Search results for: extracellular lignin- degrading enzymes
932 A Controlled-Release Nanofertilizer Improves Tomato Growth and Minimizes Nitrogen Consumption
Authors: Mohamed I. D. Helal, Mohamed M. El-Mogy, Hassan A. Khater, Muhammad A. Fathy, Fatma E. Ibrahim, Yuncong C. Li, Zhaohui Tong, Karima F. Abdelgawad
Abstract:
Minimizing the consumption of agrochemicals, particularly nitrogen, is the ultimate goal for achieving sustainable agricultural production with low cost and high economic and environmental returns. The use of biopolymers instead of petroleum-based synthetic polymers for CRFs can significantly improve the sustainability of crop production since biopolymers are biodegradable and not harmful to soil quality. Lignin is one of the most abundant biopolymers that naturally exist. In this study, controlled-release fertilizers were developed using a biobased nanocomposite of lignin and bentonite clay mineral as a coating material for urea to increase nitrogen use efficiency. Five types of controlled-release urea (CRU) were prepared using two ratios of modified bentonite as well as techniques. The efficiency of the five controlled-release nano-urea (CRU) fertilizers in improving the growth of tomato plants was studied under field conditions. The CRU was applied to the tomato plants at three N levels representing 100, 50, and 25% of the recommended dose of conventional urea. The results showed that all CRU treatments at the three N levels significantly enhanced plant growth parameters, including plant height, number of leaves, fresh weight, and dry weight, compared to the control. Additionally, most CRU fertilizers increased total yield and fruit characteristics (weight, length, and diameter) compared to the control. Additionally, marketable yield was improved by CRU fertilizers. Fruit firmness and acidity of CRU treatments at 25 and 50% N levels were much higher than both the 100% CRU treatment and the control. The vitamin C values of all CRU treatments were lower than the control. Nitrogen uptake efficiencies (NUpE) of CRU treatments were 47–88%, which is significantly higher than that of the control (33%). In conclusion, all CRU treatments at an N level of 25% of the recommended dose showed better plant growth, yield, and fruit quality of tomatoes than the conventional fertilizer.Keywords: nitrogen use efficiency, quality, urea, nano particles, ecofriendly
Procedia PDF Downloads 76931 Effect of Enzymatic Modification on the Crystallinity of Cellulose Pulps
Authors: J. Janicki, M. Rom, C. Slusarczyk, J. Fabia, M. Siika-aho, K. Marjamaa, K. Kruus, K. Langfelder, C. Steel, M. Paloheimo, T. Puranen, S. Mäkinen, D. Wawro
Abstract:
The cellulose is one of the most abundant polymers in the world, however, its application in the high-end value products such as films or fibres, it triggered by the cellulose properties. The noticeable presence of hydrogen bonding reflected with partially crystalline structure makes the cellulose insoluble in common solvents and not meltable. The existing technologies, such as viscose process, suffer from environmental and economical problems, because of the risk of harmful chemicals liberation during the spinning process. The enzymatic modification of cellulose with endoglucanase makes it directly alkali soluble in NaOH solution, giving the opportunities for film and fibers formation. As the effect of enzymatic treatment, there are observed changes in crystalline structure and accompanying changes of the affinity of cellulose to water, demonstrated by water retention value. The objective of the project ELMO - Novel carbohydrate modifying enzymes for fibre modification is is to develop new enzyme products for modification of dissolving grade pulps. The aim is to increase the reactivity of dissolving grade pulps and remove residual hemicellulose. The scientific aim of this paper is to present the effect of enzymatic treatment on the crystallinity and affinity to water of cellulose pulps modified with enzymes.Keywords: cellulose, crystallinity, WAXS, enzyme
Procedia PDF Downloads 236930 Biogas Enhancement Using Iron Oxide Nanoparticles and Multi-Wall Carbon Nanotubes
Authors: John Justo Ambuchi, Zhaohan Zhang, Yujie Feng
Abstract:
Quick development and usage of nanotechnology have resulted to massive use of various nanoparticles, such as iron oxide nanoparticles (IONPs) and multi-wall carbon nanotubes (MWCNTs). Thus, this study investigated the role of IONPs and MWCNTs in enhancing bioenergy recovery. Results show that IONPs at a concentration of 750 mg/L and MWCNTs at a concentration of 1500 mg/L induced faster substrate utilization and biogas production rates than the control. IONPs exhibited higher carbon oxygen demand (COD) removal efficiency than MWCNTs while on the contrary, MWCNT performance on biogas generation was remarkable than IONPs. Furthermore, scanning electron microscopy (SEM) investigation revealed extracellular polymeric substances (EPS) excretion from AGS had an interaction with nanoparticles. This interaction created a protective barrier to microbial consortia hence reducing their cytotoxicity. Microbial community analyses revealed genus predominance of bacteria of Anaerolineaceae and Longilinea. Their role in biodegradation of the substrate could have highly been boosted by nanoparticles. The archaea predominance of the genus level of Methanosaeta and Methanobacterium enhanced methanation process. The presence of bacteria of genus Geobacter was also reported. Their presence might have significantly contributed to direct interspecies electron transfer in the system. Exposure of AGS to nanoparticles promoted direct interspecies electron transfer among the anaerobic fermenting bacteria and their counterpart methanogens during the anaerobic digestion process. This results provide useful insightful information in understanding the response of microorganisms to IONPs and MWCNTs in the complex natural environment.Keywords: anaerobic granular sludge, extracellular polymeric substances, iron oxide nanoparticles, multi-wall carbon nanotubes
Procedia PDF Downloads 293929 Growth of Nitella in Response to Cesium Exposure: Implication for Phytoremediation
Authors: Harun Rashid, Keerthi S. S. Atapaththu, Takashi Asaeda
Abstract:
Cesium (Cs) induced growth and stress response of Nitella were studied after exposure to four concentration of the metal; i.e. 0 (control), 0.001, 0.01, and 0.1 ppm Cs in growth media. Each treatment with three replicates were randomly allocated to 12 glass beakers in a complete randomize design and the experiment was continued for 30 days. At the end of the experiment, shoot length, cesium content, total chlorophyll, and plant stress response were compared. Anti-oxidant enzyme activities (peroxidase, catalase, and ascorbic peroxidase) and the concentration of H2O2 were measured to check plant stress. The longest shoot was found in control treatment (0 ppm Cs) and the shoot length of plants exposed to 0.001 ppm was statistically similar to that of control. Concentration of cesium in plants grown at 0.001, 0.01, and 0.1 ppm were significantly higher than those in control treatments. The antioxidant enzymes activities of plants exposed to cesium were significantly higher than those grown without any Cs (control). An elevated level of H2O2 concentration was also observed in former groups of plants. Further, the reduction in chlorophyll concentration and chlorophyll fluorescence in response to cesium exposure indicated the chronically damaged photosynthetic efficiency in cesium stressed Nitella.Keywords: antioxidant enzymes, cesium, growth, Nitella, oxidative stress
Procedia PDF Downloads 426928 Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Capacity of in vitro Propagated Hyssop, Hyssopus officinalis L.
