Search results for: limbal stem cell deficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4463

Search results for: limbal stem cell deficiency

4193 Benign Osteoblastoma of the Mandible Resection and Replacement of the Defects with Decellularized Cattle Bone Scaffold with Mesenchymal Bone Marrow Stem Cells

Authors: K. Mardaleishvili, G. Loladze, G. Shatirishivili, D. Chakhunashvili, A. Vishnevskaya, Z. Kakabadze

Abstract:

Benign osteoblastoma is a benign tumor of the bone, usually affecting the vertebrae and long tubular bones. It is a rarely seen tumor of the facial bones. The authors present a case of a 28-year-old male patient with a tumor in mandibular body. The lesion was radically resected and histological analysis of the specimen demonstrated features typical of a benign osteoblastoma. The defect of the jaw was reconstructed with titanium implants and decellularized and lyophilized cattle bone matrix with mesenchymal bone marrow stem cells transplantation. This presentation describes the procedures for rehabilitating a patient with decellularized bone scaffold in the region of the face, recovering the facial contours and esthetics of the patient.

Keywords: facial bones, osteoblastoma, stem cells, transplantation

Procedia PDF Downloads 402
4192 Regenerative Therapeutic Effect of Statin Nanoparticle-Loaded Adipose-Derived Stem Cells on Myocardial Infarction

Authors: Masaaki Ii, Takashi Saito, Yasuhiko Tabata, Shintaro Nemoto

Abstract:

Background: Clinical trials of autologous adipose-derived stem cell (AdSC) therapy for ischemic heart diseases (IHD) are now on-going. We have investigated the hypothesis that combination of AdSCs and statin, an agent with pleiotropic effects, could augment the therapeutic effect on myocardial infarction (MI). Methods and Results: Human AdSC functions with different doses of simvastatin-conjugated nanoparticle (STNP) uptake were evaluated by in vitro assays. STNP promoted the migration activity without changing the proliferation activity, and also up-regulated growth factors. Next, MI was induced by LAD ligation in nude mice, and the mice were assigned in the following groups 3 days after MI: 1) PBS (control), 2) NP-AdSCs (50000 cells), 3) STNP, and 4) STNP-AdSCs (50000 cells). Cardiac functional recovery assessed by echocardiography was improved at 4 weeks after surgery in STNP-AdSC group. Masson’s trichrome-stained sections revealed that LV fibrosis length was reduced, and the number of TUNEL-positive cardiomyocytes was less in STNP-AdSC group. Surprisingly, a number of de novo endogenous Nkx-2.5/GATA4 positive immature cardiomyocytes as well as massive vascular formation were observed in outer layer of infarcted myocardium despite of a few recruited/retained transfused STNP-AdSCs 4 weeks after MI in STNP-AdSC group. Finally, massive myocardial regeneration was observed 8 weeks after MI. Conclusions: Intravenously injected small number of statin nanoparticle-loaded hAdSCs exhibited a potent therapeutic effect inducing endogenous cardiac tissue regeneration.

Keywords: statin, drug delivery system, stem cells, cardiac regeneration

Procedia PDF Downloads 167
4191 Association of Vitamin D Levels in Obese and Non-Obese Patients with Polycystic Ovarian Syndrome in East Indian Populations

Authors: Dipanshu Sur, Ratnabali Chakravorty

Abstract:

Introduction: Polycystic ovary syndrome (PCOS) is the most common metabolic abnormality such as changes in lipid profile, diabetes, hypertension and metabolic syndrome occurring in women. Hypovitaminsis D was found to be associated with the development of obesity and insulin resistance in women with PCOS. Aim: To evaluate the association of vitamin D levels in obese and non-obese patients with PCOS in an East Indian populations. Methods: A case control study was conducted. It enrolled 100 cases of PCOS based on Rotterdam criteria and 100 ovulatory normal cases matched for their age and BMI. Vitamin D levels were compared in the obese and non-obese PCOS groups and also with the controls. Results: The mean age of subjects was 29.48 ± 3.29 years in the PCOS group and 26.24 ± 2.56 years in the control group. Hypovitaminosis D was present in 75 out of 100 PCOS women (75.0%) and 25 women (25.0%) showed sufficient 25OHD levels ≥30 ng/ml. Women with PCOS had significantly lower total serum calcium (8.4 ± 0.25 mg/dl versus 9.8 ± 0.17 mg/dl in controls), and 25 OHD (21.2 ± 2.56 ng/ml versus 32.6 ± 2.23 ng/ml in control group) than ovulatory normal women. This difference remained significant for both groups after adjustment for BMI. Obese women in both groups had significantly lower concentration of calcium and 25OHD than normal weight patients in this study. Conclusion: Our study shows majority of the patients and controls had vitamin D deficiency and there was significant difference in the vitamin D levels in PCOS group and controls as well as obese and non-obese groups. This may reflect the vitamin D deficiency status of the community. Vitamin D deficiency should demands immediate attention as it is a severe problem among the East Indian population.

Keywords: vitamin D deficiency, polycystic ovary syndrome, obese, hypovitaminsis D

Procedia PDF Downloads 294
4190 Dynamic Changes in NT-proBNP Levels in Unrelated Donors during Hematopoietic Stem Cells Mobilization

Authors: Natalia V. Minaeva, Natalia A. Zorina, Marina N. Khorobrikh, Philipp S. Sherstnev, Tatiana V. Krivokorytova, Alexander S. Luchinin, Maksim S. Minaev, Igor V. Paramonov

Abstract:

