analytics by following Jabareen’s framework development methodology. The study focused on machine learning algorithms, which is a subset of data analytics. The developed framework is designed to assist data analysts with little experience, in choosing the appropriate machine learning algorithm given the purpose of their application.

Keywords: Data analytics, Industrial engineering, Machine learning, Value creation

Procedia PDF Downloads 168
27011 A Real-time Classification of Lying Bodies for Care Application of Elderly Patients

Authors: E. Vazquez-Santacruz, M. Gamboa-Zuniga

Abstract:

In this paper, we show a methodology for bodies classification in lying state using HOG descriptors and pressures sensors positioned in a matrix form (14 x 32 sensors) on the surface where bodies lie down. it will be done in real time. Our system is embedded in a care robot that can assist the elderly patient and medical staff around to get a better quality of life in and out of hospitals. Due to current technology a limited number of sensors is used, wich results in low-resolution data array, that will be used as image of 14 x 32 pixels. Our work considers the problem of human posture classification with few information (sensors), applying digital process to expand the original data of the sensors and so get more significant data for the classification, however, this is done with low-cost algorithms to ensure the real-time execution.

Keywords: real-time classification, sensors, robots, health care, elderly patients, artificial intelligence

Procedia PDF Downloads 866
27010 Performance Analysis of Search Medical Imaging Service on Cloud Storage Using Decision Trees

Authors: González A. Julio, Ramírez L. Leonardo, Puerta A. Gabriel

Abstract:

Telemedicine services use a large amount of data, most of which are diagnostic images in Digital Imaging and Communications in Medicine (DICOM) and Health Level Seven (HL7) formats. Metadata is generated from each related image to support their identification. This study presents the use of decision trees for the optimization of information search processes for diagnostic images, hosted on the cloud server. To analyze the performance in the server, the following quality of service (QoS) metrics are evaluated: delay, bandwidth, jitter, latency and throughput in five test scenarios for a total of 26 experiments during the loading and downloading of DICOM images, hosted by the telemedicine group server of the Universidad Militar Nueva Granada, Bogotá, Colombia. By applying decision trees as a data mining technique and comparing it with the sequential search, it was possible to evaluate the search times of diagnostic images in the server. The results show that by using the metadata in decision trees, the search times are substantially improved, the computational resources are optimized and the request management of the telemedicine image service is improved. Based on the experiments carried out, search efficiency increased by 45% in relation to the sequential search, given that, when downloading a diagnostic image, false positives are avoided in management and acquisition processes of said information. It is concluded that, for the diagnostic images services in telemedicine, the technique of decision trees guarantees the accessibility and robustness in the acquisition and manipulation of medical images, in improvement of the diagnoses and medical procedures in patients.

Keywords: cloud storage, decision trees, diagnostic image, search, telemedicine

Procedia PDF Downloads 204
27009 Improved Anatomy Teaching by the 3D Slicer Platform

Authors: Ahmedou Moulaye Idriss, Yahya Tfeil

Abstract:

Medical imaging technology has become an indispensable tool in many branches of the biomedical, health area, and research and is vitally important for the training of professionals in these fields. It is not only about the tools, technologies, and knowledge provided but also about the community that this training project proposes. In order to be able to raise the level of anatomy teaching in the medical school of Nouakchott in Mauritania, it is necessary and even urgent to facilitate access to modern technology for African countries. The role of technology as a key driver of justifiable development has long been recognized. Anatomy is an essential discipline for the training of medical students; it is a key element for the training of medical specialists. The quality and results of the work of a young surgeon depend on his better knowledge of anatomical structures. The teaching of anatomy is difficult as the discipline is being neglected by medical students in many academic institutions. However, anatomy remains a vital part of any medical education program. When anatomy is presented in various planes medical students approve of difficulties in understanding. They do not increase their ability to visualize and mentally manipulate 3D structures. They are sometimes not able to correctly identify neighbouring or associated structures. This is the case when they have to make the identification of structures related to the caudate lobe when the liver is moved to different positions. In recent decades, some modern educational tools using digital sources tend to replace old methods. One of the main reasons for this change is the lack of cadavers in laboratories with poorly qualified staff. The emergence of increasingly sophisticated mathematical models, image processing, and visualization tools in biomedical imaging research have enabled sophisticated three-dimensional (3D) representations of anatomical structures. In this paper, we report our current experience in the Faculty of Medicine in Nouakchott Mauritania. One of our main aims is to create a local learning community in the fields of anatomy. The main technological platform used in this project is called 3D Slicer. 3D Slicer platform is an open-source application available for free for viewing, analysis, and interaction with biomedical imaging data. Using the 3D Slicer platform, we created from real medical images anatomical atlases of parts of the human body, including head, thorax, abdomen, liver, and pelvis, upper and lower limbs. Data were collected from several local hospitals and also from the website. We used MRI and CT-Scan imaging data from children and adults. Many different anatomy atlases exist, both in print and digital forms. Anatomy Atlas displays three-dimensional anatomical models, image cross-sections of labelled structures and source radiological imaging, and a text-based hierarchy of structures. Open and free online anatomical atlases developed by our anatomy laboratory team will be available to our students. This will allow pedagogical autonomy and remedy the shortcomings by responding more fully to the objectives of sustainable local development of quality education and good health at the national level. To make this work a reality, our team produced several atlases available in our faculty in the form of research projects.

