Search results for: clinical decision support systems
20722 Model for Introducing Products to New Customers through Decision Tree Using Algorithm C4.5 (J-48)
Authors: Komol Phaisarn, Anuphan Suttimarn, Vitchanan Keawtong, Kittisak Thongyoun, Chaiyos Jamsawang
Abstract:
This article is intended to analyze insurance information which contains information on the customer decision when purchasing life insurance pay package. The data were analyzed in order to present new customers with Life Insurance Perfect Pay package to meet new customers’ needs as much as possible. The basic data of insurance pay package were collect to get data mining; thus, reducing the scattering of information. The data were then classified in order to get decision model or decision tree using Algorithm C4.5 (J-48). In the classification, WEKA tools are used to form the model and testing datasets are used to test the decision tree for the accurate decision. The validation of this model in classifying showed that the accurate prediction was 68.43% while 31.25% were errors. The same set of data were then tested with other models, i.e. Naive Bayes and Zero R. The results showed that J-48 method could predict more accurately. So, the researcher applied the decision tree in writing the program used to introduce the product to new customers to persuade customers’ decision making in purchasing the insurance package that meets the new customers’ needs as much as possible.Keywords: decision tree, data mining, customers, life insurance pay package
Procedia PDF Downloads 42820721 Heart Ailment Prediction Using Machine Learning Methods
Authors: Abhigyan Hedau, Priya Shelke, Riddhi Mirajkar, Shreyash Chaple, Mrunali Gadekar, Himanshu Akula
Abstract:
The heart is the coordinating centre of the major endocrine glandular structure of the body, which produces hormones that profoundly affect the operations of the body, and diagnosing cardiovascular disease is a difficult but critical task. By extracting knowledge and information about the disease from patient data, data mining is a more practical technique to help doctors detect disorders. We use a variety of machine learning methods here, including logistic regression and support vector classifiers (SVC), K-nearest neighbours Classifiers (KNN), Decision Tree Classifiers, Random Forest classifiers and Gradient Boosting classifiers. These algorithms are applied to patient data containing 13 different factors to build a system that predicts heart disease in less time with more accuracy.Keywords: logistic regression, support vector classifier, k-nearest neighbour, decision tree, random forest and gradient boosting
Procedia PDF Downloads 5220720 Implementation of A Treatment Escalation Plan During The Covid 19 Outbreak in Aneurin Bevan University Health Board
Authors: Peter Collett, Mike Pynn, Haseeb Ur Rahman
Abstract:
For the last few years across the UK there has been a push towards implementing treatment escalation plans (TEP) for every patient admitted to hospital. This is a paper form which is completed by a junior doctor then countersigned by the consultant responsible for the patient's care. It is designed to address what level of care is appropriate for the patient in question at point of entry to hospital. It helps decide whether the patient would benefit for ward based, high dependency or intensive care. They are completed to ensure the patient's best interests are maintained and aim to facilitate difficult decisions which may be required at a later date. For example, a frail patient with significant co-morbidities, unlikely to survive a pathology requiring an intensive care admission is admitted to hospital the decision can be made early to state the patient would not benefit from an ICU admission. This decision can be reversed depending on the clinical course of the patient's admission. It promotes discussions with the patient regarding their wishes to receive certain levels of healthcare. This poster describes the steps taken in the Aneurin Bevan University Health Board (ABUHB) when implementing the TEP form. The team implementing the TEP form campaigned for it's use to the board of directors. The directors were eager to hear of experiences of other health boards who had implemented the TEP form. The team presented the data produced in a number of health boards and demonstrated the proposed form. Concern was raised regarding the legalities of the form and that it could upset patients and relatives if the form was not explained properly. This delayed the effectuation of the TEP form and further research and discussion would be required. When COVID 19 reached the UK the National Institute for Health and Clinical Excellence issued guidance stating every patient admitted to hospital should be issued a TEP form. The TEP form was accelerated through the vetting process and was approved with immediate effect. The TEP form in ABUHB has now been in circulation for a month. An audit investigating it's uptake and a survey gathering opinions have been conducted.Keywords: acute medicine, clinical governance, intensive care, patient centered decision making
Procedia PDF Downloads 17820719 Career Decision-Making Difficulty and Emotional Quotient: Basis for a Career Guidance Intervention for City College of Angeles
Authors: Rhenan D. Estacio
Abstract:
This research presents the career decision making difficulty and emotional quotient of one hundred fifty (150) college students of City College of Angeles, Academic Year 2016-2017. Independent sample T-test and Pearson r correlation were done to shifter and non-shifter in terms of their career decision making difficulty and emotional quotient. A significant positive correlation revealed (r=.302) on career decision making difficulty and emotional quotient. Also, a significant negative correlation revealed (r=-.329) on career decision making difficulty and a moderating variable which is age. The finding significantly shows that emotional quotient was associated and adds a significant incremental variance with career decision making difficulty. Moreover, age shows a moderating effect on career decision making difficulty by having a significant decline and increment on variables. Furthermore, categorization of career decision making difficulty and emotional quotient of said participants are described in this study. In addition, career guidance interventions were suggested based on the results of this study.Keywords: career, decision-making, difficulty, emotional, quotient
