Search results for: low operating pressure
5806 Biomass Gasification and Microcogeneration Unit–EZOB Technology
Authors: Martin Lisý, Marek Baláš, Michal Špiláček, Zdeněk Skála
Abstract:
This paper deals with the issue of biomass and sorted municipal waste gasification and cogeneration using hot-air turbo-set. It brings description of designed pilot plant with electrical output 80 kWe. The generated gas is burned in secondary combustion chamber located beyond the gas generator. Flue gas flows through the heat exchanger where the compressed air is heated and consequently brought to a micro turbine. Except description, this paper brings our basic experiences from operating of pilot plant (operating parameters, contributions, problems during operating, etc.). The principal advantage of the given cycle is the fact that there is no contact between the generated gas and the turbine. So there is no need for costly and complicated gas cleaning which is the main source of operating problems in direct use in combustion engines because the content of impurities in the gas causes operation problems to the units due to clogging and tarring of working surfaces of engines and turbines, which may lead as far as serious damage to the equipment under operation. Another merit is the compact container package making installation of the facility easier or making it relatively more mobile. We imagine, this solution of cogeneration from biomass or waste can be suitable for small industrial or communal applications, for low output cogeneration.Keywords: biomass, combustion, gasification, microcogeneration
Procedia PDF Downloads 4895805 Effect of Knowledge of Bubble Point Pressure on Estimating PVT Properties from Correlations
Authors: Ahmed El-Banbi, Ahmed El-Maraghi
Abstract:
PVT properties are needed as input data in all reservoir, production, and surface facilities engineering calculations. In the absence of PVT reports on valid reservoir fluid samples, engineers rely on PVT correlations to generate the required PVT data. The accuracy of PVT correlations varies, and no correlation group has been found to provide accurate results for all oil types. The effect of inaccurate PVT data can be significant in engineering calculations and is well documented in the literature. Bubble point pressure can sometimes be obtained from external sources. In this paper, we show how to utilize the known bubble point pressure to improve the accuracy of calculated PVT properties from correlations. We conducted a systematic study using around 250 reservoir oil samples to quantify the effect of pre-knowledge of bubble point pressure. The samples spanned a wide range of oils, from very volatile oils to black oils and all the way to low-GOR oils. A method for shifting both undersaturated and saturated sections of the PVT properties curves to the correct bubble point is explained. Seven PVT correlation families were used in this study. All PVT properties (e.g., solution gas-oil ratio, formation volume factor, density, viscosity, and compressibility) were calculated using the correct bubble point pressure and the correlation estimated bubble point pressure. Comparisons between the calculated PVT properties and actual laboratory-measured values were made. It was found that pre-knowledge of bubble point pressure and using the shifting technique presented in the paper improved the correlation-estimated values by 10% to more than 30%. The most improvement was seen in the solution gas-oil ratio and formation volume factor.Keywords: PVT data, PVT properties, PVT correlations, bubble point pressure
Procedia PDF Downloads 635804 Simulation of Ester Based Mud Performance through Drilling Genting Timur Field
Authors: Lina Ismail Jassim, Robiah Yunus
Abstract:
To successfully drill oil or gas well, two main characteristics of numerous other tasks of an efficient drilling fluid are required, which are suspended and carrying cuttings from the beneath wellbore to the surface and managed between pore (formation) and hydrostatic pressure (mud pressure). Several factors like mud composition and its rheology, wellbore design, drilled cuttings characteristics and drilling string rotation contribute to drill wellbore successfully. Simulation model can support an appropriate indication on the drilling fluid performance in the real field as Genting Timur field, located in Pahang in Malaysia on 4295 m depth, held the world record in Sempah Muda 1 (Vertical). A detailed 3 dimensional CFD analysis of vertical, concentric annular two phase flow was developed to study and asses Herschel Bulkley drilling fluid. The effect of Hematite, Barite and calcium carbonates types and size of cutting rock particles on such flow is analyzed. The vertical flows are also associated with a good amount of temperature variation along the depth. This causes a good amount of change in viscosity of the fluid, which is non-Newtonian in nature. Good understanding of the nature of such flows is imperative in developing and maintaining successful vertical well systems. A detailed analysis of flow characteristics due to the drill pipe rotation is done in this work. The inner cylinder of the annulus gets different rotational speed, depending upon the operating conditions. This speed induces a good swirl on the particles and primary fluids which interpret in Ester based drilling fluid cleaning well ability, which in turn determines energy loss along the pipe. Energy loss is assessed in this work in terms of wall shear stress and pressure drop along the pipe. The flow is under an adverse pressure gradient condition, which causes chance of reversed flow and transfers the rock cuttings to the surface.Keywords: concentric annulus, non-Newtonian, two phase, Herschel Bulkley
Procedia PDF Downloads 3085803 Impact of the Hayne Royal Commission on the Operating Model of Australian Financial Advice Firms
Authors: Mohammad Abu-Taleb
Abstract:
The final report of the Royal Commission into Australian financial services misconduct, released in February 2019, has had a significant impact on the financial advice industry. The recommendations released in the Commissioner’s final report include changes to ongoing fee arrangements, a new disciplinary system for financial advisers, and mandatory reporting of compliance concerns. This thesis aims to explore the impact of the Royal Commission’s recommendations on the operating model of financial advice firms in terms of advice products, processes, delivery models, and customer segments. Also, this research seeks to investigate whether the Royal Commission’s outcome has accelerated the use of enhanced technology solutions within the operating model of financial advice firms. And to identify the key challenges confronting financial advice firms whilst implementing the Commissioner’s recommendations across their operating models. In order to achieve the objectives of this thesis, a qualitative research design has been adopted through semi-structured in-depth interviews with 24 financial advisers and managers who are engaged in the operation of financial advice services. The study used the thematic analysis approach to interpret the qualitative data collected from the interviews. The findings of this thesis reveal that customer-centric operating models will become more prominent across the financial advice industry in response to the Commissioner’s final report. And the Royal Commission’s outcome has accelerated the use of advice technology solutions within the operating model of financial advice firms. In addition, financial advice firms have started more than before using simpler and more automated web-based advice services, which enable financial advisers to provide simple advice in a greater scale, and also to accelerate the use of robo-advice models and digital delivery to mass customers in the long term. Furthermore, the study identifies process and technology changes as, long with technical and interpersonal skills development, as the key challenges encountered financial advice firms whilst implementing the Commissioner’s recommendations across their operating models.Keywords: hayne royal commission, financial planning advice, operating model, advice products, advice processes, delivery models, customer segments, digital advice solutions