Background. Over the last few decades, the Center for International Blood and Marrow Transplant Research (CIBMTR) and the World Marrow Donor Association (WMDA) have been actively working to ensure the safety of the hematopoietic stem cell (HSC) donation process. Registration of adverse events that may occur during the donation period and establishing a relationship between donation and side effects are included in the WMDA international standards. The level of blood serum N-terminal pro-brain natriuretic peptide (NT-proBNP) is an early marker of myocardial stress. Due to the high analytical sensitivity and specificity, laboratory assessment of NT-proBNP makes it possible to objectively diagnose myocardial dysfunction. It is well known that the main stimulus for proBNP synthesis and secretion from atrial and ventricular cardiac myocytes is myocyte stretch and increasement of myocardial extensibility and pressure in the heart chambers. Аim. The aim of the study was to assess the dynamic changes in the levels of blood serum N-terminal pro-brain natriuretic peptide of unrelated donors at various stages of hematopoietic stem cell mobilization. Materials. We have examined 133 unrelated donors, including 92 men and 41 women, that have been included into the study. The NT-proBNP levels were measured before the start of mobilization, then on the day of apheresis, and after the donation of allogeneic HSC. The relationship between NT-proBNP levels and body mass index (BMI), ferritin, hemoglobin, and white blood cells (WBC) levels was assessed on the day of apheresis. The median age of donors was 34 years. Mobilization of HSCs was managed with filgrastim administration at a dose of 10 μg/kg daily for 4-5 days. The first leukocytapheresis was performed on day 4 from the start of filgrastim administration. Quantitative values of the blood serum NT-proBNP level are presented as a median (Me), first and third quartiles (Q1-Q3). Comparative analysis was carried out using the t-test and correlation analysis as well by Spearman method. Results. The baseline blood serum NT-proBNP levels in all 133 donors were within the reference values (<125 pg/ml) and equaled 21,6 (10,0; 43,3) pg/ml. At the same time, the level of NT-proBNP in women was significantly higher than that of men. On the day of the HSC apheresis, a significant increase of blood serum NT-proBNP levels was detected and equald 131,2 (72,6; 165,3) pg/ml (p<0,001), with higher rates in female donors. A statistically significant weak inverse correleation was established between the level of NT-proBNP and the BMI of donors (-0.18, p = 0,03), as well as the level of hemoglobin (-0.33, p <0,001), and ferritin levels (-0.19, p = 0,03). No relationship has been established between the magnitude of WBC levels achieved as a result of the mobilization of HSC on the day of leukocytapheresis. A day after the apheresis, the blood serum NT-proBNP levels still exceeded the reference values, but there was a decreasing tendency. Conclusion. An increase of the blood serum NT-proBNP level in unrelated donors during the mobilization of HSC was established. Future studies should clarify the reason for this phenomenon, as well as its effects on donors' long-term health.

Keywords: unrelated donors, mobilization, hematopoietic stem cells, N-terminal pro-brain natriuretic peptide

Procedia PDF Downloads 73
4189 Variation in Wood Anatomical Properties of Acacia seyal var. seyal Tree Species Growing in Different Zones in Sudan

Authors: Hanadi Mohamed Shawgi Gamal, Ashraf Mohamed Ahmed Abdalla

Abstract:

Sudan is endowed by a great diversity of tree species; nevertheless, the utilization of wood resources has traditionally concentrated on a few number of species. With the great variation in the climatic zones of Sudan, great variations are expected in the anatomical properties between and within species. This variation needs to be fully explored in order to suggest the best uses for the species. Modern research on wood has substantiated that the climatic condition where the species grow has significant effect on wood properties. Understanding the extent of variability of wood is important because the uses for each kind of wood are related to its characteristics; furthermore, the suitability or quality of wood for a particular purpose is determined by the variability of one or more of these characteristics. The present study demonstrates the effect of rainfall zones in some anatomical properties of Acacia seyal var. seyal growing in Sudan. For this purpose, twenty healthy trees were collected randomly from two zones (ten trees per zone). One zone with relatively low rainfall (273mm annually) which represented by North Kordofan state and White Nile state and the second with relatively high rainfall (701 mm annually) represented by Blue Nile state and South Kordofan state. From each sampled tree, a stem disc (3 cm thick) was cut at 10% from stem height. One radius was obtained in central stem dices. Two representative samples were taken from each disc, one at 10% distance from pith to bark, the second at 90% in order to represent the juvenile and mature wood. The investigated anatomical properties were fibers length, fibers and vessels diameter, lumen diameter, and wall thickness as well as cell proportions. The result of the current study reveals significant differences between zones in mature wood vessels diameter and wall thickness, as well as juvenile wood vessels, wall thickness. The higher values were detected in the drier zone. Significant differences were also observed in juvenile wood fiber length, diameter as well as wall thickness. Contrary to vessels diameter and wall thickness, the fiber length, diameter as well as wall thickness were decreased in the drier zone. No significant differences have been detected in cell proportions of juvenile and mature wood. The significant differences in some fiber and vessels dimension lead to expect significant differences in wood density. From these results, Acacia seyal var. seyal seems to be well adapted with the change in rainfall and may survive in any rainfall zone.

Keywords: Acacia seyal var. seyal, anatomical properties, rainfall zones, variation

Procedia PDF Downloads 118
4188 On the Thermodynamics of Biological Cell Adhesion

Authors: Ben Nadler

Abstract:

Cell adhesion plays a vital role in many cell activities. The motivation to model cell adhesion is to study important biological processes, such as cell spreading, cell aggregation, tissue formation, and cell adhesion, which are very challenging to study by experimental methods alone. This study provides important insight into cell adhesion, which can lead to improve regenerative medicine and tissue formation techniques. In this presentation the biological cells adhesion is mediated by receptors–ligands binding and the diffusivity of the receptor on the cell membrane surface. The ability of receptors to diffuse on the cell membrane surface yields a very unique and complicated adhesion mechanism, which is exclusive to cells. The phospholipid bilayer, which is the main component in the cell membrane, shows fluid-like behavior associated with the molecules’ diffusivity. The biological cell is modeled as a fluid-like membrane with negligible bending stiffness enclosing the cytoplasm fluid. The in-plane mechanical behavior of the cell membrane is assumed to depend only on the area change, which is motivated by the fluidity of the phospholipid bilayer. In addition, the presence of receptors influences on the local mechanical properties of the cell membrane is accounted for by including stress-free area change, which depends on the receptor density. Based on the physical properties of the receptors and ligands the attraction between the receptors and ligands is modeled as a charged-nonpolar which is a noncovalent interaction. Such interaction is a short-range type, which decays fast with distance. The mobility of the receptor on the cell membrane is modeled using the diffusion equation and Fick’s law is used to model the receptor–receptor interactions. The resultant interaction force, which includes receptor–ligand and receptor–receptor interaction, is decomposed into tangential part, which governs the receptor diffusion, and normal part, which governs the cell deformation and adhesion. The formulation of the governing equations and numerical simulations will be presented. Analysis of the adhesion characteristic and properties are discussed. The roles of various thermomechanical properties of the cell, receptors and ligands on the cell adhesion are investigated.