Procedia PDF Downloads 43220718 Developing Structured Sizing Systems for Manufacturing Ready-Made Garments of Indian Females Using Decision Tree-Based Data Mining
Authors: Hina Kausher, Sangita Srivastava
Abstract:
In India, there is a lack of standard, systematic sizing approach for producing readymade garments. Garments manufacturing companies use their own created size tables by modifying international sizing charts of ready-made garments. The purpose of this study is to tabulate the anthropometric data which covers the variety of figure proportions in both height and girth. 3,000 data has been collected by an anthropometric survey undertaken over females between the ages of 16 to 80 years from some states of India to produce the sizing system suitable for clothing manufacture and retailing. This data is used for the statistical analysis of body measurements, the formulation of sizing systems and body measurements tables. Factor analysis technique is used to filter the control body dimensions from a large number of variables. Decision tree-based data mining is used to cluster the data. The standard and structured sizing system can facilitate pattern grading and garment production. Moreover, it can exceed buying ratios and upgrade size allocations to retail segments.Keywords: anthropometric data, data mining, decision tree, garments manufacturing, sizing systems, ready-made garments
Procedia PDF Downloads 13420717 A Study on Exploring Employees' Well-Being in Gaming Workplaces Prior to and after the Chinese Government Crackdowns on Corruption
Authors: Ying Chuan Wang, Zhang Tao
Abstract:
The aim of this article intends to explore the differences of well-being of employees in casino hotels before and after the Chinese government began to fight corruption. This researcher also attempted to find out the relationship between work pressure and well-being of employees in gambling workplaces before and after the Chinese government crackdowns the corruption. The category of well-being including life well-being, workplace well-being, and psychological well-being was included for analyzing well-being of employees in gaming workplaces. In addition, the psychological pressure classification was applied into this study and the Job Content Questionnaire (JCQ) would be adopted on investigating employees’ work pressure in terms of decision latitude, psychological demands, and workplace support. This study is a quantitative approach research and was conducted in March 2017. A purposive sampling was used in this study. A total of valid 339 responses were collected and the participants were casino hotel employees. The findings showed that decision latitude was significantly different prior to and after Chinese government crackdowns on corruption. Moreover, workplace support was strongly significantly related to employees’ well-being before Chinese government crackdowns. Decision latitude was strongly significantly related to employees’ well-being after Chinese government crackdowns. The findings suggest that employees’ work pressure affects their well being. In particular, because of workplace supports, it may alleviate employees’ work pressure and affect their perceptions of well-being but only prior to fighting the crackdowns. Importantly, decision latitude has become an essential factor affecting their well-being after the crackdown. It is finally hoped that the findings of this study provide suggestion to the managerial levels of hospitality industries. It is important to enhance employees’ decision latitude. Offering training courses to equip employees’ skills could be a possible way to reduce work pressure. In addition, establishing career path for the employees to pursuit is essential for their self-development and the improvement of well being. This would be crucial for casino hotels’ sustainable development and strengthening their competitiveness.Keywords: well-being, work pressure, Casino hotels’ employees, gaming workplace
Procedia PDF Downloads 22520716 A Collaborative Problem Driven Approach to Design an HR Analytics Application
Authors: L. Atif, C. Rosenthal-Sabroux, M. Grundstein
Abstract:
The requirements engineering process is a crucial phase in the design of complex systems. The purpose of our research is to present a collaborative problem-driven requirements engineering approach that aims at improving the design of a Decision Support System as an Analytics application. This approach has been adopted to design a Human Resource management DSS. The Requirements Engineering process is presented as a series of guidelines for activities that must be implemented to assure that the final product satisfies end-users requirements and takes into account the limitations identified. For this, we know that a well-posed statement of the problem is “a problem whose crucial character arises from collectively produced estimation and a formulation found to be acceptable by all the parties”. Moreover, we know that DSSs were developed to help decision-makers solve their unstructured problems. So, we thus base our research off of the assumption that developing DSS, particularly for helping poorly structured or unstructured decisions, cannot be done without considering end-user decision problems, how to represent them collectively, decisions content, their meaning, and the decision-making process; thus, arise the field issues in a multidisciplinary perspective. Our approach addresses a problem-driven and collaborative approach to designing DSS technologies: It will reflect common end-user problems in the upstream design phase and in the downstream phase these problems will determine the design choices and potential technical solution. We will thus rely on a categorization of HR’s problems for a development mirroring the Analytics solution. This brings out a new data-driven DSS typology: Descriptive Analytics, Explicative or Diagnostic Analytics, Predictive Analytics, Prescriptive Analytics. In our research, identifying the problem takes place with design of the solution, so, we would have to resort a significant transformations of representations associated with the HR Analytics application to build an increasingly detailed representation of the goal to be achieved. Here, the collective cognition is reflected in the establishment of transfer functions of representations during the whole of the design process.Keywords: DSS, collaborative design, problem-driven requirements, analytics application, HR decision making
Procedia PDF Downloads 29620715 Fragment Domination for Many-Objective Decision-Making Problems