Procedia PDF Downloads 885802 Operating Characteristics of Point-of-Care Ultrasound in Identifying Skin and Soft Tissue Abscesses in the Emergency Department
Authors: Sathyaseelan Subramaniam, Jacqueline Bober, Jennifer Chao, Shahriar Zehtabchi
Abstract:
Background: Emergency physicians frequently evaluate skin and soft tissue infections in order to differentiate abscess from cellulitis. This helps determine which patients will benefit from incision and drainage. Our objective was to determine the operating characteristics of point-of-care ultrasound (POCUS) compared to clinical examination in identifying abscesses in emergency department (ED) patients with features of skin and soft tissue infections. Methods: We performed a comprehensive search in the following databases: Medline, Web of Science, EMBASE, CINAHL and Cochrane Library. Trials were included if they compared the operating characteristics of POCUS with clinical examination in identifying skin and soft tissue abscesses. Trials that included patients with oropharyngeal abscesses or that requiring abscess drainage in the operating room were excluded. The presence of an abscess was determined by pus drainage. No pus seen on incision or resolution of symptoms without pus drainage at follow up, determined the absence of an abscess. Quality of included trials was assessed using GRADE criteria. Operating characteristics of POCUS are reported as sensitivity, specificity, positive likelihood (LR+) and negative likelihood (LR-) ratios and the respective 95% confidence intervals (CI). Summary measures were calculated by generating a hierarchical summary receiver operating characteristic model (HSROC). Results: Out of 3203 references identified, 5 observational studies with 615 patients in aggregate were included (2 adults and 3 pediatrics). We rated the quality of 3 trials as low and 2 as very low. The operating characteristics of POCUS and clinical examination in identifying soft tissue abscesses are presented in the table. The HSROC for POCUS revealed a sensitivity of 96% (95% CI = 89-98%), specificity of 79% (95% CI = 71-86), LR+ of 4.6 (95% CI = 3.2-6.8), and LR- of 0.06 (95% CI = 0.02-0.2). Conclusion: Existing evidence indicates that POCUS is useful in identifying abscesses in ED patients with skin or soft tissue infections.Keywords: abscess, point-of-care ultrasound, pocus, skin and soft tissue infection
Procedia PDF Downloads 3695801 Investigation of Time Pressure and Instinctive Reaction in Moral Dilemmas While Driving
Authors: Jacqueline Miller, Dongyuan Y. Wang, F. Dan Richard
Abstract:
Before trying to make an ethical machine that holds a higher ethical standard than humans, a better understanding of human moral standards that could be used as a guide is crucial. How humans make decisions in dangerous driving situations like moral dilemmas can contribute to developing acceptable ethical principles for autonomous vehicles (AVs). This study uses a driving simulator to investigate whether drivers make utilitarian choices (choices that maximize lives saved and minimize harm) in unavoidable automobile accidents (moral dilemmas) with time pressure manipulated. This study also investigates how impulsiveness influences drivers’ behavior in moral dilemmas. Manipulating time pressure results in collisions that occur at varying time intervals (4 s, 5 s, 7s). Manipulating time pressure helps investigate how time pressure may influence drivers’ response behavior. Thirty-one undergraduates participated in this study using a STISM driving simulator to respond to driving moral dilemmas. The results indicated that the percentage of utilitarian choices generally increased when given more time to respond (from 4 s to 7 s). Additionally, participants in vehicle scenarios preferred responding right over responding left. Impulsiveness did not influence utilitarian choices. However, as time pressure decreased, response time increased. Findings have potential implications and applications on the regulation of driver assistance technologies and AVs.Keywords: time pressure, automobile moral dilemmas, impulsiveness, reaction time
Procedia PDF Downloads 545800 Study of Operating Conditions Impact on Physicochemical and Functional Properties of Dairy Powder Produced by Spray-drying
Authors: Adeline Meriaux, Claire Gaiani, Jennifer Burgain, Frantz Fournier, Lionel Muniglia, Jérémy Petit
Abstract:
Spray-drying process is widely used for the production of dairy powders for food and pharmaceuticals industries. It involves the atomization of a liquid feed into fine droplets, which are subsequently dried through contact with a hot air flow. The resulting powders permit transportation cost reduction and shelf life increase but can also exhibit various interesting functionalities (flowability, solubility, protein modification or acid gelation), depending on operating conditions and milk composition. Indeed, particles porosity, surface composition, lactose crystallization, protein denaturation, protein association or crust formation may change. Links between spray-drying conditions and physicochemical and functional properties of powders were investigated by a design of experiment methodology and analyzed by principal component analysis. Quadratic models were developed, and multicriteria optimization was carried out by the use of genetic algorithm. At the time of abstract submission, verification spray-drying trials are ongoing. To perform experiments, milk from dairy farm was collected, skimmed, froze and spray-dried at different air pressure (between 1 and 3 bars) and outlet temperature (between 75 and 95 °C). Dry matter, minerals content and proteins content were determined by standard method. Solubility index, absorption index and hygroscopicity were determined by method found in literature. Particle size distribution were obtained by laser diffraction granulometry. Location of the powder color in the Cielab color space and water activity were characterized by a colorimeter and an aw-value meter, respectively. Flow properties were characterized with FT4 powder rheometer; in particular, compressibility and shearing test were performed. Air pressure and outlet temperature are key factors that directly impact the drying kinetics and powder characteristics during spray-drying process. It was shown that the air pressure affects the particle size distribution by impacting the size of droplet exiting the nozzle. Moreover, small particles lead to