Keywords: cell adhesion, cell membrane, receptor-ligand interaction, receptor diffusion

Procedia PDF Downloads 315
4187 Bullous Pyoderma Gangrenosum in a Patient with Anti-Phospholipid Syndrome: A Case Report and Literature Review

Authors: Yousef Alwashahi, Ahmed Almoqbali, Mayar Albahrani, Asma Alajmi

Abstract:

We report a rare case of a 49-year-old Omani woman who is a known case of primary anti-phospholipid syndrome, glucose-6-phosphate dehydrogenase deficiency, and iron deficiency anaemia. During cannulation, she was found to develop bulla that progressed to ulcerations. With chronicity and recurrent abscess formation that usually increase after surgical intervention, a pathergy phenomenon was postulated. High suspicion of pyoderma gangrenosum was considered. Fortunately, the rapid progression of the disease was slowed down with corticosteroids, cyclosporin, and biological agents.

Keywords: anti-phospholipid syndrome, pyoderma gangrenosum, bullous pyoderma gangrenosum, pathergy, pathergy phenomenon

Procedia PDF Downloads 66
4186 Numerical Simulation of a Single Cell Passing through a Narrow Slit

Authors: Lanlan Xiao, Yang Liu, Shuo Chen, Bingmei Fu

Abstract:

Most cancer-related deaths are due to metastasis. Metastasis is a complex, multistep processes including the detachment of cancer cells from the primary tumor and the migration to distant targeted organs through blood and/or lymphatic circulations. During hematogenous metastasis, the emigration of tumor cells from the blood stream through the vascular wall into the tissue involves arrest in the microvasculature, adhesion to the endothelial cells forming the microvessel wall and transmigration to the tissue through the endothelial barrier termed as extravasation. The narrow slit between endothelial cells that line the microvessel wall is the principal pathway for tumor cell extravasation to the surrounding tissue. To understand this crucial step for tumor hematogenous metastasis, we used Dissipative Particle Dynamics method to investigate an individual cell passing through a narrow slit numerically. The cell membrane was simulated by a spring-based network model which can separate the internal cytoplasm and surrounding fluid. The effects of the cell elasticity, cell shape and cell surface area increase, and slit size on the cell transmigration through the slit were investigated. Under a fixed driven force, the cell with higher elasticity can be elongated more and pass faster through the slit. When the slit width decreases to 2/3 of the cell diameter, the spherical cell becomes jammed despite reducing its elasticity modulus by 10 times. However, transforming the cell from a spherical to ellipsoidal shape and increasing the cell surface area only by 3% can enable the cell to pass the narrow slit. Therefore the cell shape and surface area increase play a more important role than the cell elasticity in cell passing through the narrow slit. In addition, the simulation results indicate that the cell migration velocity decreases during entry but increases during exit of the slit, which is qualitatively in agreement with the experimental observation.

Keywords: dissipative particle dynamics, deformability, surface area increase, cell migration

Procedia PDF Downloads 313
4185 Assessment of Barriers to the Clinical Adoption of Cell-Based Therapeutics

Authors: David Pettitt, Benjamin Davies, Georg Holländer, David Brindley

Abstract:

Cellular based therapies, whose origins can be traced from the intertwined concepts of tissue engineering and regenerative medicine, have the potential to transform the current medical landscape and offer an approach to managing what were once considered untreatable diseases. However, despite a large increase in basic science activity in the cell therapy arena alongside a growing portfolio of cell therapy trials, the number of industry products available for widespread clinical use correlates poorly with such a magnitude of activity, with the number of cell-based therapeutics in mainstream use remaining comparatively low. This research serves to quantitatively assess the barriers to the clinical adoption of cell-based therapeutics through identification of unique barriers, specific challenges and opportunities facing the development and adoption of such therapies.

Keywords: cell therapy, clinical adoption, commercialization, translation

Procedia PDF Downloads 380
4184 Human Bone Marrow Stem Cell Behavior on 3D Printed Scaffolds as Trabecular Bone Grafts

Authors: Zeynep Busra Velioglu, Deniz Pulat, Beril Demirbakan, Burak Ozcan, Ece Bayrak, Cevat Erisken

Abstract:

Bone tissue has the ability to perform a wide array of functions including providing posture, load-bearing capacity, protection for the internal organs, initiating hematopoiesis, and maintaining the homeostasis of key electrolytes via calcium/phosphate ion storage. The most common cause for bone defects is extensive trauma and subsequent infection. Bone tissue has the self-healing capability without a scar tissue formation for the majority of the injuries. However, some may result with delayed union or fracture non-union. Such cases include reconstruction of large bone defects or cases of compromised regenerative process as a result of avascular necrosis and osteoporosis. Several surgical methods exist to treat bone defects, including Ilizarov method, Masquelete technique, growth factor stimulation, and bone replacement. Unfortunately, these are technically demanding and come with noteworthy disadvantages such as lengthy treatment duration, adverse effects on the patient’s psychology, repeated surgical procedures, and often long hospitalization times. These limitations associated with surgical techniques make bone substitutes an attractive alternative. Here, it was hypothesized that a 3D printed scaffold will mimic trabecular bone in terms of biomechanical properties and that such scaffolds will support cell attachment and survival. To test this hypothesis, this study aimed at fabricating poly(lactic acid), PLA, structures using 3D printing technology for trabecular bone defects, characterizing the scaffolds and comparing with bovine trabecular bone. Capacity of scaffolds on human bone marrow stem cell (hBMSC) attachment and survival was also evaluated. Cubes with a volume of 1 cm³ having pore sizes of 0.50, 1.00 and 1.25 mm were printed. The scaffolds/grafts were characterized in terms of porosity, contact angle, compressive mechanical properties as well cell response. Porosities of the 3D printed scaffolds were calculated based on apparent densities. For contact angles, 50 µl distilled water was dropped over the surface of scaffolds, and contact angles were measured using ‘Image J’ software. Mechanical characterization under compression was performed on scaffolds and native trabecular bone (bovine, 15 months) specimens using a universal testing machine at a rate of 0.5mm/min. hBMSCs were seeded onto the 3D printed scaffolds. After 3 days of incubation with fully supplemented Dulbecco’s modified Eagle’s medium, the cells were fixed using 2% formaldehyde and glutaraldehyde mixture. The specimens were then imaged under scanning electron microscopy. Cell proliferation was determined by using EZQuant dsDNA Quantitation kit. Fluorescence was measured using microplate reader Spectramax M2 at the excitation and emission wavelengths of 485nm and 535nm, respectively. Findings suggested that porosity of scaffolds with pore dimensions of 0.5mm, 1.0mm and 1.25mm were not affected by pore size, while contact angle and compressive modulus decreased with increasing pore size. Biomechanical characterization of trabecular bone yielded higher modulus values as compared to scaffolds with all pore sizes studied. Cells attached and survived in all surfaces, demonstrating higher proliferation on scaffolds with 1.25mm pores as compared with those of 1mm. Collectively, given lower mechanical properties of scaffolds as compared to native bone, and biocompatibility of the scaffolds, the 3D printed PLA scaffolds of this study appear as candidate substitutes for bone repair and regeneration.

Keywords: 3D printing, biomechanics, bone repair, stem cell

Procedia PDF Downloads 155
4183 A Model for Academic Coaching for Success and Inclusive Excellence in Science, Technology, Engineering, and Mathematics Education

Authors: Sylvanus N. Wosu

Abstract:

Research shows that factors, such as low motivation, preparation, resources, emotional and social integration, and fears of risk-taking, are the most common barriers to access, matriculation, and retention into science, technology, engineering, and mathematics (STEM) disciplines for underrepresented (URM) students. These factors have been shown to impact students’ attraction and success in STEM fields. Standardized tests such as the SAT and ACT often used as predictor of success, are not always true predictors of success for African and Hispanic American students. Without an adequate academic support environment, even a high SAT score does not guarantee academic success in science and engineering. This paper proposes a model for Academic Coaching for building success and inclusive excellence in STEM education. Academic coaching is framed as a process of motivating students to be independent learners through relational mentorship, facilitating learning supports inside and outside of the classroom or school environment, and developing problem-solving skills and success attitudes that lead to higher performance in the specific subjects. The model is formulated based on best strategies and practices for enriching Academic Performance Impact skills and motivating students’ interests in STEM. A scaled model for measuring the Academic Performance Impact (API) index and STEM is discussed. The study correlates API with state standardized test and shows that the average impact of those skills can be predicted by the Academic Performance Impact (API) index or Academic Preparedness Index.

Keywords: diversity, equity, graduate education, inclusion, inclusive excellence, model

Procedia PDF Downloads 172
4182 Academic Success, Problem-Based Learning and the Middleman: The Community Voice

Authors: Isabel Medina, Mario Duran

Abstract:

Although Problem-based learning provides students with multiple opportunities for rigorous instructional experiences in which students are challenged to address problems in the community; there are still gaps in connecting community leaders to the PBL process. At a south Texas high school, community participation serves as an integral component of the PBL process. Problem-based learning (PBL) has recently gained momentum due to the increase in global communities that value collaboration and critical thinking. As an instructional approach, PBL engages high school students in meaningful learning experiences. Furthermore, PBL focuses on providing students with a connection to real-world situations that require effective peer collaboration. For PBL leaders, providing students with a meaningful process is as important as the final PBL outcome. To achieve this goal, STEM high school strategically created a space for community involvement to be woven within the PBL fabric. This study examines the impact community members had on PBL students attending a STEM high school in South Texas. At STEM High School, community members represent a support system that works through the PBL process to ensure students receive real-life mentoring from business and industry leaders situated in the community. A phenomenological study using a semi-structured approach was used to collect data about students’ perception of community involvement within the PBL process for one South Texas high school. In our proposed presentation, we will discuss how community involvement in the PBL process academically impacted the educational experience of high school students at STEM high school. We address the instructional concerns PBL critics have with the lack of direct instruction, by providing a representation of how STEM high school utilizes community members to assist in impacting the academic experience of students.

Keywords: phenomenological, STEM education, student engagement, community involvement

Procedia PDF Downloads 71
4181 Study of the Effect of the Continuous Electric Field on the Rd Cancer Cell Line by Response Surface Methodology

Authors: Radia Chemlal, Salim Mehenni, Dahbia Leila Anes-boulahbal, Mohamed Kherat, Nabil Mameri

Abstract:

The application of the electric field is considered to be a very promising method in cancer therapy. Indeed, cancer cells are very sensitive to the electric field, although the cellular response is not entirely clear. The tests carried out consisted in subjecting the RD cell line under the effect of the continuous electric field while varying certain parameters (voltage, exposure time, and cell concentration). The response surface methodology (RSM) was used to assess the effect of the chosen parameters, as well as the existence of interactions between them. The results obtained showed that the voltage, the cell concentration as well as the interaction between voltage and exposure time have an influence on the mortality rate of the RD cell line.