Authors: Boris Djartov, Sanaz Mostaghim
Abstract:
This paper presents a number-based dominance method. The main idea is how to fragment the many attributes of the problem into subsets suitable for the well-established concept of Pareto dominance. Although other similar methods can be found in the literature, they focus on comparing the solutions one objective at a time, while the focus of this method is to compare entire subsets of the objective vector. Given the nature of the method, it is computationally costlier than other methods and thus, it is geared more towards selecting an option from a finite set of alternatives, where each solution is defined by multiple objectives. The need for this method was motivated by dynamic alternate airport selection (DAAS). In DAAS, pilots, while en route to their destination, can find themselves in a situation where they need to select a new landing airport. In such a predicament, they need to consider multiple alternatives with many different characteristics, such as wind conditions, available landing distance, the fuel needed to reach it, etc. Hence, this method is primarily aimed at human decision-makers. Many methods within the field of multi-objective and many-objective decision-making rely on the decision maker to initially provide the algorithm with preference points and weight vectors; however, this method aims to omit this very difficult step, especially when the number of objectives is so large. The proposed method will be compared to Favour (1 − k)-Dom and L-dominance (LD) methods. The test will be conducted using well-established test problems from the literature, such as the DTLZ problems. The proposed method is expected to outperform the currently available methods in the literature and hopefully provide future decision-makers and pilots with support when dealing with many-objective optimization problems.Keywords: multi-objective decision-making, many-objective decision-making, multi-objective optimization, many-objective optimization
Procedia PDF Downloads 9120714 Employee Assessment Systems in the Structures of Corporate Groups
Authors: D. Bąk-Grabowska, K. Grzesik, A. Iwanicka, A. Jagoda
Abstract:
The process of human resources management in the structures of corporate groups demonstrates certain specificity, resulting from the division of decision-making and executive competencies, which occurs within these structures between a parent company and its subsidiaries. The subprocess of employee assessment is considered crucial, since it provides information for the implementation of personnel function. The empirical studies conducted in corporate groups, within which at least one company is located in Poland, confirmed the critical significance of employee assessment systems in the process of human resources management in corporate groups. Parent companies, most often, retain their decision-making authority within the framework of the discussed process and introduce uniform employee assessment and personnel controlling systems to subsidiary companies. However, the instruments for employee assessment applied in corporate groups do not present such specificity.Keywords: corporate groups, employee periodical assessment system, holding, human resources management
Procedia PDF Downloads 42020713 Design and Implementation of a Software Platform Based on Artificial Intelligence for Product Recommendation
Authors: Giuseppina Settanni, Antonio Panarese, Raffaele Vaira, Maurizio Galiano
Abstract:
Nowdays, artificial intelligence is used successfully in academia and industry for its ability to learn from a large amount of data. In particular, in recent years the use of machine learning algorithms in the field of e-commerce has spread worldwide. In this research study, a prototype software platform was designed and implemented in order to suggest to users the most suitable products for their needs. The platform includes a chatbot and a recommender system based on artificial intelligence algorithms that provide suggestions and decision support to the customer. The recommendation systems perform the important function of automatically filtering and personalizing information, thus allowing to manage with the IT overload to which the user is exposed on a daily basis. Recently, international research has experimented with the use of machine learning technologies with the aim to increase the potential of traditional recommendation systems. Specifically, support vector machine algorithms have been implemented combined with natural language processing techniques that allow the user to interact with the system, express their requests and receive suggestions. The interested user can access the web platform on the internet using a computer, tablet or mobile phone, register, provide the necessary information and view the products that the system deems them most appropriate. The platform also integrates a dashboard that allows the use of the various functions, which the platform is equipped with, in an intuitive and simple way. Artificial intelligence algorithms have been implemented and trained on historical data collected from user browsing. Finally, the testing phase allowed to validate the implemented model, which will be further tested by letting customers use it.Keywords: machine learning, recommender system, software platform, support vector machine
Procedia PDF Downloads 13420712 Development of the Academic Model to Predict Student Success at VUT-FSASEC Using Decision Trees
Authors: Langa Hendrick Musawenkosi, Twala Bhekisipho
Abstract:
The success or failure of students is a concern for every academic institution, college, university, governments and students themselves. Several approaches have been researched to address this concern. In this paper, a view is held that when a student enters a university or college or an academic institution, he or she enters an academic environment. The academic environment is unique concept used to develop the solution for making predictions effectively. This paper presents a model to determine the propensity of a student to succeed or fail in the French South African Schneider Electric Education Center (FSASEC) at the Vaal University of Technology (VUT). The Decision Tree algorithm is used to implement the model at FSASEC.Keywords: FSASEC, academic environment model, decision trees, k-nearest neighbor, machine learning, popularity index, support vector machine
Procedia PDF Downloads 20020711 Decision Support System for Fetus Status Evaluation Using Cardiotocograms