Keywords: anatomy, education, medical imaging, three dimensional

Procedia PDF Downloads 244
27008 How to Prevent From Skin Complications in Diabetes Type 2 in View Point of Student of Shiraz University of Medical Sciences

Authors: Zahra Abdi, Roghayeh Alipour, Babak Farahi Ghasraboonasr

Abstract:

Introduction: Diabetes is a serious medical condition that requires constant care. People with type 2 diabetes may also be likely to experience dry, itchy skin and poor wound healing. Some people with diabetes will have a skin problems at some time in their lives and for those not yet diagnosed with diabetes, a skin problem can be an indication of the disease. our purpose was to assess the capability and knowledge of students of Shiraz University of Medical Sciences about prevent from skin complications in diabetes type 2. Methods: In this descriptive cross-sectional study, knowledge of 360 students of Shiraz University of Medical Sciences was evaluated about different ways to avoid skin complications in diabetes type 2. Data were analyzed by spss19.(P<0.05) was considered significant. Results: 360 students of Shiraz University of Medical Sciences participated in this study. 45% of students agree with the effect of Moisturize skin daily, If Diabetics have sensitive skin, choose a fragrance-free, dye-free moisturizer that won’t irritate skin. 52% believe that Protect skin from sun can be so useful, Sun exposure is drying and aging. Use sunscreen with SPF 30 or higher whenever you’re outside. Wear gloves when doing yardwork to protect the skin on your hands. 62% of students strongly agree with Carefully clean any cuts and scrapes, If diabetics notice any sign of infection skin that’s red, swollen, or warm to the touch, or has a foul-smelling drainage or pus should consulting with a doctor immediately. Diabetics should be careful about any injury that takes longer than normal to heal and they should consulting with doctor about them too. 72% of students believe that diabetics should be diligent about daily foot care. Clean and moisturize feet each day and check each foot closely, top and bottom, for wounds even a tiny cut, blisters, or cracked skin. Conclusions: The risk of getting these diabetes complications can be lessened by controlling blood sugar. Skin complications can cause serious consequences. Taking care of skin is so important and using these tips are remarkable effective and help diabetics to look after their skin easier.

Keywords: skin complications, diabetes type 2, Shiraz University of Medical Sciences, diabetics

Procedia PDF Downloads 356
27007 Audit Outcome Cardiac Arrest Cases (2019-2020) in Emergency Department RIPAS Hospital, Brunei Darussalam

Authors: Victor Au, Khin Maung Than, Zaw Win Aung, Linawati Jumat

Abstract:

Background & Objectives: Cardiac arrests can occur anywhere or anytime, and most of the cases will be brought to the emergency department except the cases that happened in at in-patient setting. Raja IsteriPangiran Anak Saleha (RIPAS) Hospital is the only tertiary government hospital which located in Brunei Muara district and received all referral from other Brunei districts. Data of cardiac arrests in Brunei Darussalam scattered between Emergency Medical Ambulance Services (EMAS), Emergency Department (ED), general inpatient wards, and Intensive Care Unit (ICU). In this audit, we only focused on cardiac arrest cases which had happened or presented to the emergency department RIPAS Hospital. Theobjectives of this audit were to look at demographic of cardiac arrest cases and the survival to discharge rate of In-Hospital Cardiac Arrest (IHCA) and Out-Hospital Cardiac Arrest (OHCA). Methodology: This audit retrospective study was conducted on all cardiac arrest cases that underwent Cardiopulmonary Resuscitation (CPR) in ED RIPAS Hospital, Brunei Muara, in the year 2019-2020. All cardiac arrest cases that happened or were brought in to emergency department were included. All the relevant data were retrieved from ED visit registry book and electronic medical record “Bru-HIMS” with keyword diagnosis of “cardiac arrest”. Data were analyzed and tabulated using Excel software. Result: 313 cardiac arrests were recorded in the emergency department in year 2019-2020. 92% cases were categorized as OHCA, and the remaining 8% as IHCA. Majority of the cases were male with age between 50-60 years old. In OHCA subgroup, only 12.4% received bystander CPR, and 0.4% received Automatic External Defibrillator (AED) before emergency medical personnel arrived. Initial shockable rhythm in IHCA group accounted for 12% compare to 4.9% in OHCA group. Outcome of ED resuscitation, 32% of IHCA group achieved return of spontaneous circulation (ROSC) with a survival to discharge rate was 16%. For OHCA group, 12.35% achieved ROSC, but unfortunately, none of them survive till discharge. Conclusion: Standardized registry for cardiac arrest in the emergency department is required to provide valid baseline data to measure the quality and outcome of cardiac arrest. Zero survival rate for out hospital cardiac arrest is very concerning, and it might represent the significant breach in cardiac arrest chains of survival. Systematic prospective data collection is needed to identify contributing factors and to improve resuscitation outcome.