Keywords: continuous electric field, RD cancer cell line, RSM, voltage

Procedia PDF Downloads 88
4180 Effect of Dual Wavelength Light Exposure on Regeneration of Dugesia dorotocephala

Authors: Zayedali Shaikh

Abstract:

Increasingly now more than ever, UV damage brings with it a litany of minor deformities that can range from mild lesions and discoloring to cataracts and blindness. Pluripotent stem cells in planaria and human skin can be used to treat wounds and skin damage, with the primary limitations being inadequate growth factors. Photobiomodulation therapy in the form of low-intensity red light therapy has been proven to provide helpful benefits in the healing of skin that displays some of the symptoms of UV damage, such as burns and lesions, along with stimulating the proliferation of stem cells in recellularizing tissue. This paper puts forth an alternate means by which to treat the effects of UV damage using the freshwater planarian model system, Dugesia dorotocephala, known for its regenerative abilities and abundance of pluripotent stem cells, which allow for the rapid growth and repair of missing or damaged structures. Our work consisted of exposing planaria to different types of light: red light, blue light, white light, darkness, red and blue light together, UV light, and finally, red and UV light together. The primary focus of this research was on the red and UV lights, with six controls acting as metrics to compare our findings. Through computer-assisted morphological analysis, the results show that there is no significant difference in the rates of regeneration of planaria treated with simultaneous exposure to red and UV light versus planaria in darkness (p > .05), a representation of their preferred natural habitat. Our research suggests the viability of red-light therapy in actively combating UV damage and expediting the growth of epidermal stem cells by acting as another growth factor.

Keywords: regenerative medicine, stem cells, planaria, photobiomodulation

Procedia PDF Downloads 49
4179 Wireless Backhauling for 5G Small Cell Networks

Authors: Abdullah A. Al Orainy

Abstract:

Small cell backhaul solutions need to be cost-effective, scalable, and easy to install. This paper presents an overview of small cell backhaul technologies. Wireless solutions including TV white space, satellite, sub-6 GHz radio wave, microwave and mmWave with their backhaul characteristics are discussed. Recent research on issues like beamforming, backhaul architecture, precoding and large antenna arrays, and energy efficiency for dense small cell backhaul with mmWave communications is reviewed. Recent trials of 5G technologies are summarized.

Keywords: backhaul, small cells, wireless, 5G

Procedia PDF Downloads 476
4178 Research on the Influence of Robot Teaching on the Creativity of Primary and Secondary School Students under the Background of STEM Education

Authors: Chu Liu

Abstract:

With the development of society and the changes of the times, the requirements for the cultivation of learners are different. In the 21st century, STEM education has become a boom in the development of education in various countries, aiming to improve the comprehensive ability of learners in science, technology, engineering, and mathematics. The rise of robot education provides an effective way for STEM education to cultivate computational thinking ability, interdisciplinary ability, problem-solving ability, and teamwork ability. Although robot education has been developed in China for several years, it still lacks a standard curriculum system. This article uses programming software as a platform, through the research and analysis of 'Basic Education Information Technology Curriculum Standards (2012 Edition)', combines with the actual learning situation of learners, tries to conduct teaching project design research, and aims at providing references for the teaching ideas and method of robot education courses. In contemporary society, technological advances increasingly require creativity. Innovative comprehensive talents urgently need a radical and effective education reform to keep up with social changes. So in this context, robot teaching design can be used for students. The tendency of creativity to influence is worth to be verified.

Keywords: STEM education, robot teaching, primary and secondary school students, tendency of creativity

Procedia PDF Downloads 99
4177 Modeling and Simulation of Organic Solar Cells Based on P3HT:PCBM using SCAPS 1-D (Influence of Defects and Temperature on the Performance of the Solar Cell)

Authors: Souhila Boukli Hacene, Djamila Kherbouche, Abdelhak Chikhaoui

Abstract:

In this work, we elucidate theoretically the effect of defects and temperature on the performance of the organic bulk heterojunction solar cell (BHJ) P3HT: PCBM. We have studied the influence of their parameters on cell characteristics. For this purpose, we used the effective medium model and the solar cell simulator (SCAPS) to model the characteristics of the solar cell. We also explore the transport of charge carriers in the device. It was assumed that the mixture is lightly p-type doped and that the band gap contains acceptor defects near the HOMO level with a Gaussian distribution of energy states at 100 and 50 meV. We varied defects density between 1012-1017 cm-3, from 1016 cm-3, a total decrease of the photovoltaic characteristics due to the increase of the non-radiative recombination can be noticed. Then we studied the effect of variation of the electron and the hole capture cross-section on the cell’s performance, we noticed that the cell obtains a better efficiency of about 3.6% for an electron capture cross section ≤ 10-15 cm2 and a hole capture cross section ≤ 10-19 cm2. On the other hand, we also varied the temperature between 120K and 400K. We observed that the temperature of the solar cell induces a noticeable effect on its voltage. While the effect of temperature on the solar cell current is negligible.

Keywords: organic solar cell, P3HT:PCBM, defects, temperature, SCAPS

Procedia PDF Downloads 59
4176 Innate Immune Dysfunction in Niemann Pick Disease Type C

Authors: Stephanie Newman

Abstract:

Niemann-Pick Type C disease is a rare, usually fatal lysosomal storage disorder. Although clinically characterized by progressive neurodegeneration, there is also evidence of altered innate immune responses such as neuroinflammation that promote disease progression. We have initiated an investigation into whether phagocytosis, an important innate immune activity and the process by which particles are ingested is defective in NPC. Using an in vitro assay, we have shown that NPC macrophages have a deficiency in the phagocytosis of different particles. We plan to investigate the mechanistic basis for impaired phagocytosis, the contribution that this deficiency makes to disease pathology, and whether therapies that have shown in vivo benefit are able to restore phagocytic activity.