Authors: Oyebade K. Oyedotun
Abstract:
The cardiotocogram is a technical recording of the heartbeat rate and uterine contractions of a fetus during pregnancy. During pregnancy, several complications can occur to both the mother and the fetus; hence it is very crucial that medical experts are able to find technical means to check the healthiness of the mother and especially the fetus. It is very important that the fetus develops as expected in stages during the pregnancy period; however, the task of monitoring the health status of the fetus is not that which is easily achieved as the fetus is not wholly physically available to medical experts for inspection. Hence, doctors have to resort to some other tests that can give an indication of the status of the fetus. One of such diagnostic test is to obtain cardiotocograms of the fetus. From the analysis of the cardiotocograms, medical experts can determine the status of the fetus, and therefore necessary medical interventions. Generally, medical experts classify examined cardiotocograms into ‘normal’, ‘suspect’, or ‘pathological’. This work presents an artificial neural network based decision support system which can filter cardiotocograms data, producing the corresponding statuses of the fetuses. The capability of artificial neural network to explore the cardiotocogram data and learn features that distinguish one class from the others has been exploited in this research. In this research, feedforward and radial basis neural networks were trained on a publicly available database to classify the processed cardiotocogram data into one of the three classes: ‘normal’, ‘suspect’, or ‘pathological’. Classification accuracies of 87.8% and 89.2% were achieved during the test phase of the trained network for the feedforward and radial basis neural networks respectively. It is the hope that while the system described in this work may not be a complete replacement for a medical expert in fetus status evaluation, it can significantly reinforce the confidence in medical diagnosis reached by experts.Keywords: decision support, cardiotocogram, classification, neural networks
Procedia PDF Downloads 33620710 Preparation vADL.net: A Software Architecture Tool with Support to All of Architectural Concepts Title
Authors: Adel Smeda, Badr Najep
Abstract:
Software architecture is a method of describing the architecture of a software system at a high level of abstraction. It represents a common abstraction of a system that stakeholders can use as a basis for mutual understanding, negotiation, consensus, and communication. It also manifests the earliest design decisions about a system, and these early bindings carry weight far out of proportion to their individual gravity with respect to the system's remaining development, its deployment, and its maintenance life, therefore it is the earliest point at which design decisions governing the system to be built can be analyzed. In this paper, we present a tool to model the architecture of software systems. It represents the first method by which system defects can be detected, and provide a clear representation of a system’s components and interactions at a high level of abstraction. It can be distinguished from other tools by its support to all software architecture elements. The tool is built using VB.net 2010. We used this tool to describe two well know systems, i.e. Capitalize and Client/Server, and the descriptions we obtained support all architectural elements of the two systems.Keywords: software architecture, architecture description languages, modeling
Procedia PDF Downloads 46720709 Early Help Family Group Conferences: An Analysis of Family Plans
Authors: Kate Parkinson
Abstract:
A Family Group Conference (FGC) is a family-led decision-making process through which a family/kinship group, rather than the professionals involved, is asked to develop a plan for the care or the protection of children in the family. In England and Wales, FGCs are used in 76% of local authorities and in recent years, have tended to be used in cases where the local authority are considering the court process to remove children from their immediate family, to explore kinship alternatives to local authority care. Some local authorities offer the service much earlier, when families first come to the attention of children's social care, in line with research that suggests the earlier an FGC is held, the more likely they are to be successful. Family plans that result from FGCs are different from professional plans in that they are unique to a family and, as a result, reflect the diversity of families. Despite the fact that FGCs are arguable the most researched area of social work globally, there is a dearth of research that examines the nature of family plans and their substance. This paper presents the findings of a documentary analysis of 42 Early Help FGC plans from local authorities in England, with the aim of exploring the level and type of support that family members offer at a FGC. A thematic analysis identified 5 broad areas of support: Practical Support, Building Relationships, Child-care Support, Emotional Support and Social Support. In the majority of cases, family members did not want or ask for any formal support from the local authority or other agencies. Rather, the families came together to agree a plan of support, which was within the parameters of the resources that they as a family could provide. Perhaps then the role of the Early Help professional should be one of a facilitating and enabling role, to support families to develop plans that address their own specific difficulties, rather than the current default option, which is to either close the case because the family do not meet service thresholds or refer to formal support if they do, which may offer very specific support, have rigid referral criteria, long waiting lists and may not reflect the diverse and unique nature of families. FGCs are argued to be culturally appropriate social work practices in that they are appropriate for families from a range of cultural backgrounds and can be adapted to meet particular cultural needs. Furthermore, research on the efficacy of FGCs at an Early Help Level has demonstrated that Early Help FGCs have the potential to address difficulties in family life and prevent the need for formal support services, which are potentially stigmatising and do not reflect the uniqueness and diversity of families. The paper concludes with a recommendation for the use of FGCs across Early Help Services in England and Wales.Keywords: family group conferences, family led decision making, early help, prevention