more cohesive powder and less saturated color of powders. Higher outlet temperature results in lower moisture level particles which are less sticky and can explain a spray-drying yield increase and the higher cohesiveness; it also leads to particle with low water activity because of the intense evaporation rate. However, it induces a high hygroscopicity, thus, powders tend to get wet rapidly if they are not well stored. On the other hand, high temperature provokes a decrease of native serum proteins, which is positively correlated to gelation properties (gel point and firmness). Partial denaturation of serum proteins can improve functional properties of powder. The control of air pressure and outlet temperature during the spray-drying process significantly affects the physicochemical and functional properties of powder. This study permitted to better understand the links between physicochemical and functional properties of powder to identify correlations between air pressure and outlet temperature. Therefore, mathematical models have been developed, and the use of genetic algorithm will allow the optimization of powder functionalities.Keywords: dairy powders, spray-drying, powders functionalities, design of experiment
Procedia PDF Downloads 655799 Investigation of External Pressure Coefficients on Large Antenna Parabolic Reflector Using Computational Fluid Dynamics
Authors: Varun K, Pramod B. Balareddy
Abstract:
Estimation of wind forces plays a significant role in the in the design of large antenna parabolic reflectors. Reflector surface accuracies are very sensitive to the gain of the antenna system at higher frequencies. Hence accurate estimation of wind forces becomes important, which is primary input for design and analysis of the reflector system. In the present work, numerical simulation of wind flow using Computational Fluid Dynamics (CFD) software is used to investigate the external pressure coefficients. An extensive comparative study has been made between the CFD results and the published wind tunnel data for different wind angle of attacks (α) acting over concave to convex surfaces respectively. Flow simulations using CFD are carried out to estimate the coefficients of Drag, Lift and Moment for the parabolic reflector. Coefficients of pressures (Cp) over the front and the rear face of the reflector are extracted over surface of the reflector to study the net pressure variations. These resultant pressure variations are compared with the published wind tunnel data for different angle of attacks. It was observed from the CFD simulations, both convex and concave face of reflector system experience a band of pressure variations for the positive and negative angle of attacks respectively. In the published wind tunnel data, Pressure variations over convex surfaces are assumed to be uniform and vice versa. Chordwise and spanwise pressure variations were calculated and compared with the published experimental data. In the present work, it was observed that the maximum pressure coefficients for α ranging from +30° to -90° and α=+90° was lower. For α ranging from +45° to +75°, maximum pressure coefficients were higher as compared to wind tunnel data. This variation is due to non-uniform pressure distribution observed over front and back faces of reflector. Variations in Cd, Cl and Cm over α=+90° to α=-90° was in close resemblance with the experimental data.Keywords: angle of attack, drag coefficient, lift coefficient, pressure coefficient
Procedia PDF Downloads 2575798 Yield Onset of Thermo-Mechanical Loading of FGM Thick Walled Cylindrical Pressure Vessels
Authors: S. Ansari Sadrabadi, G. H. Rahimi
Abstract:
In this paper, thick walled Cylindrical tanks or tubes made of functionally graded material under internal pressure and temperature gradient are studied. Material parameters have been considered as power functions. They play important role in the elastoplastic behavior of these materials. To clarify their role, different materials with different parameters have been used under temperature gradient. Finally, their effect and loading effect have been determined in first yield point. Also, the important role of temperature gradient was also shown. At the end the study has been results obtained from changes in the elastic modulus and yield stress. Also special attention is also given to the effects of this internal pressure and temperature gradient in the creation of tensile and compressive stresses.Keywords: FGM, cylindrical pressure tubes, small deformation theory, yield onset, thermal loading
Procedia PDF Downloads 4195797 The Numerical Model of the Onset of Acoustic Oscillation in Pulse Tube Engine
Authors: Alexander I. Dovgyallo, Evgeniy A. Zinoviev, Svetlana O. Nekrasova
Abstract:
The most of works applied for the pulse tube converters contain the workflow description implemented through the use of mathematical models on stationary modes. However, the study of the thermoacoustic systems unsteady behavior in the start, stop, and acoustic load changes modes is in the particular interest. The aim of the present study was to develop a mathematical thermal excitation model of acoustic oscillations in pulse tube engine (PTE) as a small-scale scheme of pulse tube engine operating at atmospheric air. Unlike some previous works this standing wave configuration is a fully closed system. The improvements over previous mathematical models are the following: the model allows specifying any values of porosity for regenerator, takes into account the piston weight and the friction in the cylinder and piston unit, and determines the operating frequency. The numerical method is based on the relation equations between the pressure and volume velocity variables at the ends of each element of PTE which is recorded through the appropriate transformation matrix. A solution demonstrates that the PTE operation frequency is the complex value, and it depends on the piston mass and the dynamic friction due to its movement in the cylinder. On the basis of the determined frequency thermoacoustically induced heat transport and generation of acoustic power equations were solved for channel with temperature gradient on its ends. The results of numerical simulation demonstrate the features of the initialization process of oscillation and show that that generated acoustic power more than power on the steady mode in a factor of 3…4. But doesn`t mean the possibility of its further continuous utilizing due to its existence only in transient mode which lasts only for a 30-40 sec. The experiments were carried out on small-scale PTE. The results shows that the value of acoustic power is in the range of 0.7..1.05 W for the defined frequency range f = 13..18 Hz and pressure amplitudes 11..12 kPa. These experimental data are satisfactorily correlated with the numerical modeling results. The mathematical model can be straightforwardly applied for the thermoacoustic devices with variable temperatures of thermal reservoirs and variable transduction loads which are expected to occur in practical implementations of portable thermoacoustic engines.Keywords: nonlinear processes, pulse tube engine, thermal excitation, standing wave
Procedia PDF Downloads 3765796 Numerical Investigation of Effect of Throat Design on the Performance of a Rectangular Ramjet Intake
Authors: Subrat Partha Sarathi Pattnaik, Rajan N.K.S.
