Search results for: forest engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3954

Search results for: forest engineering

3684 Application of Multilayer Perceptron and Markov Chain Analysis Based Hybrid-Approach for Predicting and Monitoring the Pattern of LULC Using Random Forest Classification in Jhelum District, Punjab, Pakistan

Authors: Basit Aftab, Zhichao Wang, Feng Zhongke

Abstract:

Land Use and Land Cover Change (LULCC) is a critical environmental issue that has significant effects on biodiversity, ecosystem services, and climate change. This study examines the spatiotemporal dynamics of land use and land cover (LULC) across a three-decade period (1992–2022) in a district area. The goal is to support sustainable land management and urban planning by utilizing the combination of remote sensing, GIS data, and observations from Landsat satellites 5 and 8 to provide precise predictions of the trajectory of urban sprawl. In order to forecast the LULCC patterns, this study suggests a hybrid strategy that combines the Random Forest method with Multilayer Perceptron (MLP) and Markov Chain analysis. To predict the dynamics of LULC change for the year 2035, a hybrid technique based on multilayer Perceptron and Markov Chain Model Analysis (MLP-MCA) was employed. The area of developed land has increased significantly, while the amount of bare land, vegetation, and forest cover have all decreased. This is because the principal land types have changed due to population growth and economic expansion. The study also discovered that between 1998 and 2023, the built-up area increased by 468 km² as a result of the replacement of natural resources. It is estimated that 25.04% of the study area's urbanization will be increased by 2035. The performance of the model was confirmed with an overall accuracy of 90% and a kappa coefficient of around 0.89. It is important to use advanced predictive models to guide sustainable urban development strategies. It provides valuable insights for policymakers, land managers, and researchers to support sustainable land use planning, conservation efforts, and climate change mitigation strategies.

Keywords: land use land cover, Markov chain model, multi-layer perceptron, random forest, sustainable land, remote sensing.

Procedia PDF Downloads 33
3683 Co-management Organizations: A Way to Facilitate Sustainable Management of the Sundarbans Mangrove Forests of Bangladesh

Authors: Md. Wasiul Islam, Md. Jamius Shams Sowrov

Abstract:

The Sundarbans is the largest single tract of mangrove forest in the world. This is located in the southwest corner of Bangladesh. This is a unique ecosystem which is a great breeding and nursing ground for a great biodiversity. It supports the livelihood of about 3.5 million coastal dwellers and also protects the coastal belt and inland areas from various natural calamities. Historically, the management of the Sundarbans was controlled by the Bangladesh Forest Department following top-down approach without the involvement of local communities. Such fence and fining-based blue-print approach was not effective to protect the forest which caused Sundarbans to degrade severely in the recent past. Fifty percent of the total tree cover has been lost in the last 30 years. Therefore, local multi-stakeholder based bottom-up co-management approach was introduced at some of the parts of the Sundarbans in 2006 to improve the biodiversity status by enhancing the protection level of the forest. Various co-management organizations were introduced under co-management approach where the local community people could actively involve in various activities related to the management and welfare of the Sundarbans including the decision-making process to achieve the goal. From this backdrop, the objective of the study was to assess the performance of co-management organizations to facilitate sustainable management of the Sundarbans mangrove forests. The qualitative study followed face-to-face interview to collect data using two sets of semi-structured questionnaires. A total of 40 respondents participated in the research that was from eight villagers under two forest ranges. 32 representatives from the local communities as well as 8 official representatives involved in co-management approach were interviewed using snowball sampling technique. The study shows that the co-management approach improved governance system of the Sundarbans through active participation of the local community people and their interactions with the officials via the platform of co-management organizations. It facilitated accountability and transparency system to some extent through following some formal and informal rules and regulations. It also improved the power structure of the management process by fostering local empowerment process particularly the women. Moreover, people were able to learn from their interactions with and within the co-management organizations as well as interventions improved environmental awareness and promoted social learning. The respondents considered good governance as the most important factor for achieving the goal of sustainable management and biodiversity conservation of the Sundarbans. The success of co-management planning process also depends on the active and functional participation of different stakeholders including the local communities where co-management organizations were considered as the most functional platform. However, the governance system was also facing various challenges which resulted in barriers to the sustainable management of the Sundarbans mangrove forest. But still there were some members involved in illegal forest operations and created obstacles against sustainable management of the Sundarbans. Respondents recommended greater patronization from the government, financial and logistic incentives for alternative income generation opportunities with effective participatory monitoring and evaluation system to improve sustainable management of the Sundarbans.

Keywords: Bangladesh, co-management approach, co-management organizations, governance, Sundarbans, sustainable management

Procedia PDF Downloads 176
3682 A Delphi Study of Factors Affecting the Forest Biorefinery Development in the Pulp and Paper Industry: The Case of Bio-Based Products

Authors: Natasha Gabriella, Josef-Peter Schöggl, Alfred Posch

Abstract:

Being a mature industry, pulp and paper industry (PPI) possess strength points coming from its existing infrastructure, technology know-how, and abundant availability of biomass. However, the declining trend of the wood-based products sales sends a clear signal to the industry to transform its business model in order to increase its profitability. With the emerging global attention on bio-based economy and circular economy, coupled with the low price of fossil feedstock, the PPI starts to integrate biorefinery as a value-added business model to keep the industry’s competitiveness. Nonetheless, biorefinery as an innovation exposes the PPI with some barriers, of which the uncertainty of the promising product becomes one of the major hurdles. This study aims to assess factors that affect the diffusion and development of forest biorefinery in the PPI, including drivers, barriers, advantages, disadvantages, as well as the most promising bio-based products of forest biorefinery. The study examines the identified factors according to the layer of business environment, being the macro-environment, industry, and strategic group level. Besides, an overview of future state of the identified factors is elaborated as to map necessary improvements for implementing forest biorefinery. A two-phase Delphi method is used to collect the empirical data for the study, comprising of an online-based survey and interviews. Delphi method is an effective communication tools to elicit ideas from a group of experts to further reach a consensus of forecasting future trends. Collaborating a total of 50 experts in the panel, the study reveals that influential factors are found in every layers of business of the PPI. The politic dimension is apparent to have a significant influence for tackling the economy barrier while reinforcing the environmental and social benefits in the macro-environment. In the industry level, the biomass availability appears to be a strength point of the PPI while the knowledge gap on technology and market seem to be barriers. Consequently, cooperation with academia and the chemical industry has to be improved. Human resources issue is indicated as one important premise behind the preceding barrier, along with the indication of the PPI’s resistance towards biorefinery implementation as an innovation. Further, cellulose-based products are acknowledged for near-term product development whereas lignin-based products are emphasized to gain importance in the long-term future.