Procedia PDF Downloads 9220708 Learning the C-A-Bs: Resuscitation Training at Rwanda Military Hospital
Authors: Kathryn Norgang, Sarah Howrath, Auni Idi Muhire, Pacifique Umubyeyi
Abstract:
Description : A group of nurses address the shortage of trained staff to respond to critical patients at Rwanda Military Hospital (RMH) by developing a training program and a resuscitation response team. Members of the group who received the training when it first launched are now trainer of trainers; all components of the training program are organized and delivered by RMH staff-the clinical mentor only provides adjunct support. This two day training is held quarterly at RMH; basic life support and exposure to interventions for advanced care are included in the test and skills sign off. Seventy staff members have received the training this year alone. An increased number of admission/transfer to ICU due to successful resuscitation attempts is noted. Lessons learned: -Number of staff trained 2012-2014 (to be verified). -Staff who train together practice with greater collaboration during actual resuscitation events. -Staff more likely to initiate BLS if peer support is present-more staff trained equals more support. -More access to Advanced Cardiac Life Support training is necessary now that the cadre of BLS trained staff is growing. Conclusions: Increased access to training, peer support, and collaborative practice are effective strategies to strengthening resuscitation capacity within a hospital.Keywords: resuscitation, basic life support, capacity building, resuscitation response teams, nurse trainer of trainers
Procedia PDF Downloads 30520707 Procedure Model for Data-Driven Decision Support Regarding the Integration of Renewable Energies into Industrial Energy Management
Authors: M. Graus, K. Westhoff, X. Xu
Abstract:
The climate change causes a change in all aspects of society. While the expansion of renewable energies proceeds, industry could not be convinced based on general studies about the potential of demand side management to reinforce smart grid considerations in their operational business. In this article, a procedure model for a case-specific data-driven decision support for industrial energy management based on a holistic data analytics approach is presented. The model is executed on the example of the strategic decision problem, to integrate the aspect of renewable energies into industrial energy management. This question is induced due to considerations of changing the electricity contract model from a standard rate to volatile energy prices corresponding to the energy spot market which is increasingly more affected by renewable energies. The procedure model corresponds to a data analytics process consisting on a data model, analysis, simulation and optimization step. This procedure will help to quantify the potentials of sustainable production concepts based on the data from a factory. The model is validated with data from a printer in analogy to a simple production machine. The overall goal is to establish smart grid principles for industry via the transformation from knowledge-driven to data-driven decisions within manufacturing companies.Keywords: data analytics, green production, industrial energy management, optimization, renewable energies, simulation
Procedia PDF Downloads 43620706 Fuzzy Multi-Criteria Decision-Making Based on Ignatian Discernment Process
Authors: Pathinathan Theresanathan, Ajay Minj
Abstract:
Ignatian Discernment Process (IDP) is an intense decision-making tool to decide on life-issues. Decisions are influenced by various factors outside of the decision maker and inclination within. This paper develops IDP in the context of Fuzzy Multi-criteria Decision Making (FMCDM) process. Extended VIKOR method is a decision-making method which encompasses even conflict situations and accommodates weightage to various issues. Various aspects of IDP, namely three ways of decision making and tactics of inner desires, are observed, analyzed and articulated within the frame work of fuzzy rules. The decision-making situations are broadly categorized into two types. The issues outside of the decision maker influence the person. The inner feeling also plays vital role in coming to a conclusion. IDP integrates both the categories using Extended VIKOR method. Case studies are carried out and analyzed with FMCDM process. Finally, IDP is verified with an illustrative case study and results are interpreted. A confused person who could not come to a conclusion is able to take decision on a concrete way of life through IDP. The proposed IDP model recommends an integrated and committed approach to value-based decision making.Keywords: AHP, FMCDM, IDP, ignatian discernment, MCDM, VIKOR
Procedia PDF Downloads 26020705 A Phenomenological Framework of Unconscious Cognition on Judicial Decision Making
Authors: Mariam Shah
Abstract:
This paper will examine the potential influence and role of unconscious cognition on judicial decision making. The theoretical underpinnings of this paper rest on phenomenological theory grounded predominantly in Schutzian phenomenology. Aspects of Husserlian and Gadamerian phenomenology will be included within the phenomenological framework put forward in this paper, in an attempt to provide a more complete and thorough account of how unconscious cognition can influence judicial decision making. This paper has far reaching implications, as the framework provides a foundation for unconscious cognitive factors which can work to influence decision making more generally.Keywords: decision making, Gadamer, Gadamerian, Husserl, Husserlian, judicial decision making, phenomenology, Schutz, Schutzian
Procedia PDF Downloads 41420704 Challenges of Translation Knowledge for Pediatric Rehabilitation Technology
Authors: Patrice L. Weiss, Barbara Mazer, Tal Krasovsky, Naomi Gefen
Abstract:
Knowledge translation (KT) involves the process of applying the most promising research findings to practical settings, ensuring that new technological discoveries enhance healthcare accessibility, effectiveness, and accountability. This perspective paper aims to discuss and provide examples of how the KT process can be implemented during a time of rapid advancement in rehabilitation technologies, which have the potential to greatly influence pediatric healthcare. The analysis is grounded in a comprehensive systematic review of literature, where key studies from the past 34 years were carefully interpreted by four expert researchers in scientific and clinical fields. This review revealed both theoretical and practical insights into the factors that either facilitate or impede the successful implementation of new rehabilitation technologies. By utilizing the Knowledge-to-Action cycle, which encompasses the knowledge creation funnel and the action cycle, we demonstrated its application in integrating advanced technologies into clinical practice and guiding healthcare policy adjustments. We highlighted three successful technology applications: powered mobility, head support systems, and telerehabilitation. Moreover, we investigated emerging technologies, such as brain-computer interfaces and robotic assistive devices, which face challenges related to cost, durability, and usability. Recommendations include prioritizing early and ongoing design collaborations, transitioning from research to practical implementation, and determining the optimal timing for clinical adoption of new technologies. In conclusion, this paper informs, justifies, and strengthens the knowledge translation process, ensuring it remains relevant, rigorous, and significantly contributes to pediatric rehabilitation and other clinical fields.Keywords: knowledge translation, rehabilitation technology, pediatrics, barriers, facilitators, stakeholders
Procedia PDF Downloads 2720703 Psychosocial Predictors of Non-Suicidal Self-Injury in Adolescents: Literature Review
Authors: K. Grigoryan, T. Jurcik
Abstract:
Interpersonal and school-related factors, along with individual characteristics, can predict non-suicidal self-injures (NSSI). The objective of this review is to describe psychosocial variables associated with NSSI among adolescents. A better understanding of this phenomenon may facilitate the identification of potentially effective interventions for adolescents. Relevant empirical studies and reviews from clinical, cross-cultural, and social psychology, as well as cognitive psychology literature, were synthesized into two broad topics: social/interpersonal and individual factors. Variables related to the occurrence of NSSI are discussed, including social support, peer modeling, abuse, personality traits, sense of belongingness, self-compassion, and others. Based on these findings, specific clinical recommendations were identified that need to be further evaluated empirically. The systemic interventions recommended in this review may further promote research in circumventing this social and clinical problem.Keywords: non-suicidal self-injury, psychosocial factors, mental health, adolescence
Procedia PDF Downloads 19420702 Decision Support System for Diagnosis of Breast Cancer
Authors: Oluwaponmile D. Alao
Abstract:
In this paper, two models have been developed to ascertain the best network needed for diagnosis of breast cancer. Breast cancer has been a disease that required the attention of the medical practitioner. Experience has shown that misdiagnose of the disease has been a major challenge in the medical field. Therefore, designing a system with adequate performance for will help in making diagnosis of the disease faster and accurate. In this paper, two models: backpropagation neural network and support vector machine has been developed. The performance obtained is also compared with other previously obtained algorithms to ascertain the best algorithms.Keywords: breast cancer, data mining, neural network, support vector machine
Procedia PDF Downloads 34720701 Epidemiological and Clinical Profile of Patients with Chorioamnionitis
Authors: Isabel Cristina Ortiz Trujillo, Lina Maria Martinez Sanchez, Felipe Hernández Restrepo, Daniel Gallego Gonzalez, Natalia Vargas Grisales, Camilo Andrés Agudelo Vélez
Abstract:
Chorioamnionitis, is a pregnancy infection, causes different fetal and maternal symptoms. Streptococcus agalactiae present in the normal vaginal microflora of some women, favouring its abnormal multiplication during pregnancy, causing perinatal morbidity and mortality. Objective. Describe the clinical and epidemiological profile of the patients with diagnosis of clinical chorioanmionitis. Methodology. Descriptive, cross-sectional study. The population was patients with diagnosis of clinical chorioanmionitis. The information was taken from the medical records. The research was approved by the Ethics Committee. We used the program SPSS ® version 17.0 (SPSS Inc; Chicago, Illinois, USA) for the information analysis, descriptive statistics were used. Results. 78 patients in total with clinical chorioamnionitis, with a mean age of 26.3 ±5, 8 years old, the 69.2% primigravid women. 2.6% of women had positive culture for Streptococcus agalactiae in urine sample during current pregnancy and 30.7% had received some kind of antibiotics during current pregnancy. The 57.7% had 37 to 40 weeks of gestation in the current pregnancy it was calculated more frequently by ultrasound (66.7% in first quarter, 11.5% in the second and 1.9% in the third). In a 60.3% way of termination of pregnancy was vaginal and a 35.9 percent were caesarean section. Among the women in the study, a 30.8% had premature rupture of membranes. Conclusion. The chorioamnionitis continues to be an important cause of antibiotic use during pregnancy or labour and the decision to do a caesarean, with highest percentage in pregnancies-preterm and preterm premature rupture of membranes.Keywords: chorioamnionitis, Streptococcus agalactiae, pregnancy complications, infectious
Procedia PDF Downloads 42220700 Human Factors Considerations in New Generation Fighter Planes to Enhance Combat Effectiveness
Authors: Chitra Rajagopal, Indra Deo Kumar, Ruchi Joshi, Binoy Bhargavan
Abstract:
Role of fighter planes in modern network centric military warfare scenarios has changed significantly in the recent past. New generation fighter planes have multirole capability of engaging both air and ground targets with high precision. Multirole aircraft undertakes missions such as Air to Air combat, Air defense, Air to Surface role (including Air interdiction, Close air support, Maritime attack, Suppression and Destruction of enemy air defense), Reconnaissance, Electronic warfare missions, etc. Designers have primarily focused on development of technologies to enhance the combat performance of the fighter planes and very little attention is given to human factor aspects of technologies. Unique physical and psychological challenges are imposed on the pilots to meet operational requirements during these missions. Newly evolved technologies have enhanced aircraft performance in terms of its speed, firepower, stealth, electronic warfare, situational awareness, and vulnerability reduction capabilities. This paper highlights the impact of emerging technologies on human factors for various military operations and missions. Technologies such as ‘cooperative knowledge-based systems’ to aid pilot’s decision making in military conflict scenarios as well as simulation technologies to enhance human performance is also studied as a part of research work. Current and emerging pilot protection technologies and systems which form part of the integrated life support systems in new generation fighter planes is discussed. System safety analysis application to quantify the human reliability in military operations is also studied.Keywords: combat effectiveness, emerging technologies, human factors, systems safety analysis
Procedia PDF Downloads 14220699 Selection of Solid Waste Landfill Site Using Geographical Information System (GIS)
Authors: Fatih Iscan, Ceren Yagci
Abstract:
Rapid population growth, urbanization and industrialization are known as the most important factors of environment problems. Elimination and management of solid wastes are also within the most important environment problems. One of the main problems in solid waste management is the selection of the best site for elimination of solid wastes. Lately, Geographical Information System (GIS) has been used for easing selection of landfill area. GIS has the ability of imitating necessary economical, environmental and political limitations. They play an important role for the site selection of landfill area as a decision support tool. In this study; map layers will be studied for minimum effect of environmental, social and cultural factors and maximum effect for engineering/economical factors for site selection of landfill areas and using GIS for an decision support mechanism in solid waste landfill areas site selection will be presented in Aksaray/TURKEY city, Güzelyurt district practice.Keywords: GIS, landfill, solid waste, spatial analysis
Procedia PDF Downloads 36120698 Multi-Criteria Decision Support System for Modeling of Civic Facilities Using GIS Applications: A Case Study of F-11, Islamabad
Authors: Asma Shaheen Hashmi, Omer Riaz, Khalid Mahmood, Fahad Ullah, Tanveer Ahmad
Abstract:
The urban landscapes are being change with the population growth and advancements in new technologies. The urban sprawl pattern and utilizes are related to the local socioeconomic and physical condition. Urban policy decisions are executed mostly through spatial planning. A decision support system (DSS) is very powerful tool which provides flexible knowledge base method for urban planning. An application was developed using geographical information system (GIS) for urban planning. A scenario based DSS was developed to integrate the hierarchical muti-criteria data of different aspects of urban landscape. These were physical environment, the dumping site, spatial distribution of road network, gas and water supply lines, and urban watershed management, selection criteria for new residential, recreational, commercial and industrial sites. The model provided a framework to incorporate the sustainable future development. The data can be entered dynamically by planners according to the appropriate criteria for the management of urban landscapes.Keywords: urban, GIS, spatial, criteria
Procedia PDF Downloads 63720697 Use of Generative Adversarial Networks (GANs) in Neuroimaging and Clinical Neuroscience Applications
Authors: Niloufar Yadgari
Abstract:
GANs are a potent form of deep learning models that have found success in various fields. They are part of the larger group of generative techniques, which aim to produce authentic data using a probabilistic model that learns distributions from actual samples. In clinical settings, GANs have demonstrated improved abilities in capturing spatially intricate, nonlinear, and possibly subtle disease impacts in contrast to conventional generative techniques. This review critically evaluates the current research on how GANs are being used in imaging studies of different neurological conditions like Alzheimer's disease, brain tumors, aging of the brain, and multiple sclerosis. We offer a clear explanation of different GAN techniques for each use case in neuroimaging and delve into the key hurdles, unanswered queries, and potential advancements in utilizing GANs in this field. Our goal is to connect advanced deep learning techniques with neurology studies, showcasing how GANs can assist in clinical decision-making and enhance our comprehension of the structural and functional aspects of brain disorders.Keywords: GAN, pathology, generative adversarial network, neuro imaging
Procedia PDF Downloads 3420696 Financial Literacy as an Important Skill for Household Financial Decision Making
Authors: Rimac Smiljanic Ana, Pepur Sandra, Bulog Ivana
Abstract:
Financial decision-making in the household is not simple, and it demands that the decision-maker has proper knowledge and skills. Usually, high uncertainty, risk, and stress surround household financial decision-making since it is extremely important and critical for household wealth accumulation and for the well-being of all household members. Generally, skilful people tend to have higher confidence in certain tasks they perform, and they achieve better results. Therefore, in the household context, the possession of certain skills by the ones who make financial decisions for the household is of particular importance. This paper addresses financial literacy as an important skill for household decision-making. Apart from financial literacy, the paper also considers other factors, such as employment, education, and age, as significant for household financial decision-making. The analysis is based on quantitative individual-level survey data. The data collection was conducted during January and February 2021 in Croatia through an online survey. To reach a wide variety of participants, the snowball sampling method was used. The result revealed interesting and somewhat puzzling results. Our results point to the importance of financial literacy skills for household decision-making.Keywords: skill, financial literacy, decision-making, household financijal decision making