Keywords: Niemann Pick Disease C, phagocytosis, innate immunity, lysosomal storage disorder

Procedia PDF Downloads 367
4175 Study on the Impact of Power Fluctuation, Hydrogen Utilization, and Fuel Cell Stack Orientation on the Performance Sensitivity of PEM Fuel Cell

Authors: Majid Ali, Xinfang Jin, Victor Eniola, Henning Hoene

Abstract:

The performance of proton exchange membrane (PEM) fuel cells is sensitive to several factors, including power fluctuations, hydrogen utilization, and the quality orientation of the fuel cell stack. In this study, we investigate the impact of these factors on the performance of a PEM fuel cell. We start by analyzing the power fluctuations that are typical in renewable energy systems and their effects on the 50 Watt fuel cell's performance. Next, we examine the hydrogen utilization rate (0-1000 mL/min) and its impact on the cell's efficiency and durability. Finally, we investigate the quality orientation (three different positions) of the fuel cell stack, which can significantly affect the cell's lifetime and overall performance. The basis of our analysis is the utilization of experimental results, which have been further validated by comparing them with simulations and manufacturer results. Our results indicate that power fluctuations can cause significant variations in the fuel cell's voltage and current, leading to a reduction in its performance. Moreover, we show that increasing the hydrogen utilization rate beyond a certain threshold can lead to a decrease in the fuel cell's efficiency. Finally, our analysis demonstrates that the orientation of the fuel cell stack can affect its performance and lifetime due to non-uniform distribution of reactants and products. In summary, our study highlights the importance of considering power fluctuations, hydrogen utilization, and quality orientation in designing and optimizing PEM fuel cell systems. The findings of this study can be useful for researchers and engineers working on the development of fuel cell systems for various applications, including transportation, stationary power generation, and portable devices.

Keywords: fuel cell, proton exchange membrane, renewable energy, power fluctuation, experimental

Procedia PDF Downloads 106
4174 Passive Heat Exchanger for Proton Exchange Membrane Fuel Cell Cooling

Authors: Ivan Tolj

Abstract:

Water produced during electrochemical reaction in Proton Exchange Membrane (PEM) fuel cell can be used for internal humidification of reactant gases; hydrogen and air. On such a way it is possible to eliminate expensive external humidifiers and simplify fuel cell balance-of-plant (BoP). When fuel cell operates at constant temperature (usually between 60 °C and 80 °C) relatively cold and dry ambient air heats up quickly upon entering channels which cause further drop in relative humidity (below 20%). Low relative humidity of reactant gases dries up polymer membrane and decrease its proton conductivity which results in fuel cell performance drop. It is possible to maintain such temperature profile throughout fuel cell cathode channel which will result in close to 100 % RH. In order to achieve this, passive heat exchanger was designed using commercial CFD software (ANSYS Fluent). Such passive heat exchanger (with variable surface area) is suitable for small scale PEM fuel cells. In this study, passive heat exchanger for single PEM fuel cell segment (with 20 x 1 cm active area) was developed. Results show close to 100 % RH of air throughout cathode channel with increased fuel cell performance (mainly improved polarization curve) and improved durability.

Keywords: PEM fuel cell, passive heat exchange, relative humidity, thermal management

Procedia PDF Downloads 247
4173 Application of Bioreactors in Regenerative Dentistry: Literature Review

Authors: Neeraj Malhotra

Abstract:

Background: Bioreactors in tissue engineering are used as devices that apply mechanical means to influence biological processes. They are commonly employed for stem cell culturing, growth and expansion as well as in 3D tissue culture. Contemporarily there use is well established and is tested extensively in the medical sciences, for tissue-regeneration and tissue engineering of organs like bone, cartilage, blood vessels, skin grafts, cardiac muscle etc. Methodology: Literature search, both electronic and hand search, was done using the following MeSH and keywords: bioreactors, bioreactors and dentistry, bioreactors & dental tissue engineering, bioreactors and regenerative dentistry. Articles published only in English language were included for review. Results: Bioreactors like, spinner flask-, rotating wall-, flow perfusion-, and micro-bioreactors and in-vivo bioreactor have been employed and tested for the regeneration of dental and like-tissues. These include gingival tissue, periodontal ligament, alveolar bone, mucosa, cementum and blood vessels. Based on their working dynamics they can be customized in future for regeneration of pulp tissue and whole tooth regeneration. Apart from this, they have been successfully used in testing the clinical efficacy and biological safety of dental biomaterials. Conclusion: Bioreactors have potential use in testing dental biomaterials and tissue engineering approaches aimed at regenerative dentistry.

Keywords: bioreactors, biological process, mechanical stimulation, regenerative dentistry, stem cells

Procedia PDF Downloads 183
4172 Resistive Switching in TaN/AlNx/TiN Cell

Authors: Hsin-Ping Huang, Shyankay Jou

Abstract:

Resistive switching of aluminum nitride (AlNx) thin film was demonstrated in a TaN/AlNx/TiN memory cell that was prepared by sputter deposition techniques. The memory cell showed bipolar switching of resistance between +3.5 V and –3.5 V. The resistance ratio of high resistance state (HRS) to low resistance state (HRS), RHRS/RLRS, was about 2 over 100 cycles of endurance test. Both the LRS and HRS of the memory cell exhibited ohmic conduction at low voltages and Poole-Frenkel emission at high voltages. The electrical conduction in the TaN/AlNx/TiN memory cell was possibly attributed to the interactions between charges and defects in the AlNx film.

Keywords: aluminum nitride, nonvolatile memory, resistive switching, thin films

Procedia PDF Downloads 376
4171 The Impact of Academic Support Practices on Two-Year College Students’ Achievement in Science, Technology, Engineering, and Math Education: An Exploration of Factors

Authors: Gisele Ragusa, Lilian Leung

Abstract:

There are essential needs for science, technology, engineering, and math (STEM) workforces nationally. This important need underscores the necessity of increasing numbers of students attending both two-year community colleges and universities, thereby enabling and supporting a larger pool of students to enter the workforce. The greatest number of students in STEM programs attend public higher education institutions, with an even larger majority beginning their academic experiences enrolled in two-year public colleges. Accordingly, this research explores the impact of experiences and academic support practices on two-year (community) college students’ academic achievement in STEM majors with a focus on supporting students who are the first in their families to attend college. This research is a result of three years of iterative trials of differing supports to improve such students’ academic success with a cross-student comparative research methodological structure involving peer-to-peer and faculty academic supports. Results of this research indicate that background experiences and a combination of peer-to-peer and faculty-led academic support practices, including supplementary instruction, peer mentoring, and study skills support, significantly improve students’ academic success in STEM majors. These results confirm the needs that first-generation students have in navigating their college careers and what can be effective in supporting them.