Keywords: forest biorefinery, pulp and paper, bio-based product, Delphi method

Procedia PDF Downloads 277
3681 Stock Price Prediction with 'Earnings' Conference Call Sentiment

Authors: Sungzoon Cho, Hye Jin Lee, Sungwhan Jeon, Dongyoung Min, Sungwon Lyu

Abstract:

Major public corporations worldwide use conference calls to report their quarterly earnings. These 'earnings' conference calls allow for questions from stock analysts. We investigated if it is possible to identify sentiment from the call script and use it to predict stock price movement. We analyzed call scripts from six companies, two each from Korea, China and Indonesia during six years 2011Q1 – 2017Q2. Random forest with Frequency-based sentiment scores using Loughran MacDonald Dictionary did better than control model with only financial indicators. When the stock prices went up 20 days from earnings release, our model predicted correctly 77% of time. When the model predicted 'up,' actual stock prices went up 65% of time. This preliminary result encourages us to investigate advanced sentiment scoring methodologies such as topic modeling, auto-encoder, and word2vec variants.

Keywords: earnings call script, random forest, sentiment analysis, stock price prediction

Procedia PDF Downloads 292
3680 Classification for Obstructive Sleep Apnea Syndrome Based on Random Forest

Authors: Cheng-Yu Tsai, Wen-Te Liu, Shin-Mei Hsu, Yin-Tzu Lin, Chi Wu

Abstract:

Background: Obstructive Sleep apnea syndrome (OSAS) is a common respiratory disorder during sleep. In addition, Body parameters were identified high predictive importance for OSAS severity. However, the effects of body parameters on OSAS severity remain unclear. Objective: In this study, the objective is to establish a prediction model for OSAS by using body parameters and investigate the effects of body parameters in OSAS. Methodologies: Severity was quantified as the polysomnography and the mean hourly number of greater than 3% dips in oxygen saturation during examination in a hospital in New Taipei City (Taiwan). Four levels of OSAS severity were classified by the apnea and hypopnea index (AHI) with American Academy of Sleep Medicine (AASM) guideline. Body parameters, including neck circumference, waist size, and body mass index (BMI) were obtained from questionnaire. Next, dividing the collecting subjects into two groups: training and testing groups. The training group was used to establish the random forest (RF) to predicting, and test group was used to evaluated the accuracy of classification. Results: There were 3330 subjects recruited in this study, whom had been done polysomnography for evaluating severity for OSAS. A RF of 1000 trees achieved correctly classified 79.94 % of test cases. When further evaluated on the test cohort, RF showed the waist and BMI as the high import factors in OSAS. Conclusion It is possible to provide patient with prescreening by body parameters which can pre-evaluate the health risks.

Keywords: apnea and hypopnea index, Body parameters, obstructive sleep apnea syndrome, Random Forest

Procedia PDF Downloads 153
3679 Mayan Culture and Attitudes towards Sustainability

Authors: Sarah Ryu

Abstract:

Agricultural methods and ecological approaches employed by the pre-colonial Mayans may provide valuable insights into forest management and viable alternatives for resource sustainability in the face of major deforestation across Central and South America.Using a combination of observation data collected from the modern indigenous inhabitants near Mixco in Guatemala and historical data, this study was able to create a holistic picture of how the Maya maintained their ecosystems. Surveys and observations were conducted in the field, over a period of twelve weeks across two years. Geographic and archaeological data for this area was provided by Guatemalan organizations such as the Universidad de San Carlos de Guatemala. Observations of current indigenous populations around Mixco showed that they adhered to traditional Mayan methods of agriculture, such as terrace construction and arboriculture. Rather than planting one cash crop as was done by the Spanish, indigenous peoples practice agroforestry, cultivating forests that would provide trees for construction material, wild plant foods, habitat for game, and medicinal herbs. The emphasis on biodiversity prevented deforestation and created a sustainable balance between human consumption and forest regrowth. Historical data provided by MayaSim showed that the Mayans successfully maintained their ecosystems from about 800BCE to 700CE. When the Mayans practiced natural resource conservation and cultivated a harmonious relationship with the forest around them, they were able to thrive and prosper alongside nature. Having lasted over a thousand years, the Mayan empire provides a valuable lesson in sustainability and human attitudes towards the environment.

Keywords: biodiversity, forestry, mayan, sustainability

Procedia PDF Downloads 177
3678 Improved Computational Efficiency of Machine Learning Algorithm Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK

Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick

Abstract:

The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning archetypal that could forecast COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organisation (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data is split into 8:2 ratio for training and testing purposes to forecast future new COVID cases. Support Vector Machines (SVM), Random Forests, and linear regression algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID cases is evaluated. Random Forest outperformed the other two Machine Learning algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n=30. The mean square error obtained for Random Forest is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis Random Forest algorithm can perform more effectively and efficiently in predicting the new COVID cases, which could help the health sector to take relevant control measures for the spread of the virus.

Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest

Procedia PDF Downloads 121
3677 Interpretation and Prediction of Geotechnical Soil Parameters Using Ensemble Machine Learning

Authors: Goudjil kamel, Boukhatem Ghania, Jlailia Djihene

Abstract:

This paper delves into the development of a sophisticated desktop application designed to calculate soil bearing capacity and predict limit pressure. Drawing from an extensive review of existing methodologies, the study meticulously examines various approaches employed in soil bearing capacity calculations, elucidating their theoretical foundations and practical applications. Furthermore, the study explores the burgeoning intersection of artificial intelligence (AI) and geotechnical engineering, underscoring the transformative potential of AI- driven solutions in enhancing predictive accuracy and efficiency.Central to the research is the utilization of cutting-edge machine learning techniques, including Artificial Neural Networks (ANN), XGBoost, and Random Forest, for predictive modeling. Through comprehensive experimentation and rigorous analysis, the efficacy and performance of each method are rigorously evaluated, with XGBoost emerging as the preeminent algorithm, showcasing superior predictive capabilities compared to its counterparts. The study culminates in a nuanced understanding of the intricate dynamics at play in geotechnical analysis, offering valuable insights into optimizing soil bearing capacity calculations and limit pressure predictions. By harnessing the power of advanced computational techniques and AI-driven algorithms, the paper presents a paradigm shift in the realm of geotechnical engineering, promising enhanced precision and reliability in civil engineering projects.