Authors: Maria P. Geneva, Ira V. Stancheva, Marieta G. Hristozkova, Roumiana D. Vasilevska-Ivanova, Mariana T. Sichanova, Janet R. Mincheva
Abstract:
Hyssopus officinalis L., Lamiaceae, commonly called hyssop, is an aromatic, semi-evergreen, woody-based, shrubby perennial plant. Hyssop is a good expectorant and antiviral herb commonly used to treat respiratory conditions such as influenza, sinus infections, colds, and bronchitis. Most of its medicinal properties are attributed to the essential oil of hyssop. The study was conducted to evaluate the influence of inoculation with arbuscular mycorrhizal fungi of in vitro propagated hyssop plants on the: activities of antioxidant enzymes superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase; accumulation of non-enzymatic antioxidants total phenols and flavonoid, water-soluble soluble antioxidant metabolites expressed as ascorbic acid; the antioxidant potential of hyssop methanol extracts assessed by two common methods: free radical scavenging activity using free stable radical (2,2-diphenyl-1-picrylhydrazyl, DPPH• and ferric reducing antioxidant power FRAP in flowers and leaves. The successfully adapted to field conditions in vitro plants (survival rate 95%) were inoculated with arbuscular mycorrhizal fungi (Claroideoglomus claroideum, ref. EEZ 54). It was established that the activities of enzymes with antioxidant capacity (superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase) were significantly higher in leaves than in flowers in both control and mycorrhized plants. In flowers and leaves of inoculated plants, the antioxidant enzymes activity were lower than in non-inoculated plants, only in SOD activity, there was no difference. The content of low molecular metabolites with antioxidant capacity as total phenols, total flavonoids, and water soluble antioxidants was higher in inoculated plants. There were no significant differences between control and inoculated plants both for FRAP and DPPH antioxidant activity. According to plant essential oil content, there was no difference between non-inoculated and inoculated plants. Based on our results we could suggest that antioxidant capacity of in vitro propagated hyssop plant under conditions of cultivation is determined by the phenolic compounds-total phenols and flavonoids as well as by the levels of water-soluble metabolites with antioxidant potential. Acknowledgments: This study was conducted with financial support from National Science Fund at the Bulgarian Ministry of Education and Science, Project DN06/7 17.12.16.Keywords: antioxidant enzymes, antioxidant metabolites, arbuscular mycorrhizal fungi, Hyssopus officinalis L.
Procedia PDF Downloads 326927 Isolation, Identification and Screening of Pectinase Producing Fungi Isolated from Apple (Malus Domestica)
Authors: Shameel Pervez, Saad Aziz Durrani, Ibatsam Khokhar
Abstract:
Pectinase is an enzyme that breaks down pectin, a compound responsible for structural integrity of the plant. Pectin is difficult to break down mechanically and the cost is very high, that is why many industries including food industries use pectinase enzyme produced by microbes for pectin breakdown. Apple (Malus domestica) is an important fruit in terms of market value. Every year, millions of apples are wasted due to post-harvest rot caused by fungi. Fungi are natural decomposers of our ecosystem and are infamous for post-harvest rot of apple fruit but at the same time they are prized for their high production of valuable extracellular enzymes such as pectinase. In this study, fungi belonging to different genus were isolated from rotten apples. Rotten samples of apple were picked from different markets of Lahore. After surface sterilization, the rotten parts were cut into small pieces and placed onto MEA media plates for three days. Afterwards, distinct colonies were picked and purified by sub-culturing. The isolates were identified to genus level through the study of basic colony morphology and microscopic features. The isolates were then subjected to screening for pectinase activity on MS media to compare pectinase production and were then subsequently tested for pathogenic activity through wound suspension method to evaluate the pathogenic activity of isolates in comparison with their pectinolytic activity. A total of twelve fungal strains were isolates from rotten apples. They were belonging to genus Penicillium, Alternaria, Paecilomyces and Rhizopus. Upon screening for pectinolytic activity, isolates Pen 1, Pen 4, and Rz showed high pectinolytic activity and were further subjected to DNA isolation and partial sequencing for species identification. The results of partial sequencing were combined with in-depth study of morphological features revealing Pen 1 as Penicillium janthinellum, Pen 4 as Penicillium griseofulvum, and Rz as Rhizopus microsporus. Pathogenic activity of all twelve isolates was evaluated. Penicillium spp. were highly pathogenic and destructive and same was the case with Paecilomyces sp. and Rhizopus sp. However, Alternaria spp. were found to be more consistent in their pathogenic activity, on all types of apples.Keywords: apple, pectinase, fungal pathogens, penicillium, rhizopus
Procedia PDF Downloads 63926 Screening and Improved Production of an Extracellular β-Fructofuranosidase from Bacillus Sp
Authors: Lynette Lincoln, Sunil S. More
Abstract:
With the rising demand of sugar used today, it is proposed that world sugar is expected to escalate up to 203 million tonnes by 2021. Hydrolysis of sucrose (table sugar) into glucose and fructose equimolar mixture is catalyzed by β-D-fructofuranoside fructohydrolase (EC 3.2.1.26), commonly called as invertase. For fluid filled center in chocolates, preparation of artificial honey, as a sweetener and especially to ensure that food stuffs remain fresh, moist and soft for longer spans invertase is applied widely and is extensively being used. From an industrial perspective, properties such as increased solubility, osmotic pressure and prevention of crystallization of sugar in food products are highly desired. Screening for invertase does not involve plate assay/qualitative test to determine the enzyme production. In this study, we use a three-step screening strategy for identification of a novel bacterial isolate from soil which is positive for invertase production. The primary step was serial dilution of soil collected from sugarcane fields (black soil, Maddur region of Mandya district, Karnataka, India) was grown on a Czapek-Dox medium (pH 5.0) containing sucrose as the sole C-source. Only colonies with the capability to utilize/breakdown sucrose exhibited growth. Bacterial isolates released invertase in order to take up sucrose, splitting the disaccharide into simple sugars. Secondly, invertase activity was determined from cell free extract by measuring the glucose released in the medium at 540 nm. Morphological observation of the most potent bacteria was examined by several identification tests using Bergey’s manual, which enabled us to know the genus of the isolate to be Bacillus. Furthermore, this potent bacterial colony was subjected to 16S rDNA PCR amplification and a single discrete PCR amplicon band of 1500 bp was observed. The 16S rDNA sequence was used to carry out BLAST alignment search tool of NCBI Genbank database to obtain maximum identity score of sequence. Molecular sequencing and identification was performed by Xcelris Labs Ltd. (Ahmedabad, India). The colony was identified as Bacillus sp. BAB-3434, indicating to be the first novel strain for extracellular invertase production. Molasses, a by-product of the sugarcane industry is a dark viscous liquid obtained upon crystallization of sugar. An enhanced invertase production and optimization studies were carried out by one-factor-at-a-time approach. Crucial parameters such as time course (24 h), pH (6.0), temperature (45 °C), inoculum size (2% v/v), N-source (yeast extract, 0.2% w/v) and C-source (molasses, 4% v/v) were found to be optimum demonstrating an increased yield. The findings of this study reveal a simple screening method of an extracellular invertase from a rapidly growing Bacillus sp., and selection of best factors that elevate enzyme activity especially utilization of molasses which served as an ideal substrate and also as C-source, results in a cost-effective production under submerged conditions. The invert mixture could be a replacement for table sugar which is an economic advantage and reduce the tedious work of sugar growers. On-going studies involve purification of extracellular invertase and determination of transfructosylating activity as at high concentration of sucrose, invertase produces fructooligosaccharides (FOS) which possesses probiotic properties.Keywords: Bacillus sp., invertase, molasses, screening, submerged fermentation
Procedia PDF Downloads 231925 Degradation of Commercial Polychlorinated Biphenyl Mixture by Naturally Occurring Facultative Microorganisms via Anaerobic Dechlorination and Aerobic Oxidation
Authors: P. M. G. Pathiraja, P. Egodawatta, A. Goonetilleke, V. S. J. Te'o
Abstract:
The production and use of Polychlorinated biphenyls (PCBs), a group of synthetic halogenated hydrocarbons have been restricted worldwide due to its toxicity and categorized as one of the twelve priority persistent organic pollutants (POP) by the Stockholm Convention. Low reactivity and high chemical stability of PCBs have made them highly persistent in the environment and bio-concentration and bio-magnification along the food chain contribute to multiple health impacts in humans and animals. Remediating environments contaminated with PCBs is a challenging task for decades. Use of microorganisms for remediation of PCB contaminated soils and sediments have been widely investigated due to the potential of breakdown these complex contaminants with minimum environmental impacts. To achieve an effective bioremediation of polychlorinated biphenyls (PCBs) contaminated environments, microbes were sourced from environmental samples and tested for their ability to hydrolyze PCBs under different conditions. Comparison of PCB degradation efficiencies of four naturally occurring facultative bacterial cultures isolated through selective enrichment under aerobic and anaerobic conditions were simultaneously investigated in minimal salt medium using 50 mg/L Aroclor 1260, a commonly used commercial PCB mixture as the sole source of carbon. The results of a six-week study demonstrated that all the tested facultative Achromobacter, Ochrobactrum, Lysinibacillus and Pseudomonas strains are capable of degrading PCBs under both anaerobic and aerobic conditions while assisting hydrophobic PCBs to make solubilize in the aqueous minimal medium. Overall, the results suggest that some facultative bacteria are capable of effective in degrading PCBs under anaerobic conditions through reductive dechlorination and under aerobic conditions through oxidation. Therefore, use of suitable facultative microorganisms under combined anaerobic-aerobic conditions and combination of such strains capable of solubilization and breakdown of PCBs has high potential in achieving higher PCB removal rates.Keywords: bioremediation, combined anaerobic-aerobic degradation, facultative microorganisms, polychlorinated biphenyls
Procedia PDF Downloads 241924 Point-Mutation in a Rationally Engineered Esterase Inverts its Enantioselectivity
Authors: Yasser Gaber, Mohamed Ismail, Serena Bisagni, Mohamad Takwa, Rajni Hatti-Kaul
Abstract:
Enzymes are safe and selective catalysts. They skillfully catalyze chemical reactions; however, the native form is not usually suitable for industrial applications. Enzymes are therefore engineered by several techniques to meet the required catalytic task. Clopidogrel is recorded among the five best selling pharmaceutical in 2010 under the brand name Plavix. The commonly used route for production of the drug on an industrial scale is the synthesis of the racemic mixture followed by diastereomeric resolution to obtain the pure S isomer. The process consumes a lot of solvents and chemicals. We have evaluated a biocatalytic cleaner approach for asymmetric hydrolysis of racemic clopidogrel. Initial screening of a selected number of hydrolases showed only one enzyme EST to exhibit activity and selectivity towards the desired stereoisomer. As the crude EST is a mixture of several isoenzymes, a homology model of EST-1 was used in molecular dynamic simulations to study the interaction of the enzyme with R and S isomers of clopidogrel. Analysis of the geometric hindrances of the tetrahedral intermediates revealed a potential site for mutagenesis in order to improve the activity and the selectivity. Single point mutation showed dramatic increase in activity and inversion of the enantioselectivity (400 fold change in E value).Keywords: biocatalysis, biotechnology, enzyme, protein engineering, molecular modeling
Procedia PDF Downloads 448923 Effect of Methanolic Extract of Punica granatum L. Fruit Rind on Kidney, Liver Marker Enzymes, Electrolytes, and Their Histology in Normal Healthy Rats
Authors: Y. A. Shettima, M. A. Tijjani, S. Modu, F. I. Abdulrahman, B. M. Abubakar
Abstract:
The toxicity profile of the methanolic extract of Punica granatum L. fruit rind was studied in normal rats. The rats were administered orally by intubating graded doses of 150, 250, 500 and 750 mg/kg body weight of the extract for 28 days and the effects on biochemical parameters and histology of the liver and kidney were evaluated. There was a significant increase (P<0.05) in the levels of liver enzymes of the rats that received the highest dose of 750 mg/kg body weight. The AST and ALT levels were 41.59±0.18 ALP and 9.25±0.29 IU/L, respectively, while the ALP level was 15.68±10 IU/L.There was a significant difference in the albumin and globulin levels; 3.72±0.05 and 4.05±0.13 g/dl, respectively. Serum urea and creatinine levels remained normal, as well as the electrolyte levels. The increase in sodium concentration observed was not statistically significant (P≥0.05) when the control group (131.50±3.11) was compared with the experimental groups (132.25±3.86, 132.75±3.86, 133.50±3.11 and 134.00±1.83). The increase in potassium concentration was not statistically significant (P≥0.05) when the control group with a value of 95.50±3.51 mmol/L was compared with the experimental groups 98.00±3.16, 99.25±2.22, 99.79±0.36 and 99.99±0.02 mmol/L. The increase observed in bicarbonate concentration was not statistically significant (P≥0.05) when the control group with a value of 20.75±1.71 mmol/L was compared with the experimental groups 21.68±0.62, 24.25±2.99, 24.50±3.42, 25.50±2.65 mmol/L.Keywords: punical granatum, methanolic, ALT, AST, electrolytes, histology
Procedia PDF Downloads 397922 Ascidian Styela rustica Proteins’ Structural Domains Predicted to Participate in the Tunic Formation
Authors: M. I. Tyletc, O. I. Podgornya, T. G. Shaposhnikova, S. V. Shabelnikov, A. G. Mittenberg, M. A. Daugavet
Abstract:
Ascidiacea is the most numerous class of the Tunicata subtype. These chordates' distinctive feature of the anatomical structure is a tunic consisting of cellulose fibrils, protein molecules, and single cells. The mechanisms of the tunic formation are not known in detail; tunic formation could be used as the model system for studying the interaction of cells with the extracellular matrix. Our model species is the ascidian Styela rustica, which is prevalent in benthic communities of the White Sea. As previously shown, the tunic formation involves morula blood cells, which contain the major 48 kDa protein p48. P48 participation in the tunic formation was proved using antibodies against the protein. The nature of the protein and its function remains unknown. The current research aims to determine the amino acid sequence of p48, as well as to clarify its role in the tunic formation. The peptides that make up the p48 amino acid sequence were determined by mass spectrometry. A search for peptides in protein sequence databases identified sequences homologous to p48 in Styela clava, Styela plicata, and Styela canopus. Based on sequence alignment, their level of similarity was determined as 81-87%. The correspondent sequence of ascidian Styela canopus was used for further analysis. The Styela rustica p48 sequence begins with a signal peptide, which could indicate that the protein is secretory. This is consistent with experimentally obtained data: the contents of morula cells secreted in the tunic matrix. The isoelectric point of p48 is 9.77, which is consistent with the experimental results of acid electrophoresis of morula cell proteins. However, the molecular weight of the amino acid sequence of ascidian Styela canopus is 103 kDa, so p48 of Styela rustica is a shorter homolog. The search for conservative functional domains revealed the presence of two Ca-binding EGF-like domains, thrombospondin (TSP1) and tyrosinase domains. The p48 peptides determined by mass spectrometry fall into the region of the sequence corresponding to the last two domains and have amino acid substitutions as compared to Styela canopus homolog. The tyrosinase domain (pfam00264) is known to be part of the phenoloxidase enzyme, which participates in melanization processes and the immune response. The thrombospondin domain (smart00209) interacts with a wide range of proteins, and is involved in several biological processes, including coagulation, cell adhesion, modulation of intercellular and cell-matrix interactions, angiogenesis, wound healing and tissue remodeling. It can be assumed that the tyrosinase domain in p48 plays the role of the phenoloxidase enzyme, and TSP1 provides a link between the extracellular matrix and cell surface receptors, and may also be responsible for the repair of the tunic. The results obtained are consistent with experimental data on p48. The domain organization of protein suggests that p48 is an enzyme involved in the tunic tunning and is an important regulator of the organization of the extracellular matrix.Keywords: ascidian, p48, thrombospondin, tyrosinase, tunic, tunning
Procedia PDF Downloads 115921 Jamun Juice Extraction Using Commercial Enzymes and Optimization of the Treatment with the Help of Physicochemical, Nutritional and Sensory Properties
Authors: Payel Ghosh, Rama Chandra Pradhan, Sabyasachi Mishra
Abstract:
Jamun (Syzygium cuminii L.) is one of the important indigenous minor fruit with high medicinal value. The jamun cultivation is unorganized and there is huge loss of this fruit every year. The perishable nature of the fruit makes its postharvest management further difficult. Due to the strong cell wall structure of pectin-protein bonds and hard seeds, extraction of juice becomes difficult. Enzymatic treatment has been commercially used for improvement of juice quality with high yield. The objective of the study was to optimize the best treatment method for juice extraction. Enzymes (Pectinase and Tannase) from different stains had been used and for each enzyme, best result obtained by using response surface methodology. Optimization had been done on the basis of physicochemical property, nutritional property, sensory quality and cost estimation. According to quality aspect, cost analysis and sensory evaluation, the optimizing enzymatic treatment was obtained by Pectinase from Aspergillus aculeatus strain. The optimum condition for the treatment was 44 oC with 80 minute with a concentration of 0.05% (w/w). At these conditions, 75% of yield with turbidity of 32.21NTU, clarity of 74.39%T, polyphenol content of 115.31 mg GAE/g, protein content of 102.43 mg/g have been obtained with a significant difference in overall acceptability.Keywords: enzymatic treatment, Jamun, optimization, physicochemical property, sensory analysis
Procedia PDF Downloads 296920 Stability of a Biofilm Reactor Able to Degrade a Mixture of the Organochlorine Herbicides Atrazine, Simazine, Diuron and 2,4-Dichlorophenoxyacetic Acid to Changes in the Composition of the Supply Medium
Authors: I. Nava-Arenas, N. Ruiz-Ordaz, C. J. Galindez-Mayer, M. L. Luna-Guido, S. L. Ruiz-López, A. Cabrera-Orozco, D. Nava-Arenas
Abstract:
Among the most important herbicides, the organochlorine compounds are of considerable interest due to their recalcitrance to the chemical, biological, and photolytic degradation, their persistence in the environment, their mobility, and their bioacummulation. The most widely used herbicides in North America are primarily 2,4-dichlorophenoxyacetic acid (2,4-D), the triazines (atrazine and simazine), and to a lesser extent diuron. The contamination of soils and water bodies frequently occurs by mixtures of these xenobiotics. For this reason, in this work, the operational stability to changes in the composition of the medium supplied to an aerobic biofilm reactor was studied. The reactor was packed with fragments of volcanic rock that retained a complex microbial film, able to degrade a mixture of organochlorine herbicides atrazine, simazine, diuron and 2,4-D, and whose members have microbial genes encoding the main catabolic enzymes atzABCD, tfdACD and puhB. To acclimate the attached microbial community, the biofilm reactor was fed continuously with a mineral minimal medium containing the herbicides (in mg•L-1): diuron, 20.4; atrazine, 14.2, simazine, 11.4, and 2,4-D, 59.7, as carbon and nitrogen sources. Throughout the bioprocess, removal efficiencies of 92-100% for herbicides, 78-90% for COD, 92-96% for TOC and 61-83% for dehalogenation were reached. In the microbial community, the genes encoding catabolic enzymes of different herbicides tfdACD, puhB and, occasionally, the genes atzA and atzC were detected. After the acclimatization, the triazine herbicides were eliminated from the mixture formulation. Volumetric loading rates of the mixture 2,4-D and diuron were continuously supplied to the reactor (1.9-21.5 mg herbicides •L-1 •h-1). Along the bioprocess, the removal efficiencies obtained were 86-100% for the mixture of herbicides, 63-94% for for COD, 90-100% for COT, and dehalogenation values of 63-100%. It was also observed that the genes encoding the enzymes in the catabolism of both herbicides, tfdACD and puhB, were consistently detected; and, occasionally, the atzA and atzC. Subsequently, the triazine herbicide atrazine and simazine were restored to the medium supply. Different volumetric charges of this mixture were continuously fed to the reactor (2.9 to 12.6 mg herbicides •L-1 •h-1). During this new treatment process, removal efficiencies of 65-95% for the mixture of herbicides, 63-92% for COD, 66-89% for TOC and 73-94% of dehalogenation were observed. In this last case, the genes tfdACD, puhB and atzABC encoding for the enzymes involved in the catabolism of the distinct herbicides were consistently detected. The atzD gene, encoding the cyanuric hydrolase enzyme, could not be detected, though it was determined that there was partial degradation of cyanuric acid. In general, the community in the biofilm reactor showed some catabolic stability, adapting to changes in loading rates and composition of the mixture of herbicides, and preserving their ability to degrade the four herbicides tested; although, there was a significant delay in the response time to recover to degradation of the herbicides.Keywords: biodegradation, biofilm reactor, microbial community, organochlorine herbicides
Procedia PDF Downloads 435919 Comparative Efficacy of Angiotensin Converting Enzymes Inhibitors and Angiotensin Receptor Blockers in Patients with Heart Failure in Tanzania: A Prospective Cohort Study
Authors: Mark P. Mayala, Henry Mayala, Khuzeima Khanbhai
Abstract:
Background: Heart failure has been a rising concern in Tanzania. New drugs have been introduced, including the group of drugs called Angiotensin receptor Neprilysin Inhibitor (ARNI), but due to their high cost, angiotensin-converting enzymes inhibitors (ACEIs) and Angiotensin receptor blockers (ARBs) have been mostly used in Tanzania. However, according to our knowledge, the efficacy comparison of the two groups is yet to be studied in Tanzania. The aim of this study was to compare the efficacy of ACEIs and ARBs among patients with heart failure. Methodology: This was a hospital-based prospective cohort study done at Jakaya Kikwete Cardiac Institution (JKCI), Tanzania, from June to December 2020. Consecutive enrollment was done until fulfilling the inclusion criteria. Clinical details were measured at baseline. We assessed the relationship between ARBs and ACEIs users with N-terminal pro-brain natriuretic peptide (NT pro-BNP) levels at admission and at 1-month follow-up using a chi-square test. A Kaplan-Meier curve was used to estimate the survival time of the two groups. Results: 155 HF patients were enrolled, with a mean age of 48 years, whereby 52.3% were male, and their mean left ventricular ejection fraction (LVEF) was 37.3%. 52 (33.5%) heart failure patients were on ACEIs, 57 (36.8%) on ARBs, and 46 (29.7%) were neither using ACEIs nor ARBs. At least half of the patients did not receive a guideline-directed medical therapy (GDMT), with only 82 (52.9%) receiving a GDMT. A drop in NT pro-BNP levels was observed during admission and at 1-month follow-up on both groups, from 6389.2 pg/ml to 4000.1 pg/ml for ARB users and 5877.7 pg/ml to 1328.2 pg/ml for the ACEIs users. There was no statistical difference between the two groups when estimated by the Kaplan-Meier curve, though more deaths were observed in those who were neither on ACEIs nor ARBs, with a calculated P value of 0.01. Conclusion: This study demonstrates that ACEIs have more efficacy and overall better clinical outcome than ARBs, but this should be taken under the patient-based case, considering the side effects of ACEIs and patients’ adherence.Keywords: angiotensin converting enzymes inhibitors, angiotensin receptor blockers, guideline direct medical therapy, N-terminal pro-brain natriuretic peptide
Procedia PDF Downloads 85918 Extraction of Rice Bran Protein Using Enzymes and Polysaccharide Precipitation
Authors: Sudarat Jiamyangyuen, Tipawan Thongsook, Riantong Singanusong, Chanida Saengtubtim
Abstract:
Rice is a staple food as well as exported commodity of Thailand. Rice bran, a 10.5% constituent of rice grain, is a by-product of rice milling process. Rice bran is normally used as a raw material for rice bran oil production or sold as feed with a low price. Therefore, this study aimed to increase value of defatted rice bran as obtained after extracting of rice bran oil. Conventionally, the protein in defatted rice bran was extracted using alkaline extraction and acid precipitation, which results in reduction of nutritious components in rice bran. Rice bran protein concentrate is suitable for those who are allergenic of protein from other sources eg. milk, wheat. In addition to its hypoallergenic property, rice bran protein also contains good quantity of lysine. Thus it may act as a suitable ingredient for infant food formulations while adding variety to the restricted diets of children with food allergies. The objectives of this study were to compare properties of rice bran protein concentrate (RBPC) extracted from defatted rice bran using enzymes together with precipitation step using polysaccharides (alginate and carrageenan) to those of a control sample extracted using a conventional method. The results showed that extraction of protein from rice bran using enzymes exhibited the higher protein recovery compared to that extraction with alkaline. The extraction conditions using alcalase 2% (v/w) at 50 C, pH 9.5 gave the highest protein (2.44%) and yield (32.09%) in extracted solution compared to other enzymes. Rice bran protein concentrate powder prepared by a precipitation step using alginate (protein in solution: alginate 1:0.006) exhibited the highest protein (27.55%) and yield (6.62%). Precipitation using alginate was better than that of acid. RBPC extracted with alkaline (ALK) or enzyme alcalase (ALC), then precipitated with alginate (AL) (samples RBP-ALK-AL and RBP-ALC-AL) yielded the precipitation rate of 75% and 91.30%, respectively. Therefore, protein precipitation using alginate was then selected. Amino acid profile of control sample, and sample precipitated with alginate, as compared to casein and soy protein isolated, showed that control sample showed the highest content among all sample. Functional property study of RBP showed that the highest nitrogen solubility occurred in pH 8-10. There was no statically significant between emulsion capacity and emulsion stability of control and sample precipitated by alginate. However, control sample showed a higher of foaming and lower foam stability compared to those of sample precipitated with alginate. The finding was successful in terms of minimizing chemicals used in extraction and precipitation steps in preparation of rice bran protein concentrate. This research involves in a production of value-added product in which the double amount of protein (28%) compared to original amount (14%) contained in rice bran could be beneficial in terms of adding to food products eg. healthy drink with high protein and fiber. In addition, the basic knowledge of functional property of rice bran protein concentrate was obtained, which can be used to appropriately select the application of this value-added product from rice bran.Keywords: alginate, carrageenan, rice bran, rice bran protein
Procedia PDF Downloads 295917 Physiological Responses of Dominant Grassland Species to Different Grazing Intensity in Inner Mongolia, China
Authors: Min Liu, Jirui Gong, Qinpu Luo, Lili Yang, Bo Yang, Zihe Zhang, Yan Pan, Zhanwei Zhai
Abstract:
Grazing disturbance is one of the important land-use types that affect plant growth and ecosystem processes. In order to study the responses of dominant species to grazing in the semiarid temperate grassland of Inner Mongolia, we set five grazing intensity plots: a control and four levels of grazing (light (LG), moderate (MG), heavy (HG) and extreme heavy grazing (EHG)) to test the morphological and physiological responses of Stipa grandis, Leymus chinensis at the individual levels. With the increase of grazing intensity, Stipa grandis and Leymus chinensis both exhibited reduced plant height, leaf area, stem length and aboveground biomass, showing a significant dwarf phenomenon especially in HG and EHG plots. The photosynthetic capacity decreased along the grazing gradient. Especially in the MG plot, the two dominant species have lowest net photosynthetic rate (Pn) and water use efficiency (WUE). However, in the HG and EHG plots, the two species had high light saturation point (LSP) and low light compensation point (LCP), indicating they have high light-use efficiency. They showed a stimulation of compensatory photosynthesis to the remnant leaves as compared with grasses in MG plot. For Leymus chinensis, the lipid peroxidation level did not increase with the low malondialdehyde (MDA) content even in the EHG plot. It may be due to the high enzymes activity of superoxide dismutase (SOD) and peroxidase (POD) to reduce the damage of reactive oxygen species. Meanwhile, more carbohydrate was stored in the leaf of Leymus chinensis to provide energy to the plant regrowth. On the contrary, Stipa grandis showed the high level of lipid peroxidation especially in the HG and EHG plots with decreased antioxidant enzymes activity. The soluble protein content did not change significantly in the different plots. Therefore, with the increase of grazing intensity, plants changed morphological and physiological traits to defend themselves effectively to herbivores. Leymus chinensis is more resistant to grazing than Stipa grandis in terms of tolerance traits, particularly under heavy grazing pressure.Keywords: antioxidant enzymes activity, grazing density, morphological responses, photosynthesis
Procedia PDF Downloads 365916 Effect of Conjugated Linoleic Acid on Lipid Metabolism and Increased Fat around the Muscle Durability by Reducing the Oxidation Process
Authors: Hamidreza Khodaei, Ali Daryabeigi Zand
Abstract:
Conjugated linoleic acid (CLA) is a mixture of isomers of linoleic acid. Despite the fact that 28 different isomers of CLA have already been identified, but the main isomer found in natural diets more than ninety percent CLA on intake of food constitutes demonstrates. CLA is known to be a substance that readily available by rumen microorganisms in some ruminants such as cattle and sheep would likely be made. The main objective of this research was to evaluate the impacts of CLA on lipid metabolism and enhanced fat around the muscle durability by reducing the process of oxidation. In order to implement this research, 80 female mice of the Balb/C, with 55 days of age were employed in the experiment. Treatments include various levels of CLA. Over the course of this study blood samples was also taken from the tail vein of the studied mice. Some other relevant parameters such as serum concentrations of triglycerides, total cholesterol, LDL, HDL and liver enzymes were also determined. The oxidative stability of fats TBARS technique was investigated at different intervals. The findings of the research were analyzed by statistical software of SAS 98. The results, CLA had no significant effect on liver enzymes (P > 0.05). However, it showed a statistically significant impact on triglycerides and total cholesterol. Ratio of LDL to HDL declined remarkably. Histological studies demonstrated reduced accumulation of fat in the tissues surrounding muscles.Keywords: conjugated linoleic acid, fat metabolism, fat retention, oxidation process
Procedia PDF Downloads 198915 Cysteine Proteases of Plants That Act on the Coagulation Cascade: Approach from Bioinformatics
Authors: Tapiwa Brine Mutsauri
Abstract:
The MEROPS system is an information resource for proteases that classifies them into clans according to their catalytic type. Within the Plant kingdom, cysteine proteases are one of the best known, as they are the catalytic type on which the first studies on plant proteases were focused. Plant cysteine proteases have a similar mechanism of action to serine proteases, and some are known to have activity on factors of the blood coagulation cascade, such as a potent antithrombotic effect, and also cause increased fibrinolysis. Of a few plant cysteine proteases, the three-dimensional structure is known, so a method of interest to be able to predict their potential activity on the factors of the coagulation cascade would be to know their structure. Phylogenetics is the study of the evolutionary relationships between biological entities, often species, individuals, or genes (which can be called taxa). It is essential to identify the evolutionary position and the possible distribution of these enzymes in the plant kingdom, particularly those that act on coagulation factors. Bioinformatic tools, such as Clustal Omega / Jalview and Mega6, can be used to create phylogenetic trees. From the results of the alignment, it can be seen that although there is a certain degree of conservation (Conservation) and consensus (Consensus) among the eleven sequences, the functionally important motifs (those corresponding to the active site), the degree of conservation and consensus is very low. We could then infer that although activity on coagulation is reported for these enzymes, linked to their structural and mechanistic similarity with serine proteases, this activity may not have a direct or primary relationship with the proteolytic activity associated with their common, poorly conserved active site in this case. This ultimately could be related to modifications in the reaction mechanism of several of the enzymes studied, which would require more detailed study. Also, below, we will deal with factors that may have a greater influence on this result. The results of this work enrich the understanding of how species (and molecular sequences in general) evolve. Through phylogenetics, we learn not only how sequences came to be the way they are today but also the general principles that allow us to predict how they will change in the future. For pharmaceutical sciences, phylogenetic selection of biologically related species can help identify closely related members of a species with compounds of pharmacological importance, such as plant cysteine proteases, in addition to identifying structural features that may influence their pharmacological activity and which can be valuable for drug design.Keywords: computational simulation, proteases, coagulation, bioinformatics
Procedia PDF Downloads 17914 Dynamic Simulation of Disintegration of Wood Chips Caused by Impact and Collisions during the Steam Explosion Pre-Treatment
Authors: Muhammad Muzamal, Anders Rasmuson
Abstract:
Wood material is extensively considered as a raw material for the production of bio-polymers, bio-fuels and value-added chemicals. However, the shortcoming in using wood as raw material is that the enzymatic hydrolysis of wood material is difficult because the accessibility of enzymes to hemicelluloses and cellulose is hindered by complex chemical and physical structure of the wood. The steam explosion (SE) pre-treatment improves the digestion of wood material by creating both chemical and physical modifications in wood. In this process, first, wood chips are treated with steam at high pressure and temperature for a certain time in a steam treatment vessel. During this time, the chemical linkages between lignin and polysaccharides are cleaved and stiffness of material decreases. Then the steam discharge valve is rapidly opened and the steam and wood chips exit the vessel at very high speed. These fast moving wood chips collide with each other and with walls of the equipment and disintegrate to small pieces. More damaged and disintegrated wood have larger surface area and increased accessibility to hemicelluloses and cellulose. The energy required for an increase in specific surface area by same value is 70 % more in conventional mechanical technique, i.e. attrition mill as compared to steam explosion process. The mechanism of wood disintegration during the SE pre-treatment is very little studied. In this study, we have simulated collision and impact of wood chips (dimension 20 mm x 20 mm x 4 mm) with each other and with walls of the vessel. The wood chips are simulated as a 3D orthotropic material. Damage and fracture in the wood material have been modelled using 3D Hashin’s damage model. This has been accomplished by developing a user-defined subroutine and implementing it in the FE software ABAQUS. The elastic and strength properties used for simulation are of spruce wood at 12% and 30 % moisture content and at 20 and 160 OC because the impacted wood chips are pre-treated with steam at high temperature and pressure. We have simulated several cases to study the effects of elastic and strength properties of wood, velocity of moving chip and orientation of wood chip at the time of impact on the damage in the wood chips. The disintegration patterns captured by simulations are very similar to those observed in experimentally obtained steam exploded wood. Simulation results show that the wood chips moving with higher velocity disintegrate more. Moisture contents and temperature decreases elastic properties and increases damage. Impact and collision in specific directions cause easy disintegration. This model can be used to efficiently design the steam explosion equipment.Keywords: dynamic simulation, disintegration of wood, impact, steam explosion pretreatment
Procedia PDF Downloads 400913 The Role of High Performance Liquid Chromatography in Identification of Rat Liver Microsomes Responsible for the in vitro Metabolite Formation of Dipyrone
Authors: Salem Abdalla
Abstract:
Objective: Dipyrone is a widely used, well tolerated analgesic drug which, however, is compromised by agranulocytosis as an adverse effect. Subsequent to no enzymatic hydrolysis, the primary metabolic step is N-demethylation of 4-methylaminoantipyrine (4-MAA) to 4-aminoantipyrine (4-AA). The aim of the present study was to identify the cytochrome P-450 enzyme (CYP) mediating this reaction. Methods: We identified the relevant CYP using virus expressed isolated rat liver microsomes with chemical inhibition studies. The substrate of 4-methylaminantipyrine was employed at six different concentrations (25, 50, 100, 400, 800, and 1200 µmol/l) with varying concentrations of selective inhibitors of CYP1A2 (furafylline, fluvoxamine), CYP3A4 (ketoconazole), CYP2A6 (coumarin), CYP2D6 (quinidine), CYP2C19 (omeprazole, fluvoxamine, tranylcypromine), CYP2C9 (sulfaphenazole), and CYP1A1 (alpha-naphthoflavone). 4-MAA and 4-AA were analyzed by HPLC, and enzyme kinetic parameters (Km and Vmax) were determined by regression (Sigma plot 9.0). Results: The N-demethylation of 4-MAA by microsomes prepared from baculovirus-expressing human CYP was pronounced with CYP2C19. Intrinsic clearances of the most active enzymes were 0.092, 0.027, and 0.026 for the CYP enzymes 2C19, 2D6, and 1A2, respectively. Metabolism by rat liver microsomes was strongly inhibited by omeprazole (IC50 of 0.05). Conclusion: The enzyme CYP2C19 apparently has an important role in N-demethylation of 4-methylaminoantipyrine which should be further analyzed in clinical studies and which may also be interesting concerning the agranulocytosis.Keywords: dipyrone, 4-methylaminoantipyrine (4-MAA), 4- aminoantipyrine (4-AA), metabolism, human CYP2C19
Procedia PDF Downloads 239912 Usage of Cyanobacteria in Battery: Saving Money, Enhancing the Storage Capacity, Making Portable, and Supporting the Ecology
Authors: Saddam Husain Dhobi, Bikrant Karki
Abstract:
The main objective of this paper is save money, balance ecosystem of the terrestrial organism, control global warming, and enhancing the storage capacity of the battery with requiring weight and thinness by using Cyanobacteria in the battery. To fulfill this purpose of paper we can use different methods: Analysis, Biological, Chemistry, theoretical and Physics with some engineering design. Using this different method, we can produce the special type of battery that has the long life, high storage capacity, and clean environment, save money so on and by using the byproduct of Cyanobacteria i.e. glucose. Cyanobacteria are a special type of bacteria that produces different types of extracellular glucoses and oxygen with the help of little sunlight, water, and carbon dioxide and can survive in freshwater, marine and in the land as well. In this process, O₂ is more in the comparison to plant due to rapid growth rate of Cyanobacteria. The required materials are easily available in this process to produce glucose with the help of Cyanobacteria. Since CO₂, is greenhouse gas that causes the global warming? We can utilize this gas and save our ecological balance and the byproduct (glucose) C₆H₁₂O₆ can be utilized for raw material for the battery where as O₂ escape is utilized by living organism. The glucose produce by Cyanobateria goes on Krebs's Cycle or Citric Acid Cycle, in which glucose is complete, oxidizes and all the available energy from glucose molecule has been release in the form of electron and proton as energy. If we use a suitable anodes and cathodes, we can capture these electrons and protons to produce require electricity current with the help of byproduct of Cyanobacteria. According to "Virginia Tech Bio-battery" and "Sony" 13 enzymes and the air is used to produce nearly 24 electrons from a single glucose unit. In this output power of 0.8 mW/cm, current density of 6 mA/cm, and energy storage density of 596 Ah/kg. This last figure is impressive, at roughly 10 times the energy density of the lithium-ion batteries in your mobile devices. When we use Cyanobacteria in battery, we are able to reduce Carbon dioxide, Stop global warming, and enhancing the storage capacity of battery more than 10 times that of lithium battery, saving money, balancing ecology. In this way, we can produce energy from the Cyanobacteria and use it in battery for different benefits. In addition, due to the mass, size and easy cultivation, they are better to maintain the size of battery. Hence, we can use Cyanobacteria for the battery having suitable size, enhancing the storing capacity of battery, helping the environment, portability and so on.Keywords: anode, byproduct, cathode, cyanobacteri, glucose, storage capacity
Procedia PDF Downloads 348911 Challenging the Constitutionality of Mandatory Sentences: A South African Perspective
Authors: Alphonso Goliath
Abstract:
With mandatory minimum sentences, even with its qualification of “substantial and compelling circumstances”, the sentence severity for violent crimes has increased substantially to combat crime. Considering the upsurge in violent crime, the paper argues that minimum sentences failed to prevent or curb violent crime. These sentences deprive offenders more than what is reasonably necessary of their freedom to curb the offense and punish the offender. Minimum sentences amount to cruel, inhuman, and degrading punishment unjustified and vulnerable to constitutional challenge.Keywords: constitutionality, deterrence, incapacitation, minimum sentencing legislation, prison overcrowding, rehabilitation, recidivism, retribution, violent crime
Procedia PDF Downloads 83910 Effect of Dietary Sour Lemon Peel Essential Oil on Serum Parameters in Rainbow Trout (Oncorhynchus mykiss) Fingerlings against Deltamethrin Stress
Authors: Maryam Amiri Resketi, Sakineh Yeganeh, Khosro Jani Khalili
Abstract:
The aim of this study was to investigate the effect of dietary lemon peel essential oil (Citrus limon) on serum parameters and liver enzyme activity of rainbow trout (Oncorhynchus mykiss) was exposed to deltamethrin. The 96-hour lethal concentrations of the toxin on rainbow trout (Oncorhynchus mykiss), was determined according to standard procedures O.E.C.D in static (Static). 96-hour LC50 was obtained 0.0082 mg/l by using statistical methods Probit program version. The maximum allowable concentration of deltamethrin was calculated 0.00082 mg/l in natural environment and was used for this experiment. Eight treatments were designed based on 3 levels of lemon essential oil 200, 400 and 600 mg/kg and 2 levels of deltamethrin 0 and 0.00082. Rainbow trout with an average weight of 95.14 ± 3.8 g were distributed in 300-liter tanks and cultured for eight weeks. Fish were fed in an amount of 2% of body weight. Water changes were done on a daily basis (90 percent of the tank). About the tanks containing 10 % deltamethrin, after dewatering, suitable concentration of toxin was added to water. At the end of the test, serum biochemical parameters (total protein, albumin, glucose, cholesterol, and triglycerides) and liver enzymes (ALP, AST, ALT and LDH) were evaluated. In treatments without and with toxin, increasing 400 mg/kg oil increased total protein and albumin levels and lower cholesterol and triglycerides were observed (p < 0.05). Rise to the level of 400 mg/kg of lemon peel essential oil treatments contain pesticides, reduced the amount of enzymes ALP, ALT and LDH compared to treatment of toxin-free lemon peel essential oil (p < 0.05). The results showed that usage of lemon peel essential oil in fish diet can increase the immune system parameters and strengthen it with strong antioxidant activity followed by reducing the effect of deltamethrin on the immune system of fish and effective dose can prevent the adverse effects of toxin due to the weakening of the fish immune system at the time of toxic pollutant entrance in fish farms.Keywords: deltamethrin, Oncorhynchus mykiss, LC5096h, lemon peel (citrus limon) essential oil, serum parameters, liver enzymes
Procedia PDF Downloads 201909 Cell-free Bioconversion of n-Octane to n-Octanol via a Heterogeneous and Bio-Catalytic Approach
Authors: Shanna Swart, Caryn Fenner, Athanasios Kotsiopoulos, Susan Harrison
Abstract:
Linear alkanes are produced as by-products from the increasing use of gas-to-liquid fuel technologies for synthetic fuel production and offer great potential for value addition. Their current use as low-value fuels and solvents do not maximize this potential. Therefore, attention has been drawn towards direct activation of these aliphatic alkanes to more useful products such as alcohols, aldehydes, carboxylic acids and derivatives. Cytochrome P450 monooxygenases (P450s) can be used for activation of these aliphatic alkanes using whole-cells or cell-free systems. Some limitations of whole-cell systems include reduced mass transfer, stability and possible side reactions. Since the P450 systems are little studied as cell-free systems, they form the focus of this study. Challenges of a cell-free system include co-factor regeneration, substrate availability and enzyme stability. Enzyme immobilization offers a positive outlook on this dilemma, as it may enhance stability of the enzyme. In the present study, 2 different P450s (CYP153A6 and CYP102A1) as well as the relevant accessory enzymes required for electron transfer (ferredoxin and ferredoxin reductase) and co-factor regeneration (glucose dehydrogenase) have been expressed in E. coli and purified by metal affinity chromatography. Glucose dehydrogenase (GDH), was used as a model enzyme to assess the potential of various enzyme immobilization strategies including; surface attachment on MagReSyn® microspheres with various functionalities and on electrospun nanofibers, using self-assembly based methods forming Cross Linked Enzymes (CLE), Cross Linked Enzyme Aggregates (CLEAs) and spherezymes as well as in a sol gel. The nanofibers were synthesized by electrospinning, which required the building of an electrospinning machine. The nanofiber morphology has been analyzed by SEM and binding will be further verified by FT-IR. Covalent attachment based methods showed limitations where only ferredoxin reductase and GDH retained activity after immobilization which were largely attributed to insufficient electron transfer and inactivation caused by the crosslinkers (60% and 90% relative activity loss for the free enzyme when using 0.5% glutaraldehyde and glutaraldehyde/ethylenediamine (1:1 v/v), respectively). So far, initial experiments with GDH have shown the most potential when immobilized via their His-tag onto the surface of MagReSyn® microspheres functionalized with Ni-NTA. It was found that Crude GDH could be simultaneously purified and immobilized with sufficient activity retention. Immobilized pure and crude GDH could be recycled 9 and 10 times, respectively, with approximately 10% activity remaining. The immobilized GDH was also more stable than the free enzyme after storage for 14 days at 4˚C. This immobilization strategy will also be applied to the P450s and optimized with regards to enzyme loading and immobilization time, as well as characterized and compared with the free enzymes. It is anticipated that the proposed immobilization set-up will offer enhanced enzyme stability (as well as reusability and easy recovery), minimal mass transfer limitation, with continuous co-factor regeneration and minimal enzyme leaching. All of which provide a positive outlook on this robust multi-enzyme system for efficient activation of linear alkanes as well as the potential for immobilization of various multiple enzymes, including multimeric enzymes for different bio-catalytic applications beyond alkane activation.Keywords: alkane activation, cytochrome P450 monooxygenase, enzyme catalysis, enzyme immobilization
Procedia PDF Downloads 227908 Transcriptomic Analysis for Differential Expression of Genes Involved in Secondary Metabolite Production in Narcissus Bulb and in vitro Callus
Authors: Aleya Ferdausi, Meriel Jones, Anthony Halls
Abstract:
The Amaryllidaceae genus Narcissus contains secondary metabolites, which are important sources of bioactive compounds such as pharmaceuticals indicating that their biological activity extends from the native plant to humans. Transcriptome analysis (RNA-seq) is an effective platform for the identification and functional characterization of candidate genes as well as to identify genes encoding uncharacterized enzymes. The biotechnological production of secondary metabolites in plant cell or organ cultures has become a tempting alternative to the extraction of whole plant material. The biochemical pathways for the production of secondary metabolites require primary metabolites to undergo a series of modifications catalyzed by enzymes such as cytochrome P450s, methyltransferases, glycosyltransferases, and acyltransferases. Differential gene expression analysis of Narcissus was obtained from two conditions, i.e. field and in vitro callus. Callus was obtained from modified MS (Murashige and Skoog) media supplemented with growth regulators and twin-scale explants from Narcissus cv. Carlton bulb. A total of 2153 differentially expressed transcripts were detected in Narcissus bulb and in vitro callus, and 78.95% of those were annotated. It showed the expression of genes involved in the biosynthesis of alkaloids were present in both conditions i.e. cytochrome P450s, O-methyltransferase (OMTs), NADP/NADPH dehydrogenases or reductases, SAM-synthetases or decarboxylases, 3-ketoacyl-CoA, acyl-CoA, cinnamoyl-CoA, cinnamate 4-hydroxylase, alcohol dehydrogenase, caffeic acid, N-methyltransferase, and NADPH-cytochrome P450s. However, cytochrome P450s and OMTs involved in the later stage of Amaryllidaceae alkaloids biosynthesis were mainly up-regulated in field samples. Whereas, the enzymes involved in initial biosynthetic pathways i.e. fructose biphosphate adolase, aminotransferases, dehydrogenases, hydroxyl methyl glutarate and glutamate synthase leading to the biosynthesis of precursors; tyrosine, phenylalanine and tryptophan for secondary metabolites were up-regulated in callus. The knowledge of probable genes involved in secondary metabolism and their regulation in different tissues will provide insight into the Narcissus plant biology related to alkaloid production.Keywords: narcissus, callus, transcriptomics, secondary metabolites
Procedia PDF Downloads 143907 Nanoparticles of Hyaluronic Acid for Radiation Induced Lung Damages
Authors: Anna Lierova, Jitka Kasparova, Marcela Jelicova, Lucie Korecka, Zuzana Bilkova, Zuzana Sinkorova
Abstract:
Hyaluronic acid (HA) is a simple linear, unbranched polysaccharide with a lot of exceptional physiological and chemical properties such as high biocompatibility and biodegradability, strong hydration and viscoelasticity that depend on the size of the molecule. It plays the important role in a variety of molecular events as tissue hydration, mechanical protection of tissues and as well as during inflammation, leukocyte migration, and extracellular matrix remodeling. Also, HA-based biomaterials, including HA scaffolds, hydrogels, thin membranes, matrix grafts or nanoparticles are widely use in various biomedical applications. Our goal is to determine the radioprotective effect of hyaluronic acid nanoparticles (HA NPs). We are investigating effect of ionizing radiation on stability of HA NPs, in vitro relative toxicity of nanoscale as well as effect on cell lines and specific surface receptors and their response to ionizing radiation. An exposure to ionizing radiation (IR) can irreversibly damage various cell types and may thus have implications for the level of the whole tissue. Characteristic manifestations are formation of over-granulated tissue, remodeling of extracellular matrix (ECM) and abortive wound healing. Damages are caused by either direct interaction with DNA and IR proteins or indirectly by radicals formed during radiolysis of water Accumulation and turnover of ECM are a hallmark of radiation induces lung injury, characterized by inflammation, repair or remodeling health pulmonary tissue. HA is a major component of ECM in lung and plays an important role in regulating tissue injury, accelerating tissue repair, and controlling disease outcomes. Due to that, HA NPs were applied to in vivo model (C57Bl/6J mice) before total body or partial thorax irradiation. This part of our research is targeting on effect of exogenous HA on the development and/or mitigating acute radiation syndrome and radiation induced lung injuries.Keywords: hyaluronic acid, ionizing radiation, nanoparticles, radiation induces lung damages
Procedia PDF Downloads 167906 The Effect of a Probiotic: Leuconostoc mesenteroides B4, and Its Products on Growth Performance and Disease Resistance of Orange-Spotted Grouper Epinephelus coioides
Authors: Mei-Ying Huang, Huei-Jen Ju, Liang-Wei Tseng, Chin-Jung Hsu
Abstract:
The aim of this study was to investigate a probiotic, Leuconostoc mesenteroides B4, and its products, isomaltooligosaccharide and dextran, on growth performance, digestive enzymes, immune responses, and pathogen resistance of spotted grouper Epinephelus coioides. The grouper were fed control and diets supplemented with L. mesenteroides B4 (107 CFU/g), isomaltooligosaccharide (0.15%), isomaltooligosaccharide (0.15%) + L. mesenteroides B4 (107 CFU/g) (I + B4), and dextran (0.15%) + L. mesenteroides B4 (107 CFU/g) (D + B4) for 8 weeks. The result showed that final weights and percent weight gains of the grouper fed diets supplemented with L. mesenteroides B4 and I + B4 were significantly higher than that of the control group (p < 0.05). The activities of digestive enzymes in the grouper fed with I + B4 were significantly higher than the control group (p < 0.05), too. After challenge with Vibrio harveyi, the enzyme activities of antiprotease and lysozyme as well as of respiratory burst of the fish fed with I + B4 and D + B4 were significantly higher than that of the control group (p < 0.05). The grouper fed with the both diets also had higher survival rates than that of the control group after the challenge. Overall, the study indicated that feeding diets supplemented with L. mesenteroides B4, and its products, isomaltooligosaccharide, and dextran could be an effective method for enhancing the growth performance and disease resistance in orange-spotted grouper.Keywords: orange-spotted grouper, probiotic Leuconostoc mesenteroides B4, isomaltooligosaccharide, dextran, growth performance, pathogen resistance
Procedia PDF Downloads 268905 Possible Endocrinal and Liver Enzymes Toxicities Associated with Long Term Exposure to Benzene in Saudi Arabia
Authors: Faizah Asiri, Mohammed Fathy, Saeed Alghamdi, Nahlah Ayoub, Faisal Asiri
Abstract:
Background: - The strategies for this study were based on the toxic effect of long-term inhalation of Benzene on hormones and liver enzymes and various parameters related to it. The following databases were searched: benzene, hepatotoxic, benzene metabolism, hormones, testosterone, hemotoxic, and prolonged exposure. A systematic strategy is designed to search the literature that links benzene with the multiplicity and different types of intoxication or the medical abbreviations of diseases relevant to benzene exposure. Evidence suggests that getting rid of inhaled gasoline is by exhalation. Absorbed benzene is metabolized by giving phenolic acid as well as meconic acid, followed by urinary excretion of conjugate sulfates and glucuronides. Materials and Methods :- This work was conducted in the Al-Khadra laboratory in Taif 2020/2021 and aimed to measure some of the possible endocrinal and liver toxicities associated with benzene's long-term exposure in Saudi Arabia at the station workers who are considered the most exposed category to gasoline. One hundred ten station workers were included in this study. They were divided into four patient groups according to the chronic exposure rate to benzene, one control group, and three other groups of exposures. As follows: patient Group 1 (controlled group), patient Group 2 (exposed less than 1y), patient Group 3 (exposed 1-5 y), patient Group 4 (more than 5). Each group is compared with blood sample parameters (ALT, FSH and Testosterone, TSH). Blood samples were drawn from the participants, and statistical tests were performed. Significant change (p≤0.05) was examined compared to the control group. Workers' exposure to benzene led to a significant change in hematological, hormonal, and hepatic factors compared to the control group. Results:- The results obtained a relationship between long-term exposure to benzene and a decrease in the level of testosterone and FSH hormones, including that it poses a toxic risk in the long term (p≤0.05) when compared to the control. We obtained results confirming that there is no significant coloration between years of exposure and TSH level (p≤0.05) when compared to the control. Conclusion:- We conclude that some hormones and liver enzymes are affected by chronic doses of benzene through inhalation after our study was on the group most exposed to benzene, which is gas station workers.Keywords: toxicities, benzene, hormones, station workers
Procedia PDF Downloads 87904 Identifying of Hybrid Lines for Lpx-B1 Gene in Durum Wheat
Authors: Özlem Ateş Sönmezoğlu, Begüm Terzi, Ahmet Yıldırım, Ramazan Özbey
Abstract:
The basic criteria which determine durum wheat quality is its suitability for pasta processing that is pasta making quality. Bright yellow color is a desired property in pasta products. Durum wheat pasta making quality is affected by grain pigment content and oxidative enzymes which affect adversely bright yellow color. Of the oxidative enzymes, lipoxygenase LOX is the most effective one on oxidative bleaching of yellow pigments in durum wheat products. Thus, wheat cultivars that are high in yellow pigments but low in LOX enzyme activity should be preferred for the production of pasta with high color quality. The aim of this study was to reduce lipoxygenase activities of the backcross durum wheat lines that were previously improved for their protein quality. For this purpose, two advanced lines with different parents (TMB2 and TMB3) were used recurrent parents. Also, Gediz-75 wheat with low LOX enzyme activity was used as the gene source. In all of the generations, backcrossed plants carrying the targeted gene region (Lpx-B1.1) were selected using SSR markers by marker assisted selection method. As a result, the study will be completed in three years instead of six years required in a classical backcross breeding study, leading to the development of high-quality candidate varieties. This research has been financially supported by TÜBİTAK (Project No: 112T910).Keywords: durum wheat, lipoxygenase, LOX, Lpx-B1.1, MAS, Triticum durum
Procedia PDF Downloads 308903 Expression of Hypoxia-Inducible Transmembrane Carbonic Anhydrases IX, Ca XII and Glut 1 in Ovarian Cancer
Authors: M. Sunitha, B. Nithyavani, Mathew Yohannan, S. Thiruvieni Balajji, M. A. Rathi, C. Arul Raj, P. Ragavendran, V. K. Gopalkrishnan
Abstract:
Establishment of an early and reliable biomarker for ovarian carcinogenesis whose expression can be monitored through noninvasive techniques will enable early diagnosis of cancer. Carbonic anhydrases (CA) isozymes IX and XII have been suggested to play a role in oncogenic processes. In von Hippel-Lindau (VHL)-defective tumors, the cell surface transmembrane carbonic anhydrase (CA) CA XI and CA XII genes are overexpressed because of the absence of pVHL. These enzymes are involved in causing a hypoxia condition, thereby providing an environment for metastasis. Aberrant expression of the facilitative glucose transporter GLUT I is found in a wide spectrum of epithelial malignancies. Studying the mRNA expression of CA IX, CA XII and Glut I isozymes in ovarian cancer cell lines (OAW-42 and PA-1) revealed the expression of these hypoxia genes. Immunohistochemical staining of carbonic anhydrases was also performed in 40 ovarian cancer tissues. CA IX and CA XII were expressed at 540 bp and 520 bp in OAW42, PA1 in ovarian cancer cell lines. GLUT-1 was expressed at 325bp in OAW 42, PA1 genes in ovarian cancer cell lines. Immunohistochemistry revealed high to moderate levels of expression of these enzymes. The immuostaining was seen predominantly on the cell surface membrane. The study concluded that these genes CA IX, CA XII and Glut I are expressed under hypoxic condition in tumor cells. From the present results expression of CA IX, XII and Glut I may represent potential targets in ovarian cancer therapy.Keywords: ovarian cancer, carbonic anhydrase IX, XII, Glut I, tumor markers
Procedia PDF Downloads 369