Abstract:
Integrated rocket ramjet engines are highly suitable for long range missile applications. Designing the fixed geometry intakes for such missiles that can operate efficiently over a range of operating conditions is a highly challenging task. Hence, the present study aims to evaluate the effect of throat design on the performance of a rectangular mixed compression intake for operation in the Mach number range of 1.8 – 2.5. The analysis has been carried out at four different Mach numbers of 1.8, 2, 2.2, 2.5 and two angle-of-attacks of +5 and +10 degrees. For the throat design, three different throat heights have been considered, one corresponding to a 3- external shock design and two heights corresponding to a 2-external shock design leading to different internal contraction ratios. The on-design Mach number for the study is M 2.2. To obtain the viscous flow field in the intake, the theoretical designs have been considered for computational fluid dynamic analysis. For which Favre averaged Navier- Stokes (FANS) equations with two equation SST k-w model have been solved. The analysis shows that for zero angle of attack at on-design and high off-design Mach number operations the three-ramp design leads to a higher total pressure recovery (TPR) compared to the two-ramp design at both contraction ratios maintaining same mass flow ratio (MFR). But at low off-design Mach numbers the total pressure shows an opposite trend that is maximum for the two-ramp low contraction ratio design due to lower shock loss across the external shocks similarly the MFR is higher for low contraction ratio design as the external ramp shocks move closer to the cowl. At both the angle of attack conditions and complete range of Mach numbers the total pressure recovery and mass flow ratios are highest for two ramp low contraction design due to lower stagnation pressure loss across the detached bow shock formed at the ramp and lower mass spillage. Hence, low contraction design is found to be suitable for higher off-design performance.Keywords: internal contraction ratio, mass flow ratio, mixed compression intake, performance, supersonic flows
Procedia PDF Downloads 1085795 Operating Parameters and Costs Assessments of a Real Fishery Wastewater Effluent Treated by Electrocoagulation Process
Authors: Mirian Graciella Dalla Porta, Humberto Jorge José, Danielle de Bem Luiz, Regina de F. P. M.Moreira
Abstract:
Similar to most processing industries, fish processing produces large volumes of wastewater, which contains especially organic contaminants, salts and oils dispersed therein. Different processes have been used for the treatment of fishery wastewaters, but the most commonly used are chemical coagulation and flotation. These techniques are well known but sometimes the characteristics of the treated effluent do not comply with legal standards for discharge. Electrocoagulation (EC) is an electrochemical process that can be used to treat wastewaters in terms of both organic matter and nutrient removal. The process is based on the use of sacrificial electrodes such as aluminum, iron or zinc, that are oxidized to produce metal ions that can be used to coagulate and react with organic matter and nutrients in the wastewater. While EC processes are effective to treatment of several types of wastewaters, applications have been limited due to the high energy demands and high current densities. Generally, the for EC process can be performed without additional chemicals or pre-treatment, but the costs should be reduced for EC processes to become more applicable. In this work, we studied the treatment of a real wastewater from fishmeal industry by electrocoagulation process. Removal efficiencies for chemical oxygen demand (COD), total organic carbon (TOC) turbidity, phosphorous and nitrogen concentration were determined as a function of the operating conditions, such as pH, current density and operating time. The optimum operating conditions were determined to be operating time of 10 minutes, current density 100 A.m-2, and initial pH 4.0. COD, TOC, phosphorous concentration, and turbidity removal efficiencies at the optimum operating conditions were higher than 90% for aluminum electrode. Operating costs at the optimum conditions were calculated as US$ 0.37/m3 (US$ 0.038/kg COD) for Al electrode. These results demonstrate that the EC process is a promising technology to remove nutrients from fishery wastewaters, as the process has both a high efficiency of nutrient removal, and low energy requirements.Keywords: electrocoagulation, fish, food industry, wastewater
Procedia PDF Downloads 2485794 A Next-Generation Pin-On-Plate Tribometer for Use in Arthroplasty Material Performance Research
Authors: Lewis J. Woollin, Robert I. Davidson, Paul Watson, Philip J. Hyde
Abstract:
Introduction: In-vitro testing of arthroplasty materials is of paramount importance when ensuring that they can withstand the performance requirements encountered in-vivo. One common machine used for in-vitro testing is a pin-on-plate tribometer, an early stage screening device that generates data on the wear characteristics of arthroplasty bearing materials. These devices test vertically loaded rotating cylindrical pins acting against reciprocating plates, representing the bearing surfaces. In this study, a pin-on-plate machine has been developed that provides several improvements over current technology, thereby progressing arthroplasty bearing research. Historically, pin-on-plate tribometers have been used to investigate the performance of arthroplasty bearing materials under conditions commonly encountered during a standard gait cycle; nominal operating pressures of 2-6 MPa and an operating frequency of 1 Hz are typical. There has been increased interest in using pin-on-plate machines to test more representative in-vivo conditions, due to the drive to test 'beyond compliance', as well as their testing speed and economic advantages over hip simulators. Current pin-on-plate machines do not accommodate the increased performance requirements associated with more extreme kinematic conditions, therefore a next-generation pin-on-plate tribometer has been developed to bridge the gap between current technology and future research requirements. Methodology: The design was driven by several physiologically relevant requirements. Firstly, an increased loading capacity was essential to replicate the peak pressures that occur in the natural hip joint during running and chair-rising, as well as increasing the understanding of wear rates in obese patients. Secondly, the introduction of mid-cycle load variation was of paramount importance, as this allows for an approximation of the loads present in a gait cycle to be applied and to test the fatigue properties of materials. Finally, the rig must be validated against previous-generation pin-on-plate and arthroplasty wear data. Results: The resulting machine is a twelve station device that is split into three sets of four stations, providing an increased testing capacity compared to most current pin-on-plate tribometers. The loading of the pins is generated using a pneumatic system, which can produce contact pressures of up to 201 MPa on a 3.2 mm² round pin face. This greatly exceeds currently achievable contact pressures in literature and opens new research avenues such as testing rim wear of mal-positioned hip implants. Additionally, the contact pressure of each set can be changed independently of the others, allowing multiple loading conditions to be tested simultaneously. Using pneumatics also allows the applied pressure to be switched ON/OFF mid-cycle, another feature not currently reported elsewhere, which allows for investigation into intermittent loading and material fatigue. The device is currently undergoing a series of validation tests using Ultra-High-Molecular-Weight-Polyethylene pins and 316L Stainless Steel Plates (polished to a Ra < 0.05 µm). The operating pressures will be between 2-6 MPa, operating at 1 Hz, allowing for validation of the machine against results reported previously in the literature. The successful production of this next-generation pin-on-plate tribometer will, following its validation, unlock multiple previously unavailable research avenues.Keywords: arthroplasty, mechanical design, pin-on-plate, total joint replacement, wear testing