Keywords: limit pressure of soil, xgboost, random forest, bearing capacity

Procedia PDF Downloads 22
3676 Antagonist Study of Fungi Isolated from the Burned Forests of Region of Mila, Algeria

Authors: Abdelaziz Wided, Khiat Nawel, Khiat Inssaf

Abstract:

The present study was initiated to: Determine burned forest-inhabiting fungi in Zouagha, Terri Beinène, Mila and study the antagonistic activity of Trichoderma sp against Fusarium sp, Penicillium sp, Rhizoctonia sp, Alternaria sp. 18 fungal strains were isolated from Soil samples taken from the forest Zouagha (Burned) in the region Mila representing 6 genera: Trichoderma sp et Fusarium sp, Penicillium sp, Rhizoctonia sp, Alternaria sp, Rhizopus sp. The tests of dual culture method on culture medium (PDA) against Trichoderma sp et Fusarium sp, Penicillium sp, Rhizoctonia sp, Alternaria sp revealed that: Trichoderma sp could reduce l mycelium grouth of Fusarium sp23.13%, Penicillium sp33.13%, Rhizoctoniasp33.75 %and Alternaria sp 38.31% in comparaison with the witness after 6 days at room temperature. The strains of Fusarium sp ,Penicillium sp, Rhizoctonia sp et Alternaria sp showed differences sensibility to the antagoniste.

Keywords: isolation, identification, molds, burned soil of zouagha, antagonism, trichoderma sp

Procedia PDF Downloads 253
3675 Economics of Sugandhakokila (Cinnamomum Glaucescens (Nees) Dury) in Dang District of Nepal: A Value Chain Perspective

Authors: Keshav Raj Acharya, Prabina Sharma

Abstract:

Sugandhakokila (Cinnamomum glaucescens Nees. Dury) is a large evergreen native tree species; mostly confined naturally in mid-hills of Rapti Zone of Nepal. The species is identified as prioritized for agro-technology development as well as for research and development by a department of plant resources. This species is band for export outside the country without processing by the government of Nepal to encourage the value addition within the country. The present study was carried out in Chillikot village of Dang district to find out the economic contribution of C. glaucescens in the local economy and to document the major conservation threats for this species. Participatory Rural Appraisal (PRA) tools such as Household survey, key informants interviews and focus group discussions were carried out to collect the data. The present study reveals that about 1.7 million Nepalese rupees (NPR) have been contributed annually in the local economy of 29 households from the collection of C. glaucescens berries in the study area. The average annual income of each family was around NPR 67,165.38 (US$ 569.19) from the sale of the berries which contributes about 53% of the total household income. Six different value chain actors are involved in C. glaucescens business. Maximum profit margin was taken by collector followed by producer, exporter and processor. The profit margin was found minimum to regional and village traders. The total profit margin for producers was NPR 138.86/kg, and regional traders have gained NPR 17/kg. However, there is a possibility to increase the profit of producers by NPR 8.00 more for each kg of berries through the initiation of community forest user group and village cooperatives in the area. Open access resource, infestation by an insect to over matured trees and browsing by goats were identified as major conservation threats for this species. Handing over the national forest as a community forest, linking the producers with the processor through organized market channel and replacing the old tree through new plantation has been recommended for future.

Keywords: community forest, conservation threats, C. glaucescens, value chain analysis

Procedia PDF Downloads 139
3674 Land Use, Land Cover Changes and Woody Vegetation Status of Tsimur Saint Gebriel Monastery, in Tigray Region, Northern Ethiopia

Authors: Abraha Hatsey, Nesibu Yahya, Abeje Eshete

Abstract:

Ethiopian Orthodox Tewahido Church has a long tradition of conserving the Church vegetation and is an area treated as a refugee camp for many endangered indigenous tree species in Northern Ethiopia. Though around 36,000 churches exist in Ethiopia, only a few churches have been studied so far. Thus, this study assessed the land use land cover change of 3km buffer (1986-2018) and the woody species diversity and regeneration status of Tsimur St. Gebriel monastery in Tigray region, Northern Ethiopia. For vegetation study, systematic sampling was used with 100m spacing between plots and between transects. Plot size was 20m*20m for the main plot and 2 subplots (5m*5m each) for the regeneration study. Tree height, diameter at breast height(DBH) and crown area were measured in the main plot for all trees with DBH ≥ 5cm. In the subplots, all seedlings and saplings were counted with DBH < 5cm. The data was analyzed on excel and Pass biodiversity software for diversity and evenness analysis. The major land cover classes identified include bare land, farmland, forest, shrubland and wetland. The extents of forest and shrubland were declined considerably due to bare land and agricultural land expansions within the 3km buffer, indicating an increasing pressure on the church forest. Regarding the vegetation status, A total of 19 species belonging to 13 families were recorded in the monastery. The diversity (H’) and evenness recorded were 2.4 and 0.5, respectively. The tree density (DBH ≥ 5cm) was 336/ha and a crown cover of 65%. Olea europaea was the dominant (6.4m2/ha out of 10.5m2 total basal area) and a frequent species (100%) with good regeneration in the monastery. The rest of the species are less frequent and are mostly confined to water sources with good site conditions. Juniperus procera (overharvested) and the other indigenous species were with few trees left and with no/very poor regeneration status. The species having poor density, frequency and regeneration (Junperus procera, Nuxia congesta Fersen and Jasminium abyssinica) need prior conservation and enrichment planting. The indigenous species could also serve as a potential seed source for the reproduction and restoration of nearby degraded landscapes. The buffer study also demonstrated expansion of agriculture and bare land, which could be a threat to the forest of the isolated monastery. Hence, restoring the buffer zone is the only guarantee for the healthy existence of the church forest.