Keywords: higher education policy, student support, two-year colleges, STEM achievement

Procedia PDF Downloads 65
4170 Research on the Role of Platelet Derived Growth Factor Receptor Beta in Promoting Dedifferentiation and Pulmonary Metastasis of Osteosarcoma Under Hypoxic Microenvironment

Authors: Enjie Xu, Zhen Huang, Kunpeng Zhu, Jianping Hu, Xiaolong Ma, Yongjie Wang, Jiazhuang Zhu, Chunlin Zhang

Abstract:

Abstract: Hypoxia and dedifferentiation of osteosarcoma (OS) cells leads to poor prognosis. We plan to identify the role of hypoxia on dedifferentiation and the associated signaling pathways. We performed a sphere formation assay and determined spheroid cells as dedifferentiated cells by detecting stem cell-like markers. RNAi assay was used to explore the expression relationship between hypoxia inducible factor 1 subunit alpha (HIF1A) and platelet derived growth factor receptor beta (PDGFRB). We obtained PDGFRB knockdown and overexpression cells through lentiviral infection experiments and the effects of PDGFRB on cytoskeleton rearrangement and cell adhesion were explored by immunocytochemistry. Wound-healing experiments, transwell assays, and animal trials were employed to investigate the effect of PDGFRB on OS metastasis. Dedifferentiated OS cells were found to exhibit high expression of HIF1A and PDGFRB, and HIF1A promoted the expression of PDGFRB, subsequently activated ras homolog family member A (RhoA), and increased the phosphorylation of myosin light chain (MLC). PDGFRB also enhanced the phosphorylation of focal adhesion kinase (FAK). The OS cell morphology and vinculin distribution were altered by PDGFRB. PDGFRB also promoted cell dedifferentiation and had a significant impact on the metastasis of OS cells both in vitro and in vivo. Our results demonstrated that HIF1A up-regulated PDGFRB under hypoxic conditions, and PDGFRB regulated the actin cytoskeleton by activating RhoA and subsequently phosphorylating MLC, thereby promoting OS dedifferentiation and pulmonary metastasis.

Keywords: osteosarcoma, dedifferentiation, metastasis, cytoskeleton rearrangement, PDGFRB, hypoxia

Procedia PDF Downloads 25
4169 Perception Towards Using E-learning with Stem Students Whose Programs Require Them to Attend Practical Sections in Laboratories during Covid-19

Authors: Youssef A. Yakoub, Ramy M. Shaaban

Abstract:

Covid-19 has changed and affected the whole world dramatically in a new way that the entire world, even scientists, have not imagined before. The educational institutions around the world have been fighting since Covid-19 hit the world last December to keep the educational process unchanged for all students. E-learning was a must for almost all US universities during the pandemic. It was specifically more challenging to use eLearning instead of regular classes among students who take practical education. The aim of this study is to examine the perception of STEM students towards using eLearning instead of traditional methods during their practical study. Focus groups of STEM students studying at a western Pennsylavian, mid-size university were interviewed. Semi-structured interviews were designed to get an insight on students’ perception towards the alternative educational methods they used in the past seven months. Using convenient sampling, four students were chosen from different STEM fields: science of physics, technology, electrical engineering, and mathematics. The interview was primarily about the extent to which these students were satisfied, and their educational needs were met through distance education during the pandemic. The interviewed students were generally able to do a satisfactory performance during their virtual classes, but they were not satisfied enough with the learning methods. The main challenges they faced included the inability to have real practical experience, insufficient materials posted by the faculty, and some technical problems associated with their study. However, they reported they were satisfied with the simulation programs they had. They reported these simulations provided them with a good alternative to their traditional practical education. In conclusion, this study highlighted the challenges students face during the pandemic. It also highlighted the various learning tools students see as good alternatives to their traditional education.

Keywords: eLearning, STEM education, COVID-19 crisis, online practical training

Procedia PDF Downloads 110
4168 Theoretical Analysis of Graded Interface CdS/CIGS Solar Cell

Authors: Hassane Ben Slimane, Dennai Benmoussa, Abderrachid Helmaoui

Abstract:

We have theoretically calculated the photovoltaic conversion efficiency of a graded interface CdS/CIGS solar cell, which can be experimentally fabricated. Because the conduction band discontinuity or spike in an abrupt heterojunction CdS/CIGS solar cell can hinder the separation of hole-electron by electric field, a graded interface layer is uses to eliminate the spike and reduces recombination in space charge region. This paper describes the role of the graded band gap interface layer in decreasing the performance of the heterojunction cell. By optimizing the thickness of the graded region, an improvement of conversion efficiency has been observed in comparison to the conventional CIGS system.

Keywords: heterojunction, solar cell, graded interface, CIGS

Procedia PDF Downloads 379
4167 Relationship between Iron-Related Parameters and Soluble Tumor Necrosis Factor-Like Weak Inducer of Apoptosis in Obese Children