Procedia PDF Downloads 9820695 Data Mining Meets Educational Analysis: Opportunities and Challenges for Research
Authors: Carla Silva
Abstract:
Recent development of information and communication technology enables us to acquire, collect, analyse data in various fields of socioeconomic – technological systems. Along with the increase of economic globalization and the evolution of information technology, data mining has become an important approach for economic data analysis. As a result, there has been a critical need for automated approaches to effective and efficient usage of massive amount of educational data, in order to support institutions to a strategic planning and investment decision-making. In this article, we will address data from several different perspectives and define the applied data to sciences. Many believe that 'big data' will transform business, government, and other aspects of the economy. We discuss how new data may impact educational policy and educational research. Large scale administrative data sets and proprietary private sector data can greatly improve the way we measure, track, and describe educational activity and educational impact. We also consider whether the big data predictive modeling tools that have emerged in statistics and computer science may prove useful in educational and furthermore in economics. Finally, we highlight a number of challenges and opportunities for future research.Keywords: data mining, research analysis, investment decision-making, educational research
Procedia PDF Downloads 35820694 Afrikan Natural Medicines: An Innovation-Based Model for Medicines Production, Curriculum Development and Clinical Application
Authors: H. Chabalala, A. Grootboom, M. Tang
Abstract:
The innovative development, production, and clinical utilisation of African natural medicines requires frameworks from systematisation, innovation, registration. Afrika faces challenges when it comes to these sectors. The opposite is the case as is is evident in ancient Asian (Traditional Chinese Medicine and Indian Ayurveda and Siddha) medical systems, which are interfaced into their respective national health and educational systems. Afrikan Natural Medicines (ANMs) are yet to develop systematisation frameworks, i.e. disease characterisation and medicines classification. This paper explores classical medical systems drawn from Afrikan and Chinese experts in natural medicines. An Afrikological research methodology was used to conduct in-depth interviews with 20 key respondents selected through purposeful sampling technique. Data was summarised into systematisation frameworks for classical disease theories, patient categorisation, medicine classification, aetiology and pathogenesis of disease, diagnosis and prognosis techniques and treatment methods. It was discovered that ancient Afrika had systematic medical cosmologies, remnants of which are evident in most Afrikan cultural health practices. Parallels could be drawn from classical medical concepts of antiquity, like Chinese Taoist and Indian tantric health systems. Data revealed that both the ancient and contemporary ANM systems were based on living medical cosmologies. The study showed that African Natural Healing Systems have etiological systems, general pathogenesis knowledge, differential diagnostic techniques, comprehensive prognosis and holistic treatment regimes. Systematisation models were developed out of these frameworks, and this could be used for evaluation of clinical research, medical application including development of curriculum for high-education. It was envisaged that frameworks will pave way towards the development, production and commercialisation of ANMs. This was piloted in inclusive innovation, technology transfer and commercialisation of South African natural medicines, cosmeceuticals, nutraceuticals and health infusions. The central model presented here in will assist in curriculum development and establishment of Afrikan Medicines Hospitals and Pharmaceutical Industries.Keywords: African Natural Medicines, Indigenous Knowledge Systems, Medical Cosmology, Clinical Application
Procedia PDF Downloads 13020693 The Right of Taiwanese Individuals with Mental Illnesses to Participate in Medical Decision-Making
Authors: Ying-Lun Tseng Chiu-Ying Chen
Abstract:
Taiwan's Mental Health Act was amended at the end of 2022; they added regulations regarding refusing compulsory treatment by patients with mental illnesses. In addition, not only by an examination committee, the judge must also assess the patient's need for compulsory treatment. Additionally, the maximum of compulsory hospitalization has been reduced from an unlimited period to a maximum of 60 days. They aim to promote the healthcare autonomy of individuals with mental illnesses in Taiwan and prevent their silenced voice in medical decision-making while they still possess rationality. Furthermore, they plan to use community support and social care networks to replace the current practice of compulsory treatment in Taiwan. This study uses qualitative research methodology, utilizing interview guidelines to inquire about the experiences of Taiwanese who have undergone compulsory hospitalization, compulsory community treatment, and compulsory medical care. The interviews aimed to explore their feelings when they were subjected to compulsory medical intervention, the inside of their illness, their opinions after treatments, and whether alternative medical interventions proposed by them were considered. Additionally, participants also asked about their personal life history and their support networks in their lives. We collected 12 Taiwanese who had experienced compulsory medical interventions and were interviewed 14 times. The findings indicated that participants still possessed rationality during the onset of their illness. However, when they have other treatments to replace compulsory medical, they sometimes diverge from those of the doctors and their families. Finally, doctors prefer their professional judgment and patients' families' option. Therefore, Taiwanese mental health patients' power of decision-making still needs to improve. Because this research uses qualitative research, so difficult to find participants, and the sample size rate was smaller than Taiwan's population, it may have biases in the analysis. So, Taiwan still has significant progress in enhancing the decision-making rights of participants in the study.Keywords: medical decision making, compulsory treatment, medical ethics, mental health act
Procedia PDF Downloads 82