Keywords: church forests, regeneration, land use change, vegetation status

Procedia PDF Downloads 204
3673 Biodiversity and Climate Change: Consequences for Norway Spruce Mountain Forests in Slovakia

Authors: Jozef Mindas, Jaroslav Skvarenina, Jana Skvareninova

Abstract:

Study of the effects of climate change on Norway Spruce (Picea abies) forests has mainly focused on the diversity of tree species diversity of tree species as a result of the ability of species to tolerate temperature and moisture changes as well as some effects of disturbance regime changes. The tree species’ diversity changes in spruce forests due to climate change have been analyzed via gap model. Forest gap model is a dynamic model for calculation basic characteristics of individual forest trees. Input ecological data for model calculations have been taken from the permanent research plots located in primeval forests in mountainous regions in Slovakia. The results of regional scenarios of the climatic change for the territory of Slovakia have been used, from which the values are according to the CGCM3.1 (global) model, KNMI and MPI (regional) models. Model results for conditions of the climate change scenarios suggest a shift of the upper forest limit to the region of the present subalpine zone, in supramontane zone. N. spruce representation will decrease at the expense of beech and precious broadleaved species (Acer sp., Sorbus sp., Fraxinus sp.). The most significant tree species diversity changes have been identified for the upper tree line and current belt of dwarf pine (Pinus mugo) occurrence. The results have been also discussed in relation to most important disturbances (wind storms, snow and ice storms) and phenological changes which consequences are little known. Special discussion is focused on biomass production changes in relation to carbon storage diversity in different carbon pools.

Keywords: biodiversity, climate change, Norway spruce forests, gap model

Procedia PDF Downloads 288
3672 Land Cover, Land Surface Temperature, and Urban Heat Island Effects in Tropical Sub Saharan City of Accra

Authors: Eric Mensah

Abstract:

The effects of rapid urbanisation of tropical sub-Saharan developing cities on local and global climate are of great concern due to the negative impacts of Urban Heat Island (UHI) effects. The importance of urban parks, vegetative cover and forest reserves in these tropical cities have been undervalued with a rapid degradation and loss of these vegetative covers to urban developments which continue to cause an increase in daily mean temperatures and changes to local climatic conditions. Using Landsat data of the same months and period intervals, the spatial variations of land cover changes, temperature, and vegetation were examined to determine how vegetation improves local temperature and the effects of urbanisation on daily mean temperatures over the past 12 years. The remote sensing techniques of maximum likelihood supervised classification, land surface temperature retrieval technique, and normalised differential vegetation index techniques were used to analyse and create the land use land cover (LULC), land surface temperature (LST), and vegetation and non-vegetation cover maps respectively. Results from the study showed an increase in daily mean temperature by 0.80 °C as a result of rapid increase in urban area by 46.13 sq. km and loss of vegetative cover by 46.24 sq. km between 2005 and 2017. The LST map also shows the existence of UHI within the urban areas of Accra, the potential mitigating effects offered by the existence of forest and vegetative cover as demonstrated by the existence of cool islands around the Achimota ecological forest and University of Ghana botanical gardens areas.

Keywords: land surface temperature, climate, remote sensing, urbanisation

Procedia PDF Downloads 320
3671 Determination of Soil Loss by Erosion in Different Land Covers Categories and Slope Classes in Bovilla Watershed, Tirana, Albania

Authors: Valmir Baloshi, Fran Gjoka, Nehat Çollaku, Elvin Toromani

Abstract:

As a sediment production mechanism, soil erosion is the main environmental threat to the Bovilla watershed, including the decline of water quality of the Bovilla reservoir that provides drinking water to Tirana city (the capital of Albania). Therefore, an experiment with 25 erosion plots for soil erosion monitoring has been set up since June 2017. The aim was to determine the soil loss on plot and watershed scale in Bovilla watershed (Tirana region) for implementation of soil and water protection measures or payments for ecosystem services (PES) programs. The results of erosion monitoring for the period June 2017 - May 2018 showed that the highest values of surface runoff were noted in bare land of 38829.91 liters on slope of 74% and the lowest values in forest land of 12840.6 liters on slope of 64% while the highest values of soil loss were found in bare land of 595.15 t/ha on slope of 62% and lowest values in forest land of 18.99 t/ha on slope of 64%. These values are much higher than the average rate of soil loss in the European Union (2.46 ton/ha/year). In the same sloping class, the soil loss was reduced from orchard or bare land to the forest land, and in the same category of land use, the soil loss increased with increasing land slope. It is necessary to conduct chemical analyses of sediments to determine the amount of chemical elements leached out of the soil and end up in the reservoir of Bovilla. It is concluded that PES programs should be implemented for rehabilitation of sub-watersheds Ranxe, Vilez and Zall-Bastar of the Bovilla watershed with valuable conservation practices.

Keywords: ANOVA, Bovilla, land cover, slope, soil loss, watershed management

Procedia PDF Downloads 161
3670 Breast Cancer Detection Using Machine Learning Algorithms

Authors: Jiwan Kumar, Pooja, Sandeep Negi, Anjum Rouf, Amit Kumar, Naveen Lakra

Abstract:

In modern times where, health issues are increasing day by day, breast cancer is also one of them, which is very crucial and really important to find in the early stages. Doctors can use this model in order to tell their patients whether a cancer is not harmful (benign) or harmful (malignant). We have used the knowledge of machine learning in order to produce the model. we have used algorithms like Logistic Regression, Random forest, support Vector Classifier, Bayesian Network and Radial Basis Function. We tried to use the data of crucial parts and show them the results in pictures in order to make it easier for doctors. By doing this, we're making ML better at finding breast cancer, which can lead to saving more lives and better health care.

Keywords: Bayesian network, radial basis function, ensemble learning, understandable, data making better, random forest, logistic regression, breast cancer

Procedia PDF Downloads 52
3669 Assessment of the Landscaped Biodiversity in the National Park of Tlemcen (Algeria) Using Per-Object Analysis of Landsat Imagery

Authors: Bencherif Kada

Abstract:

In the forest management practice, landscape and Mediterranean forest are never posed as linked objects. But sustainable forestry requires the valorization of the forest landscape, and this aim involves assessing the spatial distribution of biodiversity by mapping forest landscaped units and subunits and by monitoring the environmental trends. This contribution aims to highlight, through object-oriented classifications, the landscaped biodiversity of the National Park of Tlemcen (Algeria). The methodology used is based on ground data and on the basic processing units of object-oriented classification, that are segments, so-called image-objects, representing a relatively homogenous units on the ground. The classification of Landsat Enhanced Thematic Mapper plus (ETM+) imagery is performed on image objects and not on pixels. Advantages of object-oriented classification are to make full use of meaningful statistic and texture calculation, uncorrelated shape information (e.g., length-to-width ratio, direction, and area of an object, etc.), and topological features (neighbor, super-object, etc.), and the close relation between real-world objects and image objects. The results show that per object classification using the k-nearest neighbor’s method is more efficient than per pixel one. It permits to simplify of the content of the image while preserving spectrally and spatially homogeneous types of land covers such as Aleppo pine stands, cork oak groves, mixed groves of cork oak, holm oak, and zen oak, mixed groves of holm oak and thuja, water plan, dense and open shrub-lands of oaks, vegetable crops or orchard, herbaceous plants, and bare soils. Texture attributes seem to provide no useful information, while spatial attributes of shape and compactness seem to be performant for all the dominant features, such as pure stands of Aleppo pine and/or cork oak and bare soils. Landscaped sub-units are individualized while conserving the spatial information. Continuously dominant dense stands over a large area were formed into a single class, such as dense, fragmented stands with clear stands. Low shrublands formations and high wooded shrublands are well individualized but with some confusion with enclaves for the former. Overall, a visual evaluation of the classification shows that the classification reflects the actual spatial state of the study area at the landscape level.