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Iron is physiologically essential. However, it also participates in the catalysis of free radical formation reactions. Its deficiency is associated with amplified health risks. This trace element establishes some links with another physiological process related to cell death, apoptosis. Both iron deficiency and iron overload are closely associated with apoptosis. Soluble tumor necrosis factor-like weak inducer of apoptosis (sTWEAK) has the ability to trigger apoptosis and plays a dual role in the physiological versus pathological inflammatory responses of tissues. The aim of this study was to investigate the status of these parameters as well as the associations among them in children with obesity, a low-grade inflammatory state. The study was performed on groups of children with normal body mass index (N-BMI) and obesity. Forty-three children were included in each group. Based upon age- and sex-adjusted BMI percentile tables prepared by World Health Organization, children whose values varied between 85 and 15 were included in N-BMI group. Children whose BMI percentile values were between 99 and 95 comprised obese (OB) group. Institutional ethical committee approval and informed consent forms were taken prior to the study. Anthropometric measurements (weight, height, waist circumference, hip circumference, head circumference, neck circumference) and blood pressure values (systolic blood pressure and diastolic blood pressure) were recorded. Routine biochemical analysis including serum iron, total iron binding capacity (TIBC), transferrin saturation percent (Tf Sat %), and ferritin were performed. Soluble tumor necrosis factor-like weak inducer of apoptosis levels were determined by enzyme-linked immunosorbent assay. Study data was evaluated using appropriate statistical tests performed by the statistical program SPSS. Serum iron levels were 91±34 mcrg/dl and 75±31 mcrg/dl in N-BMI and OB children, respectively. The corresponding values for TIBC, Tf Sat %, ferritin were 265 mcrg/dl vs 299 mcrg/dl, 37.2±19.1 % vs 26.7±14.6 %, and 41±25 ng/ml vs 44±26 ng/ml. in N-BMI and OB groups, sTWEAK concentrations were measured as 351 ng/L and 325 ng/L, respectively (p>0.05). Correlation analysis revealed significant associations between sTWEAK levels and iron related parameters (p<0.05) except ferritin. In conclusion, iron contributes to apoptosis. Children with iron deficiency have decreased apoptosis rate in comparison with that of healthy children. sTWEAK is inducer of apoptosis. Obese children had lower levels of both iron and sTWEAK. Low levels of sTWEAK are associated with several types of cancers and poor survival. Although iron deficiency state was not observed in this study, the correlations detected between decreased sTWEAK and decreased iron as well as Tf Sat % values were valuable findings, which point out decreased apoptosis. This may induce a proinflammatory state, potentially leading to malignancies in the future lives of obese children.

Keywords: apoptosis, children, iron-related parameters, obesity, soluble tumor necrosis factor-like weak inducer of apoptosis

Procedia PDF Downloads 112
4166 Analysis Influence Variation Frequency on Characterization of Nano-Particles in Preteatment Bioetanol Oil Palm Stem (Elaeis guineensis JACQ) Use Sonication Method with Alkaline Peroxide Activators on Improvement of Celullose

Authors: Luristya Nur Mahfut, Nada Mawarda Rilek, Ameiga Cautsarina Putri, Mujaroh Khotimah

Abstract:

The use of bioetanol from lignocellulosic material has begone to be developed. In Indonesia the most abundant lignocellulosic material is stem of palm which contain 32.22% of cellulose. Indonesia produces approximatelly 300.375.000 tons of stem of palm each year. To produce bioetanol from lignocellulosic material, the first process is pretreatment. But, until now the method of lignocellulosic pretretament is uneffective. This is related to the particle size and the method of pretreatment of less than optimal so that led to an overhaul of the lignin insufficient, consequently increased levels of cellulose was not significant resulting in low yield of bioetanol. To solve the problem, this research was implemented by using the process of pretreatment method ultasonifikasi in order to produce higher pulp with nano-sized particles that will obtain higher of yield ethanol from stem of palm. Research methods used in this research is the RAK that is composed of one factor which is the frequency ultrasonic waves with three varians, they are 30 kHz, 40 kHz, 50 kHz, and use constant variable is concentration of NaOH. The analysis conducted in this research is the influence of the frequency of the wave to increase levels of cellulose and change size on the scale of nanometers on pretreatment process by using the PSA methods (Particle Size Analyzer), and a Cheason. For the analysis of the results, data, and best treatment using ANOVA and test BNT with confidence interval 5%. The best treatment was obtained by combination X3 (frequency of sonication 50 kHz) and lignin (19,6%) cellulose (59,49%) and hemicellulose (11,8%) with particle size 385,2nm (18,8%).

Keywords: bioethanol, pretreatment, stem of palm, cellulosa

Procedia PDF Downloads 304
4165 Effects of Excess-Iron Stress on Symbiotic Nitrogen Fixation Efficiency of Yardlong-Bean Plants

Authors: Hong Li, Tingxian Li, Xudong Wang, Qinghuo Lin

Abstract:

Excess-iron (Fe) stresses involved in legume symbiotic nitrogen fixation are not understood. Our objectives were to investigate the tolerance of yardlong-bean plants to soil excess-Fe stress and antagonistic effects of organic amendments and rhizobial inoculants on plant root nodulation and stem ureide formation. The study was conducted in the tropical Hainan Island during 2012-2013. The soil was strongly acidic (pH 5.3±0.4) and highly variable in Fe concentrations(596±79 mg/kg). The treatments were arranged in a split-plot design with three blocks. The treatment effects were significant on root nodulation, stem ureide, amino acids, plant N/Fe accumulation and bean yields (P<0.05). The yardlong-bean stem allantoin, amino acids and nitrate concentrations and relative ureide % declined with high soil Fe concentrations (>300 mg/kg). It was concluded that the co-variance of excess Fe stress could inhibit legume symbiotic N fixation efficiency. Organic amendments and rhizobial inoculants could help improve crop tolerance to excess Fe stress.

Keywords: atmospheric N fixation, root nodulation, soil Fe co-variance, stem ureide, yardlong-bean plants

Procedia PDF Downloads 256
4164 Vitamin D and Prevention of Rickets in Children

Authors: Mousa Saleh Daoud

Abstract:

Rickets is a condition that affects the development of bones in children. It causes soft bones, which can become bowed or curved, this bending and curvature is evident in the age of Walking. The most common cause of rickets is dietary deficiency of vitamin D or Lack of exposure to sunlight or both together. The link between vitamin D and rickets has been known for many years and is well understood by doctors and scientists. If a child does not get enough of the vitamin D, the bones cannot form hard outer shells. This is why they become soft and weak. This study was conducted on children who reviewed by our medical clinic between the years 2011-2013. The study included 400 children, aged between one and six years. 11 children had clear clinical manifestations of rickets of varying degrees and all of them due to lack of vitamin D except for one case of rickets resistant to vitamin D. 389 cases ranged between natural and deficiency in vitamin D without clinical manifestations of Rickets.

Keywords: rickts, bone metabolic diseases, vitamin D, child

Procedia PDF Downloads 390