Procedia PDF Downloads 945793 A Preliminary Outcome of the Effect of an Accumulating 10,000 Daily Steps on Blood Pressure and Diabetes in Overweight Thai Participants
Authors: Kornanong Yuenyongchaiwat, Duangnate Pepatsitipong, Panthip Sangprasert
Abstract:
High blood pressure and diabetes have been suggested as being non-communicable disease (NCDs), and there is one of the components of the definition of metabolic syndrome. Therefore, the purpose of this study was to evaluate the effect of a 12-week pedometer based community walking intervention on change in resting blood pressure and blood glucose in participants with overweight in the community setting. Method: Participants were recruited both males and females who had a sedentary lifestyle aged 35-59 years (mean aged 49.67 years). A longitudinal quasi-experimental study was designed with 35 overweight participants who had body mass index ≥ 25 kg/m2. These volunteers were assigned to the 12-week pedometer-based walking program (an accumulated at least 10,000 steps a day). Blood pressure and blood glucose were measured initially before and after 12-week intervention. Results: Systolic blood pressure and heart rate were significantly lower in 30 individuals who had accumulated 10,000 steps d-1 in the intervention group at 12 week follow-up (-13.74 mmHg and 5.3 bpm, respectively). In addition, reduction in blood glucose (-14.89 mmol) in the intervention participants was statistically significant (p < .001). A regression analysis indicated that reductions in systolic blood pressure were significantly related to the increase in steps per day. Conclusion: The accumulation of least 10,000 steps d-1 resulted in decreased resting systolic blood pressure and blood glucose in overweight participants. This has also shown that an increase in physical activity in overweight participants with sedentary lifestyle by accumulating at least 10,000 steps a day can reduce the risk of cardiovascular disease (e.g., hypertension and diabetes).Keywords: blood glucose, blood pressure, diabetes, hypertension, physical activity, walking
Procedia PDF Downloads 2805792 Evaluation of Resting Systolic and Diastolic Blood Pressure of Staff of Multi-National Petroleum Company in Warri, Nigeria
Authors: Ekpon Oghenetega Philip, Tayire Okabare Favour, Boye Ejobowah Thomas
Abstract:
The study evaluated the resting systolic blood pressure (RSBP) and resting diastolic blood pressure (RDBP) of staff of a multi-national petroleum company in Nigeria with the aim of helping the staff maintain optimal health which is necessary to carry out their secular work. Eleven healthy male (age 36.9±10.48 years, mean±S.D) and 38 healthy female (39.99±12.23 years, mean±S.D) staff of the multi-national petroleum company performed an incremental exercise on a treadmill and cycle ergometers to determine RSBP and RDBP. An assessment of the health status of the staff of the company was carried out using a physical activity readiness questionnaire (PAR-Q) to determine their suitability for the program. Analysis of the t-test for male staff of RSBP shows that it was statistically significant with a calculated t value of 2.19, α = 0.05 and t-calculated for RSBP of female staff was 1.897, α = 0.05 showing a significance. While the t-calculated RSBP for male staff of the multi-national company is 0.44 with α =0.05 and the female RDBP is 4.129, α = 0.05 and they are all significant. It was recommended that staff of the company should regularly visit the company gym during their leisure hours to maintain optimum health.Keywords: systolic blood pressure, diastolic blood pressure, exercise, pressure staff
Procedia PDF Downloads 2785791 Numerical Analysis of a Strainer Using Porous Media Technique
Authors: Ji-Hoon Byeon, Kwon-Hee Lee
Abstract:
Strainer filter serves to block the inflow of impurities while mixed fluid is entering or exiting the piping. The filter of the strainer has a perforated structure, so that the pressure drop and the velocity change necessarily occur when the mixed fluid passes through the filter. It is possible to predict the pressure drop and velocity change of the strainer by numerical analysis by implementing all the perforated plates. However, if the size of the perforated plate exceeds a certain size, it is difficult to perform the numerical analysis, and sometimes we cannot guarantee its accuracy. In this study, we tried to predict the pressure drop and velocity change by using the porous media technique to obtain the equivalent resistance without actual implementation of the perforation shape of the strainer. Ansys-CFX, a commercial software, is used to perform the numerical analysis. The analysis procedure is as follows. Firstly, the unit pattern of the perforated plate is modeled, and the pressure drop is analyzed by varying the velocity by symmetry of the wall surface. Secondly, since the equation for obtaining resistance is a quadratic equation of pressure having unknown velocity, the viscous resistance and the inertia resistance of the perforated plate are obtained from the relationship between pressure and speed. Thirdly, by using the calculated resistance values, the values are substituted into the flat plate implemented as a two-dimensional porous media, and the accuracy is verified by comparing the pressure drop and the velocity change. Fourthly, the pressure drop and velocity change in the whole strainer are analyzed by using the resistance values obtained on the perforated plate in the actual whole strainer model. Using the porous media technique, it is found that pressure drop and velocity change can be predicted in relatively short time without modeling the overall shape of the filter. Acknowledgements: This work was supported by the Valve Center from the Regional Innovation Center(RIC) Program of Ministry of Trade, Industry & Energy (MOTIE).Keywords: strainer, porous media, CFD, numerical analysis
Procedia PDF Downloads 3705790 A Study on Temperature and Drawing Speed for Diffusion Bonding Enhancement in Drawing of Hot Lined Pipes by FEM Analysis
Authors: M. T. Ahn, J. H. Park, S. H. Park, S. H. Ha
Abstract:
Diffusion bonding has been continuously studied. Temperature and pressure are the most important factors to increase the strength between diffusion bonded interfaces. Diffusion bonding is an important factor affecting the bonding strength of the lined pipe. The increase of the diffusion bonding force results in a high formability clad pipe. However, in the case of drawing, it is difficult to obtain a high pressure between materials due to a relatively small reduction in cross-section, and it is difficult to prevent elongation or to tear of material in hot drawing even if the reduction in the section is increased. In this paper, to increase the diffusion bonding force, we derive optimal temperature and pressure to suppress material stretching and realize precise thickness precision.Keywords: diffusion bonding, temperature, pressure, drawing speed
Procedia PDF Downloads 3735789 Structural Evolution of Na6Mn(SO4)4 from High-Pressure Synchrotron Powder X-ray Diffraction
Authors: Monalisa Pradhan, Ajana Dutta, Irshad Kariyattuparamb Abbas, Boby Joseph, T. N. Guru Row, Diptikanta Swain, Gopal K. Pradhan
Abstract:
Compounds with the Vanthoffite crystal structure having general formula Na6M(SO₄)₄ (M= Mg, Mn, Ni , Co, Fe, Cu and Zn) display a variety of intriguing physical properties intimately related to their structural arrangements. The compound Na6Mn(SO4)4 shows antiferromagnetic ordering at low temperature where the in-plane Mn-O•••O-Mn interactions facilitates antiferromagnetic ordering via a super-exchange interaction between the Mn atoms through the oxygen atoms . The inter-atomic bond distances and angles can easily be tuned by applying external pressure and can be probed using high resolution X-ray diffraction. Moreover, because the magnetic interaction among the Mn atoms are super-exchange type via Mn-O•••O-Mn path, the variation of the Mn-O•••O-Mn dihedral angle and Mn-O bond distances under high pressure inevitably affects the magnetic properties. Therefore, it is evident that high pressure studies on the magnetically ordered materials would shed light on the interplay between their structural properties and magnetic ordering. This will indeed confirm the role of buckling of the Mn-O polyhedral in understanding the origin of anti-ferromagnetism. In this context, we carried out the pressure dependent X-ray diffraction measurement in a diamond anvil cell (DAC) up to a maximum pressure of 17 GPa to study the phase transition and determine equation of state from the volume compression data. Upon increasing the pressure, we didn’t observe any new diffraction peaks or sudden discontinuity in the pressure dependences of the d values up to the maximum achieved pressure of ~17 GPa. However, it is noticed that beyond 12 GPa the a and b lattice parameters become identical while there is a discontinuity in the β value around the same pressure. This indicates a subtle transition to a pseudo-monoclinic phase. Using the third order Birch-Murnaghan equation of state (EOS) to fit the volume compression data for the entire range, we found the bulk modulus (B0) to be 44 GPa. If we consider the subtle transition at 12 GPa, we tried to fit another equation state for the volume beyond 12 GPa using the second order Birch-Murnaghan EOS. This gives a bulk modulus of ~ 34 GPa for this phase.Keywords: mineral, structural phase transition, high pressure XRD, spectroscopy
Procedia PDF Downloads 875788 Analysis of Impact Load Induced by Ultrasonic Cavitation Bubble Collapse Using Thin Film Pressure Sensors
Authors: Moiz S. Vohra, Nagalingam Arun Prasanth, Wei L. Tan, S. H. Yeo
Abstract:
The understanding of generation and collapse of acoustic cavitation bubbles are prerequisites for application of cavitation erosion. Microbubbles generated due to rapid fluctuation of pressure induced by propagation of ultrasonic wave lead to formation of high velocity microjets and or shock waves upon collapse. Due to vast application of ultrasonic, it is important to characterize and understand cavitation collapse pressure under the radiating surface at different conditions. A comparative investigation is carried out to determine impact load and dynamic pressure distribution exerted upon bubble collapse using thin film pressure sensors. Measurements were recorded at different input conditions such as amplitude, stand-off distance, insertion depth of the horn inside the liquid and pulse on-off time of acoustic vibrations. Impact force of 2.97 N is recorded at amplitude of 108 μm and stand-off distance of 1 mm from the sensor film, whereas impulsive force as low as 0.4 N is recorded at amplitude of 12 μm and stand-off distance of 5 mm from the sensor film. The results drawn from the investigation indicated that variety of impact loads can be achieved by controlling generation and collapse of bubbles, making it suitable to use for numerous application.Keywords: ultrasonic cavitation, bubble collapse, pressure mapping sensor, impact load
Procedia PDF Downloads 3385787 Numerical Investigation into Capture Efficiency of Fibrous Filters
Authors: Jayotpaul Chaudhuri, Lutz Goedeke, Torsten Hallenga, Peter Ehrhard
Abstract:
Purification of gases from aerosols or airborne particles via filters is widely applied in the industry and in our daily lives. This separation especially in the micron and submicron size range is a necessary step to protect the environment and human health. Fibrous filters are often employed due to their low cost and high efficiency. For designing any filter the two most important performance parameters are capture efficiency and pressure drop. Since the capture efficiency is directly proportional to the pressure drop which leads to higher operating costs, a detailed investigation of the separation mechanism is required to optimize the filter designing, i.e., to have a high capture efficiency with a lower pressure drop. Therefore a two-dimensional flow simulation around a single fiber using Ansys CFX and Matlab is used to get insight into the separation process. Instead of simulating a solid fiber, the present Ansys CFX model uses a fictitious domain approach for the fiber by implementing a momentum loss model. This approach has been chosen to avoid creating a new mesh for different fiber sizes, thereby saving time and effort for re-meshing. In a first step, only the flow of the continuous fluid around the fiber is simulated in Ansys CFX and the flow field data is extracted and imported into Matlab and the particle trajectory is calculated in a Matlab routine. This calculation is a Lagrangian, one way coupled approach for particles with all relevant forces acting on it. The key parameters for the simulation in both Ansys CFX and Matlab are the porosity ε, the diameter ratio of particle and fiber D, the fluid Reynolds number Re, the Reynolds particle number Rep, the Stokes number St, the Froude number Fr and the density ratio of fluid and particle ρf/ρp. The simulation results were then compared to the single fiber theory from the literature.Keywords: BBO-equation, capture efficiency, CFX, Matlab, fibrous filter, particle trajectory
Procedia PDF Downloads 2065786 Use of High Hydrostatic Pressure as an Alternative Preservation Method in Camels Milk
Authors: Fahad Aljasass, Hamza Abu-Tarboush, Salah Aleid, Siddig Hamad
Abstract:
The effects of different high hydrostatic pressure treatments on the shelf life of camel’s milk were studied. Treatments at 300 to 350 MPa for 5 minutes at 40°C reduced microbial contamination to levels that prolonged the shelf life of refrigerated (3° C) milk up to 28 days. The treatment resulted in a decrease in the proteolytic activity of the milk. The content of proteolytic enzymes in the untreated milk sample was 4.23 µM/ml. This content decreased significantly to 3.61 µM/ml when the sample was treated at 250 MPa. Treatment at 300 MPa decreased the content to 3.90 which was not significantly different from the content of the untreated sample. The content of the sample treated at 350 MPa dropped to 2.98 µM/ml which was significantly lower than the contents of all other treated and untreated samples. High pressure treatment caused a slight but statistically significant increase in the pH of camel’s milk. The pH of the untreated sample was 6.63, which increased significantly to 6.70, in the samples treated at 250 and 350 MPa, but insignificantly in the sample treated at 300 MPa. High pressure treatment resulted in some degree of milk fat oxidation. The thiobarbituric acid (TBA) value of the untreated sample was 0.86 mg malonaldehyde/kg milk. This value remained unchanged in the sample treated at 250 MPa, but then it increased significantly to 1.25 and 1.33 mg/kg in the samples treated at 300 and 350 MPa, respectively. High pressure treatment caused a small increase in the greenness (a* value) of camel’s milk. The value of a* was reduced from -1.17 for the untreated sample to -1.26, -1.21 and -1.30 for the samples treated at 250, 300 and 350 MPa, respectively. Δa* at the 250 MPa treatment was -0.09, which then decreased to -0.04 at the 300 MPa treatment to increase again to -0.13 at the 350 MPa treatment. The yellowness (b* value) of camel’s milk increased significantly as a result of high pressure treatment. The b* value of the untreated sample was 1.40, this value increased to 2.73, 2.31 and 2.18 after treatments at 250, 300 and 350 MPa, respectively. The Δb* value was +1.33 at the treatment 250 MPa, decreased to +0.91 at 300 MPa and further to +0.78 at 350 MPa. The pressure treatment caused slight effect on color, slight decrease in protease activity and a slight increase in the oxidation products of lipids.Keywords: high hydrostatic pressure, camel’s milk, mesophilic aerobic bacteria, clotting, protease
Procedia PDF Downloads 2685785 Effects of Handgrip Isometric Training in Blood Pressure of Patients with Peripheral Artery Disease
Authors: Raphael M. Ritti-Dias, Marilia A. Correia, Wagner J. R. Domingues, Aline C. Palmeira, Paulo Longano, Nelson Wolosker, Lauro C. Vianna, Gabriel G. Cucato
Abstract:
Patients with peripheral arterial disease (PAD) have a high prevalence of hypertension, which contributes to a high risk of acute cardiovascular events and cardiovascular mortality. Strategies to reduce cardiovascular risk of these patients are needed. Meta-analysis studies have shown that isometric handgrip training promotes reductions in clinical blood pressure in normotensive, pre-hypertensive and hypertensive individuals. However, the effect of this exercise training on other cardiovascular function indicators in PAD patients remains unknown. Thus, the aim of this study was to analyze the effects of isometric handgrip training on blood pressure in patients with PAD. In this clinical trial, 28 patients were randomly allocated into two groups: isometric handgrip training (HG) and control (CG). The HG conducted the unilateral handgrip training three days per week (four sets of two minutes, with 30% of maximum voluntary contraction with an interval of four minutes between sets). CG was encouraged to increase their physical activity levels. At baseline and after eight weeks blood pressure and heart rate were obtained. ANOVA two-way for repeated measures with the group (GH and GC) and time (pre- and post-intervention) as factors was performed. After 8 weeks of training there were no significant changes in systolic blood pressure (HG pre 141 ± 24.0 mmHg vs. HG post 142 ± 22.0 mmHg; CG pre 140 ± 22.1 mmHg vs. CG post 146 ± 16.2 mmHg; P=0.18), diastolic blood pressure (HG pre 74 ± 10.4 mmHg vs. HG post 74 ± 11.9 mmHg; CG pre 72 ± 6.9 mmHg vs. CG post 74 ± 8.0 mmHg; P=0.22) and heart rate (HG pre 61 ± 10.5 bpm vs. HG post 62 ± 8.0 bpm; CG pre 64 ± 11.8 bpm vs. CG post 65 ± 13.6 bpm; P=0.81). In conclusion, our preliminary data indicate that isometric handgrip training did not modify blood pressure and heart rate in patients with PAD.Keywords: blood pressure, exercise, isometric, peripheral artery disease
Procedia PDF Downloads 3295784 Android Application on Checking Halal Product Based on Augmented Reality
Authors: Saidatul A'isyah Ahmad Shukri, Haslina Arshad
Abstract:
This study was conducted to develop an application that provides Augmented Reality experience in identifying halal food products and beverages based on Malaysian Islamic Development Department (JAKIM) database for Muslim consumers in Malaysia. The applications is operating on the mobile device using the Android platform. This application aims to provide a new experience to the user how to use the Android application implements Augmentation Reality technology The methodology used is object-oriented analysis and design (OOAD). The programming language used is JAVA programming using the Android Software Development Kit (SDK) and XML. Android operating system is selected, and it is an open source operating system. Results from the study are implemented to further enhance diversity in presentation of information contained in this application and so can bring users using these applications from different angles.Keywords: android, augmented reality, food, halal, Malaysia, products, XML
Procedia PDF Downloads 4555783 Simulation of Turboexpander Potential in a City Gate Station under Variations of Feed Characteristic
Authors: Tarannom Parhizkar, Halle Bakhteeyar
Abstract:
This paper presents a feasibility assessment of an expansion system applied to the natural gas transportation process in Iran. Power can be generated from the pressure energy of natural gas along its supply chain at various pressure reduction points by using turboexpanders. This technology is being applied in different countries around the world. The system consists of a turboexpander reducing the natural gas pressure and providing mechanical energy to drive electric generator. Moreover, gas pre-heating, required to prevent hydrate formation, is performed upstream of expansion stage using burner. The city gate station (CGS) has a nominal flow rate in range of 45000 to 270000 cubic meters per hour and a pressure reduction from maximum 62 bar at the upstream to 6 bar. Due to variable feed pressure and temperature in this station sensitivity analysis of generated electricity and required heat is performed. Results show that plant gain is more sensible to pressure variation than temperature changes. Furthermore, using turboexpander to reduce the pressure result in an electrical generation of 2757 to 17574 kW with the value of approximately 4 million US$ per year. Moreover, the required heat range to prevent a hydrate formation is almost 2189 to 14157 kW. To provide this heat, a burner is used with a maximum annual cost of 268,640 $ burner fuel. Therefore, the actual annual benefit of proposed plant modification is approximately over 6,5 million US$.Keywords: feasibility study, simulation, turboexpander, feed characteristic
Procedia PDF Downloads 5015782 The Effect of the Thermal Temperature and Injected Current on Laser Diode 808 nm Output Power
Authors: Hassan H. Abuelhassan, M. Ali Badawi, Abdelrahman A. Elbadawi, Adam A. Elbashir
Abstract:
In this paper, the effect of the injected current and temperature into the output power of the laser diode module operating at 808nm were applied, studied and discussed. Low power diode laser was employed as a source. The experimental results were demonstrated and then the output power of laser diode module operating at 808nm was clearly changed by the thermal temperature and injected current. The output power increases by the increasing the injected current and temperature. We also showed that the increasing of the injected current results rising in heat, which also, results into decreasing of the laser diode output power during the highest temperature as well. The best ranges of characteristics made by diode module operating at 808nm were carefully handled and determined.Keywords: laser diode, light amplification, injected current, output power
Procedia PDF Downloads 3865781 Theoretical Study of Carbonic Anhydrase-Ii Inhibitors for Treatment of Glaucoma
Authors: F. Boukli Hacene, W. Soufi, S. Ghalem
Abstract:
Glaucoma disease is a progressive degenerative optic neuropathy, with irreversible visual field deficits and high eye pressure being one of the risk factors. Sulfonamides are carbonic anhydrase-II inhibitors that aim to decrease the secretion of aqueous humor by direct inhibition of this enzyme at the level of the ciliary processes. These drugs present undesirable effects that are difficult to accept by the patient. In our study, we are interested in the inhibition of carbonic anhydrase-II by different natural ligands (curcumin analogues) using molecular modeling methods using molecular operating environment (MOE) software to predict their interaction with this enzyme.Keywords: carbonic anhydrase-II, curcumin analogues, drug research, molecular modeling
Procedia PDF Downloads 895780 Plackett-Burman Design to Evaluate the Influence of Operating Parameters on Anaerobic Orthophosphate Release from Enhanced Biological Phosphorus Removal Sludge
Authors: Reza Salehi, Peter L. Dold, Yves Comeau
Abstract:
The aim of the present study was to investigate the effect of a total of 6 operating parameters including pH (X1), temperature (X2), stirring speed (X3), chemical oxygen demand (COD) (X4), volatile suspended solids (VSS) (X5) and time (X6) on anaerobic orthophosphate release from enhanced biological phosphorus removal (EBPR) sludge. An 8-run Plackett Burman design was applied and the statistical analysis of the experimental data was performed using Minitab16.2.4 software package. The Analysis of variance (ANOVA) results revealed that temperature, COD, VSS and time had a significant effect with p-values of less than 0.05 whereas pH and stirring speed were identified as non-significant parameters, but influenced orthophosphate release from the EBPR sludge. The mathematic expression obtained by the first-order multiple linear regression model between orthophosphate release from the EBPR sludge (Y) and the operating parameters (X1-X6) was Y=18.59+1.16X1-3.11X2-0.81X3+3.79X4+9.89X5+4.01X6. The model p-value and coefficient of determination (R2) value were 0.026 and of 99.87%, respectively, which indicates the model is significant and the predicted values of orthophosphate release from the EBPR sludge have been excellently correlated with the observed values.Keywords: anaerobic, operating parameters, orthophosphate release, Plackett-Burman design
Procedia PDF Downloads 2785779 The Effects of Aging on the Cost of Operating and Support: An Empirical Study Applied to Weapon Systems
Authors: Byungchae Kim, Jiwoo Nam
Abstract:
Aging of weapon systems can cause the failure and degeneration of components which results in increase of operating and support costs. However, whether this aging effect is significantly strong and it influences a lot on national defense spending due to the rapid increase in operating and support (O&S) costs is questionable. To figure out this, we conduct a literature review analyzing the aging effect of US weapon systems. We also conduct an empirical research using a maintenance database of Korean weapon systems, Defense Logistics Integrated Information System (DAIIS). We run regression of various types of O&S cost on weapon system age to investigate the statistical significance of aging effect and use generalized linear model to find relations between the failure of different priced components and the age. Our major finding is although aging effect exists, its impacts on weapon system cost seem to be not too large considering several characteristics of O&S cost elements not relying on the age.Keywords: O&S cost, aging effect, weapon system, GLM
Procedia PDF Downloads 1425778 Condition Monitoring for Twin-Fluid Nozzles with Internal Mixing
Authors: C. Lanzerstorfer
Abstract:
Liquid sprays of water are frequently used in air pollution control for gas cooling purposes and for gas cleaning. Twin-fluid nozzles with internal mixing are often used for these purposes because of the small size of the drops produced. In these nozzles the liquid is dispersed by compressed air or another pressurized gas. In high efficiency scrubbers for particle separation, several nozzles are operated in parallel because of the size of the cross section. In such scrubbers, the scrubbing water has to be re-circulated. Precipitation of some solid material can occur in the liquid circuit, caused by chemical reactions. When such precipitations are detached from the place of formation, they can partly or totally block the liquid flow to a nozzle. Due to the resulting unbalanced supply of the nozzles with water and gas, the efficiency of separation decreases. Thus, the nozzles have to be cleaned if a certain fraction of blockages is reached. The aim of this study was to provide a tool for continuously monitoring the status of the nozzles of a scrubber based on the available operation data (water flow, air flow, water pressure and air pressure). The difference between the air pressure and the water pressure is not well suited for this purpose, because the difference is quite small and therefore very exact calibration of the pressure measurement would be required. Therefore, an equation for the reference air flow of a nozzle at the actual water flow and operation pressure was derived. This flow can be compared with the actual air flow for assessment of the status of the nozzles.Keywords: condition monitoring, dual flow nozzles, flow equation, operation data
Procedia PDF Downloads 2655777 Stresses Induced in Saturated Asphalt Pavement by Moving Loads
Authors: Yang Zhong, Meijie Xue
Abstract:
The purpose of this paper is to investigate the stresses and excess pore fluid pressure induced by the moving wheel pressure on saturated asphalt pavements, which is one of the reasons for a damage phenomenon in flexible pavement denoted stripping. The saturated asphalt pavement is modeled as multilayered poroelastic half space exerted by a wheel pressure, which is moving at a constant velocity along the surface of the pavement. The governing equations for the proposed analysis are based on the Biot’s theory of dynamics in saturated poroelastic medium. The governing partial differential equations are solved by using Laplace and Hankel integral transforms. The solutions for the stresses and excess pore pressure are expressed in the forms of numerical inversion Laplace and Hankel integral transforms. The numerical simulation results clearly demonstrate the induced deformation and water flow in the asphalt pavement.Keywords: saturated asphalt pavements, moving loads, excess pore fluid pressure, stress of pavement, biot theory, stress and strain of pavement
Procedia PDF Downloads 288