Keywords: forest, oaks, remote sensing, diversity, shrublands

Procedia PDF Downloads 123
3668 An Analysis of LoRa Networks for Rainforest Monitoring

Authors: Rafael Castilho Carvalho, Edjair de Souza Mota

Abstract:

As the largest contributor to the biogeochemical functioning of the Earth system, the Amazon Rainforest has the greatest biodiversity on the planet, harboring about 15% of all the world's flora. Recognition and preservation are the focus of research that seeks to mitigate drastic changes, especially anthropic ones, which irreversibly affect this biome. Functional and low-cost monitoring alternatives to reduce these impacts are a priority, such as those using technologies such as Low Power Wide Area Networks (LPWAN). Promising, reliable, secure and with low energy consumption, LPWAN can connect thousands of IoT devices, and in particular, LoRa is considered one of the most successful solutions to facilitate forest monitoring applications. Despite this, the forest environment, in particular the Amazon Rainforest, is a challenge for these technologies, requiring work to identify and validate the use of technology in a real environment. To investigate the feasibility of deploying LPWAN in remote water quality monitoring of rivers in the Amazon Region, a LoRa-based test bed consisting of a Lora transmitter and a LoRa receiver was set up, both parts were implemented with Arduino and the LoRa chip SX1276. The experiment was carried out at the Federal University of Amazonas, which contains one of the largest urban forests in Brazil. There are several springs inside the forest, and the main goal is to collect water quality parameters and transmit the data through the forest in real time to the gateway at the uni. In all, there are nine water quality parameters of interest. Even with a high collection frequency, the amount of information that must be sent to the gateway is small. However, for this application, the battery of the transmitter device is a concern since, in the real application, the device must run without maintenance for long periods of time. With these constraints in mind, parameters such as Spreading Factor (SF) and Coding Rate (CR), different antenna heights, and distances were tuned to better the connectivity quality, measured with RSSI and loss rate. A handheld spectrum analyzer RF Explorer was used to get the RSSI values. Distances exceeding 200 m have soon proven difficult to establish communication due to the dense foliage and high humidity. The optimal combinations of SF-CR values were 8-5 and 9-5, showing the lowest packet loss rates, 5% and 17%, respectively, with a signal strength of approximately -120 dBm, these being the best settings for this study so far. The rains and climate changes imposed limitations on the equipment, and more tests are already being conducted. Subsequently, the range of the LoRa configuration must be extended using a mesh topology, especially because at least three different collection points in the same water body are required.

Keywords: IoT, LPWAN, LoRa, coverage, loss rate, forest

Procedia PDF Downloads 85
3667 Heart Ailment Prediction Using Machine Learning Methods

Authors: Abhigyan Hedau, Priya Shelke, Riddhi Mirajkar, Shreyash Chaple, Mrunali Gadekar, Himanshu Akula

Abstract:

The heart is the coordinating centre of the major endocrine glandular structure of the body, which produces hormones that profoundly affect the operations of the body, and diagnosing cardiovascular disease is a difficult but critical task. By extracting knowledge and information about the disease from patient data, data mining is a more practical technique to help doctors detect disorders. We use a variety of machine learning methods here, including logistic regression and support vector classifiers (SVC), K-nearest neighbours Classifiers (KNN), Decision Tree Classifiers, Random Forest classifiers and Gradient Boosting classifiers. These algorithms are applied to patient data containing 13 different factors to build a system that predicts heart disease in less time with more accuracy.

Keywords: logistic regression, support vector classifier, k-nearest neighbour, decision tree, random forest and gradient boosting

Procedia PDF Downloads 49
3666 Impacts of Land Use and Land Cover Change on Stream Flow and Sediment Yield of Genale Dawa Dam III Watershed, Ethiopia

Authors: Aklilu Getahun Sulito

Abstract:

Land Use and Land Cover change dynamics is a result of complex interactions betweenseveral bio- physical and socio-economic conditions. The impacts of the landcoverchange on stream flow and sediment yield were analyzed statistically usingthehydrological model, SWAT. Genale Dawa Dam III watershed is highly af ectedbydeforestation, over grazing, and agricultural land expansion. This study was aimedusingSWAT model for the assessment of impacts of land use land cover change on sediment yield, evaluating stream flow on wet &dry seasons and spatial distribution sediment yieldfrom sub-basins of the Genale Dawa Dam III watershed. Land use land cover maps(LULC) of 2000, 2008 and 2016 were used with same corresponding climate data. During the study period most parts of the forest, dense forest evergreen and grass landchanged to cultivated land. The cultivated land increased by 26.2%but forest land, forest evergreen lands and grass lands decreased by 21.33%, 11.59 % and 7.28 %respectively, following that the mean annual sediment yield of watershed increased by 7.37ton/haover16 years period (2000 – 2016). The analysis of stream flow for wet and dry seasonsshowed that the steam flow increased by 25.5% during wet season, but decreasedby29.6% in the dry season. The result an average annual spatial distribution of sediment yield increased by 7.73ton/ha yr -1 from (2000_2016). The calibration results for bothstream flow and sediment yield showed good agreement between observed and simulateddata with the coef icient of determination of 0.87 and 0.84, Nash-Sutclif e ef iciencyequality to 0.83 and 0.78 and percentage bias of -7.39% and -10.90%respectively. Andthe result for validation for both stream flow and sediment showed good result withCoef icient of determination equality to 0.83 and 0.80, Nash-Sutclif e ef iciency of 0.78and 0.75 and percentage bias of 7.09% and 3.95%. The result obtained fromthe model based on the above method was the mean annual sediment load at Genale DawaDamIIIwatershed increase from 2000 to 2016 for the reason that of the land uses change. Sotouse the Genale Dawa Dam III the land use management practices are neededinthefuture to prevent further increase of sediment yield of the watershed.