Keywords: cardiac arrest, OHCA, IHCA, resuscitation, emergency department

Procedia PDF Downloads 101
27006 Providing Security to Private Cloud Using Advanced Encryption Standard Algorithm

Authors: Annapureddy Srikant Reddy, Atthanti Mahendra, Samala Chinni Krishna, N. Neelima

Abstract:

In our present world, we are generating a lot of data and we, need a specific device to store all these data. Generally, we store data in pen drives, hard drives, etc. Sometimes we may loss the data due to the corruption of devices. To overcome all these issues, we implemented a cloud space for storing the data, and it provides more security to the data. We can access the data with just using the internet from anywhere in the world. We implemented all these with the java using Net beans IDE. Once user uploads the data, he does not have any rights to change the data. Users uploaded files are stored in the cloud with the file name as system time and the directory will be created with some random words. Cloud accepts the data only if the size of the file is less than 2MB.

Keywords: cloud space, AES, FTP, NetBeans IDE

Procedia PDF Downloads 206
27005 Post-Traumatic Stress Disorder: Management at the Montfort Hospital

Authors: Kay-Anne Haykal, Issack Biyong

Abstract:

The post-traumatic stress disorder (PTSD) rises from exposure to a traumatic event and appears by a persistent experience of this event. Several psychiatric co-morbidities are associated with PTSD and include mood disorders, anxiety disorders, and substance abuse. The main objective was to compare the criteria for PTSD according to the literature to those used to diagnose a patient in a francophone hospital and to check the correspondence of these two criteria. 700 medical charts of admitted patients on the medicine or psychiatric unit at the Montfort Hospital were identified with the following diagnoses: major depressive disorder, bipolar disorder, anxiety disorder, substance abuse, and PTSD for the period of time between April 2005 and March 2006. Multiple demographic criteria were assembled. Also, for every chart analyzed, the PTSD criteria, according to the Manual of Mental Disorders (DSM) IV were found, identified, and grouped according to pre-established codes. An analysis using the receiver operating characteristic (ROC) method was elaborated for the study of data. A sample of 57 women and 50 men was studied. Age was varying between 18 and 88 years with a median age of 48. According to the PTSD criteria in the DSM IV, 12 patients should have the diagnosis of PTSD in opposition to only two identified in the medical charts. The ROC method establishes that with the combination of data from PTSD and depression, the sensitivity varies between 0,127 and 0,282, and the specificity varies between 0,889 and 0,917. Otherwise, if we examine the PTSD data alone, the sensibility jumps to 0.50, and the specificity varies between 0,781 and 0,895. This study confirms the presence of an underdiagnosed and treated PTSD that causes severe perturbations for the affected individual.

Keywords: post-traumatic stress disorder, co-morbidities, diagnosis, mental health disorders

Procedia PDF Downloads 388
27004 New Advanced Medical Software Technology Challenges and Evolution of the Regulatory Framework in Expert Software, Artificial Intelligence, and Machine Learning

Authors: Umamaheswari Shanmugam, Silvia Ronchi, Radu Vornicu

Abstract:

Software, artificial intelligence, and machine learning can improve healthcare through innovative and advanced technologies that are able to use the large amount and variety of data generated during healthcare services every day. As we read the news, over 500 machine learning or other artificial intelligence medical devices have now received FDA clearance or approval, the first ones even preceding the year 2000. One of the big advantages of these new technologies is the ability to get experience and knowledge from real-world use and to continuously improve their performance. Healthcare systems and institutions can have a great benefit because the use of advanced technologies improves the same time efficiency and efficacy of healthcare. Software-defined as a medical device, is stand-alone software that is intended to be used for patients for one or more of these specific medical intended uses: - diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of a disease, any other health conditions, replacing or modifying any part of a physiological or pathological process–manage the received information from in vitro specimens derived from the human samples (body) and without principal main action of its principal intended use by pharmacological, immunological or metabolic definition. Software qualified as medical devices must comply with the general safety and performance requirements applicable to medical devices. These requirements are necessary to ensure high performance and quality and also to protect patients’ safety. The evolution and the continuous improvement of software used in healthcare must take into consideration the increase in regulatory requirements, which are becoming more complex in each market. The gap between these advanced technologies and the new regulations is the biggest challenge for medical device manufacturers. Regulatory requirements can be considered a market barrier, as they can delay or obstacle the device approval, but they are necessary to ensure performance, quality, and safety, and at the same time, they can be a business opportunity if the manufacturer is able to define in advance the appropriate regulatory strategy. The abstract will provide an overview of the current regulatory framework, the evolution of the international requirements, and the standards applicable to medical device software in the potential market all over the world.

Keywords: artificial intelligence, machine learning, SaMD, regulatory, clinical evaluation, classification, international requirements, MDR, 510k, PMA, IMDRF, cyber security, health care systems.

Procedia PDF Downloads 92