Keywords: Genale Dawa Dam III watershed, land use land cover change, SWAT, spatial distribution, sediment yield, stream flow

Procedia PDF Downloads 55
3665 Valorization of a Forest Waste, Modified P-Brutia Cones, by Biosorption of Methyl Geen

Authors: Derradji Chebli, Abdallah Bouguettoucha, Abdelbaki Reffas Khalil Guediri, Abdeltif Amrane

Abstract:

The removal of Methyl Green dye (MG) from aqueous solutions using modified P-brutia cones (PBH and PBN), has been investigated work. The physical parameters such as pH, temperature, initial MG concentration, ionic strength are examined in batch experiments on the sorption of the dye. Adsorption removal of MG was conducted at natural pH 4.5 because the dye is only stable in the range of pH 3.8 to 5. It was observed in experiments that the P-brutia cones treated with NaOH (PBN) exhibited high affinity and adsorption capacity compared to the MG P-brutia cones treated with HCl (PBH) and biosorption capacity of modified P-brutia cones (PBN and PBH) was enhanced by increasing the temperature. This is confirmed by the thermodynamic parameters (ΔG° and ΔH°) which show that the adsorption of MG was spontaneous and endothermic in nature. The positive values of ΔS° suggested an irregular increase in the randomness for both adsorbent (PBN and PBH) during the adsorption process. The kinetic model pseudo-first order, pseudo-second order, and intraparticle diffusion coefficient were examined to analyze the sorption process; they showed that the pseudo-second-order model is the one that best describes the adsorption process (MG) on PBN and PBH with a correlation coefficient R²> 0.999. The ionic strength has shown that it has a negative impact on the adsorption of MG on two supports. A reduction of 68.5% of the adsorption capacity for a value Ce=30 mg/L was found for the PBH, while the PBN did not show a significant influence of the ionic strength on adsorption especially in the presence of NaCl. Among the tested isotherm models, the Langmuir isotherm was found to be the most relevant to describe MG sorption onto modified P-brutia cones with a correlation factor R²>0.999. The capacity adsorption of P-brutia cones, was confirmed for the removal of a dye, MG, from aqueous solution. We note also that P-brutia cones is a material very available in the forest and low-cost biomaterial

Keywords: adsorption, p-brutia cones, forest wastes, dyes, isotherm

Procedia PDF Downloads 377
3664 Examining the Role of Tree Species in Absorption of Heavy Metals; Case Study: Abidar Forest Park

Authors: Jahede Tekeykhah, Seyed Mohsen Hossini, Gholamali Jalali

Abstract:

Industrial and traffic activities cause large amounts of heavy metals enter into the atmosphere and the use of plant species can be effective in assessing and reducing air pollution by metals. This study aimed to investigate the adsorption level of heavy metals in leaves of Fraxinus rotundifolia, Robinia, Platanus orientalis, Platycladus orientalis and Pinus eldarica trees in Abidar forest park. For this purpose, samples leaves of the trees were prepared from the contaminated and control areas in each region in 3 stations with 3 replicates in mid-August and finally 90 samples were sent to the laboratory. Then, the concentrations of heavy metals were measured by graphite furnace. To do this, factorial experiment based on a completely randomized design with two factors of location on two levels (contaminated area and control area) and the factor of species on five levels (Fraxinus rotundifolia, Robinia, Platanus orientalis, Platycladus orientalis and Pinus eldarica) with three replications was used. The analysis of collected data was performed by SPSS software and Duncan's multiple range test was used to compare the means. The results showed that the accumulation of all metals in the leaves of most species in the infected area with a significant difference at 95% level was higher than the control area. In the contaminated area, with a significant difference at 5% level, the highest accumulations of metals were observed as the following: lead, cadmium, zinc and manganese in Platanus orientalis, nickel in Fraxinus rotundifolia and copper in Platycladus orientalis.

Keywords: airborne, tree species, heavy metals, absorption, Abidar Forest Park

Procedia PDF Downloads 310
3663 Effect of Human Use, Season and Habitat on Ungulate Densities in Kanha Tiger Reserve

Authors: Neha Awasthi, Ujjwal Kumar

Abstract:

Density of large carnivores is primarily dictated by the density of their prey. Therefore, optimal management of ungulates populations permits harbouring of viable large carnivore populations within protected areas. Ungulate density is likely to respond to regimes of protection and vegetation types. This has generated the need among conservation practitioners to obtain strata specific seasonal species densities for habitat management. Kanha Tiger Reserve (KTR) of 2074 km2 area comprises of two distinct management strata: The core (940 km2), devoid of human settlements and buffer (1134 km2) which is a multiple use area. In general, four habitat strata, grassland, sal forest, bamboo-mixed forest and miscellaneous forest are present in the reserve. Stratified sampling approach was used to access a) impact of human use and b) effect of habitat and season on ungulate densities. Since 2013 to 2016, ungulates were surveyed in winter and summer of each year with an effort of 1200 km walk in 200 spatial transects distributed throughout Kanha Tiger Reserve. We used a single detection function for each species within each habitat stratum for each season for estimating species specific seasonal density, using program DISTANCE. Our key results state that the core area had 4.8 times higher wild ungulate biomass compared with the buffer zone, highlighting the importance of undisturbed area. Chital was found to be most abundant, having a density of 30.1(SE 4.34)/km2 and contributing 33% of the biomass with a habitat preference for grassland. Unlike other ungulates, Gaur being mega herbivore, showed a major seasonal shift in density from bamboo-mixed and sal forest in summer to miscellaneous forest in winter. Maximum diversity and ungulate biomass were supported by grassland followed by bamboo-mixed habitat. Our study stresses the importance of inviolate core areas for achieving high wild ungulate densities and for maintaining populations of endangered and rare species. Grasslands accounts for 9% of the core area of KTR maintained in arrested stage of succession, therefore enhancing this habitat would maintain ungulate diversity, density and cater to the needs of only surviving population of the endangered barasingha and grassland specialist the blackbuck. We show the relevance of different habitat types for differential seasonal use by ungulates and attempt to interpret this in the context of nutrition and cover needs by wild ungulates. Management for an optimal habitat mosaic that maintains ungulate diversity and maximizes ungulate biomass is recommended.

Keywords: distance sampling, habitat management, ungulate biomass, diversity

Procedia PDF Downloads 303
3662 Regression Model Evaluation on Depth Camera Data for Gaze Estimation

Authors: James Purnama, Riri Fitri Sari

Abstract:

We investigate the machine learning algorithm selection problem in the term of a depth image based eye gaze estimation, with respect to its essential difficulty in reducing the number of required training samples and duration time of training. Statistics based prediction accuracy are increasingly used to assess and evaluate prediction or estimation in gaze estimation. This article evaluates Root Mean Squared Error (RMSE) and R-Squared statistical analysis to assess machine learning methods on depth camera data for gaze estimation. There are 4 machines learning methods have been evaluated: Random Forest Regression, Regression Tree, Support Vector Machine (SVM), and Linear Regression. The experiment results show that the Random Forest Regression has the lowest RMSE and the highest R-Squared, which means that it is the best among other methods.

Keywords: gaze estimation, gaze tracking, eye tracking, kinect, regression model, orange python

Procedia PDF Downloads 538
3661 A Preliminary Survey on Butterfly Fauna at Rajagala Archaeological Site, Ampara, Sri Lanka

Authors: D. Eranda N. Mandawala, P. A. D. Mokshi V. Perera

Abstract:

The RajagalaArchaeological site (RAS) is located 26 km from Ampara town (7º29'25.22" N, 81º36'59.05" E) accessible through the Ampara-Uhana-MahaOya highway of the Eastern province of Sri Lanka. This site has recently been added to the tentative list of UNESCO world heritage site and is also a forest reserve. This dry zone forest consists of tropical mixed evergreen vegetation and scrublands on a rocky outcrop of elevation of about 350 meters above mean sea level. It is also scattered with several ponds of differing sizes on rocky outcrops, rocky cliffs, and about 50 cave dwellings. No comprehensive biodiversity survey of any sorts has been conducted at the RAS so far. Therefore, a preliminary survey was conducted to determine its butterfly fauna diversity. An opportunistic Visual Encounter Survey method was used to observe various butterfly species during the morning between 8:00am-12:00noon and in the evening between 2:00-6:00pm on 3 site visits in October 2017, February 2018, and November 2019. All encountered species were photographed using a Nikon D750 camera with Sigma 105mm f/2.8 EX DG OS HSM macro lens, and field guide books were used to identify them. Sri Lanka is home to 248 species of butterflies, of which are 26 are endemic. At RAS, we observed a total of 39 species (15%) of butterflies belonging to 5 Lepidoptera families. Out of these, one endemic species(4%) and 9 endemic subspecieswere also identified. The former was Troidesdarsius, also known as the Sri Lanka birdwing which is the national butterfly and the largest butterfly in Sri Lanka, and the latter were Plains cupid (Chiladespandavalanka), Yamfly (Loxuraatymnus arcuate), Common Cerulean (Jamidescelenotissama), Tawny Rajah(Charaxespsaphonpsaphon), Tamil Yeoman(Cirrochroathaislanka), Angled Castor(Ariadne ariadneminorata), GladeyeBushbrown(Mycalesispatnia patina), Common Crow (Euploea core asela)and Blue Mormon (Papiliopolymnestorparinda). The endemic subspecies belonged to 3 Lepidoptera families (3from Lycaenidae, 5 from Nymphalidae, and 1 from Papilionidae family). Anthropogenic activities such as unauthorized cattle farming, forest clearance, and man-made forest fires currently threaten this site. If such trends continue, it may lead to the reduction of butterfly fauna diversity within this area in the future.

Keywords: lepidoptera, rajagala, Sri Lanka birdwing, endemic

Procedia PDF Downloads 161
3660 Analysing the Perception of Climate Hazards on Biodiversity Conservation in Mining Landscapes within Southwestern Ghana

Authors: Salamatu Shaibu, Jan Hernning Sommer

Abstract:

Integrating biodiversity conservation practices in mining landscapes ensures the continual provision of various ecosystem services to the dependent communities whilst serving as ecological insurance for corporate mining when purchasing reclamation security bonds. Climate hazards such as long dry seasons, erratic rainfall patterns, and extreme weather events contribute to biodiversity loss in addition to the impact due to mining. Both corporate mining and mine-fringe communities perceive the effect of climate on biodiversity from the context of the benefits they accrue, which motivate their conservation practices. In this study, pragmatic approaches including semi-structured interviews, field visual observation, and review were used to collect data on corporate mining employees and households of fringing communities in the southwestern mining hub. The perceived changes in the local climatic conditions and the consequences on environmental management practices that promote biodiversity conservation were examined. Using a thematic content analysis tool, the result shows that best practices such as concurrent land rehabilitation, reclamation ponds, artificial wetlands, land clearance, and topsoil management are directly affected by prolonging long dry seasons and erratic rainfall patterns. Excessive dust and noise generation directly affect both floral and faunal diversity coupled with excessive fire outbreaks in rehabilitated lands and nearby forest reserves. Proposed adaptive measures include engaging national conservation authorities to promote reforestation projects around forest reserves. National government to desist from using permit for mining concessions in forest reserves, engaging local communities through educational campaigns to control forest encroachment and burning, promoting community-based resource management to promote community ownership, and provision of stricter environmental legislation to compel corporate, artisanal, and small scale mining companies to promote biodiversity conservation.

Keywords: biodiversity conservation, climate hazards, corporate mining, mining landscapes

Procedia PDF Downloads 219
3659 Preliminary Study of Medicinal Plants in Phu Langka National Park, Nakhon Phanom Province, Thailand

Authors: W. Chatan, W. Promprom

Abstract:

Phu Langka National Park is located in Nakhon Phanom Province, the Northeast of Thailand. It contains about 50 km2 of one mountain and three types of forest including deciduous dipterocarp, mixed deciduous and dry evergreen forests. It was interesting area because of that there were some local ethnic groups living around the national park and most people use plants in this area for their life. The objective of this research is to preliminary survey of the use of medicinal plants from this area by local ethnic groups living around the national park. Colour photographs of each species were prepared. In addition, ecology, distribution in the study area, utilization and vernacular names were provided. The result showed that sixteen species of medicinal plant species were found and most plants were used for digestive system and wound. The voucher specimens were deposited in the Forest Herbarium, Department of National Parks, Wildlife and Plant Conservation (BKF), Thailand.

Keywords: diversity, ethnobotany, ethnophamacology, taxonomy, utilization

Procedia PDF Downloads 196
3658 Balance of Natural Resources to Manage Land Use Changes in Subosukawonosraten Area

Authors: Sri E. Wati, D. Roswidyatmoko, N. Maslahatun, Gunawan, Andhika B. Taji

Abstract:

Natural resource is the main sources to fulfill human needs. Its utilization must consider not only human prosperity but also sustainability. Balance of natural resources is a tool to manage natural wealth and to control land use change. This tool is needed to organize land use planning as stated on spatial plan in a certain region. Balance of natural resources can be calculated by comparing two-series of natural resource data obtained at different year. In this case, four years data period of land and forest were used (2010 and 2014). Land use data were acquired through satellite image interpretation and field checking. By means of GIS analysis, its result was then assessed with land use plan. It is intended to evaluate whether existing land use is suitable with land use plan. If it is improper, what kind of efforts and policies must be done to overcome the situation. Subosukawonosraten is rapid developed areas in Central Java Province. This region consists of seven regencies/cities which are Sukoharjo Regency, Boyolali Regency, Surakarta City, Karanganyar Regency, Wonogiri Regency, Sragen Regency, and Klaten Regency. This region is regarding to several former areas under Karasidenan Surakarta and their location is adjacent to Surakarta. Balance of forest resources show that width of forest area is not significantly changed. Some land uses within the area are slightly changed. Some rice field areas are converted into settlement (0.03%) whereas water bodies become vacant areas (0.09%). On the other hand, balance of land resources state that there are many land use changes in this region. Width area of rice field decreases 428 hectares and more than 50% of them have been transformed into settlement area and 11.21% is converted into buildings such as factories, hotels, and other infrastructures. It occurs mostly in Sragen, Sukoharjo, and Karanganyar Regency. The results illustrate that land use change in this region is mostly influenced by increasing of population number. Some agricultural lands have been converted into built-up area since demand of settlement, industrial area, and other infrastructures also increases. Unfortunately, recent utilization of more than a half of total area is not appropriate with land use plan declared in spatial planning document. It means, local government shall develop a strict regulation and law enforcement related to any violation in land use management.

Keywords: balance, forest, land, spatial plan

Procedia PDF Downloads 319
3657 Community Perception towards the Major Drivers for Deforestation and Land Degradation of Choke Afro-alpine and Sub-afro alpine Ecosystem, Northwest Ethiopia

Authors: Zelalem Teshager

Abstract:

The Choke Mountains have several endangered and endemic wildlife species and provide important ecosystem services. Despite their environmental importance, the Choke Mountains are found in dangerous conditions. This raised the need for an evaluation of the community's perception of deforestation and its major drivers and suggested possible solutions in the Choke Mountains of northwestern Ethiopia. For this purpose, household surveys, key informant interviews, and focus group discussions were used. A total sample of 102 informants was used for this survey. A purposive sampling technique was applied to select the participants for in-depth interviews and focus group discussions. Both qualitative and quantitative data analyses were used. Computation of descriptive statistics such as mean, percentages, frequency, tables, figures, and graphs was applied to organize, analyze, and interpret the study. This study assessed smallholder agricultural land expansion, Fuel wood collection, population growth; encroachment, free grazing, high demand of construction wood, unplanned resettlement, unemployment, border conflict, lack of a strong forest protecting system, and drought were the serious causes of forest depletion reported by local communities. Loss of land productivity, Soil erosion, soil fertility decline, increasing wind velocity, rising temperature, and frequency of drought were the most perceived impacts of deforestation. Most of the farmers have a holistic understanding of forest cover change. Strengthening forest protection, improving soil and water conservation, enrichment planting, awareness creation, payment for ecosystem services, and zero grazing campaigns were mentioned as possible solutions to the current state of deforestation. Applications of Intervention measures, such as animal fattening, beekeeping, and fruit production can contribute to decreasing the deforestation causes and improve communities’ livelihood. In addition, concerted efforts of conservation will ensure that the forests’ ecosystems contribute to increased ecosystem services. The major drivers of deforestation should be addressed with government intervention to change dependency on forest resources, income sources of the people, and institutional set-up of the forestry sector. Overall, further reduction in anthropogenic pressure is urgent and crucial for the recovery of the afro-alpine vegetation and the interrelated endangered wildlife in the Choke Mountains.

Keywords: choke afro-alpine, deforestation, drivers, intervention measures, perceptions

Procedia PDF Downloads 54
3656 Mite Soil as Biological Indicators the Quality of the Soil in the Forested Area of the Coast of Algeria

Authors: Soumeya Fekkoun, Djelloul Ghezali, Doumandji Salaheddine

Abstract:

The majority of the mite soil contributes to decompose the organic matter in the soil, the richness or poverty is a way of knowing the quality of the soil, in this regard we studied the ecological side of the soil mite in a forest park «coast of Algeria». 6 by taking soil samples every month for the year 2010/2011 .The samples are collected and extracted using the technique of Berlese Tullgren. It was obtained 604 individuals. These riches can indicate the fertility of soil and knead the high proportion of organic material in it. The largest number observed in the spring, followed by the separation of the 252 individuals fall 222 individuals and then the summer with 106 individuals and winter 80 individuals. Among the 18 families obtained. Scheloribatidae is the most dominant with 30.6% followed by Ceratozetidae with 16%, then Euphthiracaridae 14%. The families remain involved with low percentages. the diversity index Schanonweaver varied between 2.3 bits in the summer and 3.83 bits in the spring. As the results of the analysis statistic confirm the existence of a clear difference between the four seasons and the richness of soil mite and diversity.

Keywords: soil mite, forest, coast of Algeria, diversity

Procedia PDF Downloads 407
3655 Land Use Change Detection Using Remote Sensing and GIS

Authors: Naser Ahmadi Sani, Karim Solaimani, Lida Razaghnia, Jalal Zandi

Abstract:

In recent decades, rapid and incorrect changes in land-use have been associated with consequences such as natural resources degradation and environmental pollution. Detecting changes in land-use is one of the tools for natural resource management and assessment of changes in ecosystems. The target of this research is studying the land-use changes in Haraz basin with an area of 677000 hectares in a 15 years period (1996 to 2011) using LANDSAT data. Therefore, the quality of the images was first evaluated. Various enhancement methods for creating synthetic bonds were used in the analysis. Separate training sites were selected for each image. Then the images of each period were classified in 9 classes using supervised classification method and the maximum likelihood algorithm. Finally, the changes were extracted in GIS environment. The results showed that these changes are an alarm for the HARAZ basin status in future. The reason is that 27% of the area has been changed, which is related to changing the range lands to bare land and dry farming and also changing the dense forest to sparse forest, horticulture, farming land and residential area.

Keywords: Haraz basin, change detection, land-use, satellite data

Procedia PDF Downloads 414