Search results for: soil mixture
4297 The Effect of Soil Binder and Gypsum to the Changes of the Expansive Soil Shear Strength Parameters
Authors: Yulia Hastuti, Ratna Dewi, Muhammad Sandi
Abstract:
Many methods of soil stabilization that can be done such as by mixing chemicals. In this research, stabilization by mixing the soil using two types of chemical admixture, those are gypsum with a variation of 5%, 10%, and 15% and Soil binder with a concentration of 20 gr / lot of water, 25 gr / lot of water, and 30 gr / lot of water aimed to determine the effect on the soil plasticity index values and comparing the value of shear strength parameters of the mixture with the original soil conditions using a Triaxial UU test. Based on research done shows that with increasing variations in the mix, then the value of plasticity index decreased, which was originally 42% (very high degree of swelling) becomes worth 11.24% (lower Swelling degree) when a mixture of gypsum 15% and 30 gr / Lt water soil binder. As for the value shear, strength parameters increased in all variations of mixture. Admixture with the highest shear strength parameter's value is at 15% the mixture of gypsum and 20 gr / litre of water of soil binder with the 14 day treatment period, which has enhanced the cohesion value of 559.01%, the friction angle by 1157.14%. And a shear strength value of 568.49%. It can be concluded that the admixture of gypsum and soil binder correctly, can increase the value of shear strength parameters significantly and decrease the value of plasticity index of the soil.Keywords: expansive soil, gypsum, soil binder, shear strength
Procedia PDF Downloads 4754296 Stabilization of Clay Soil Using A-3 Soil
Authors: Mohammed Mustapha Alhaji, Sadiku Salawu
Abstract:
A clay soil which classified under A-7-6 soil according to AASHTO soil classification system and CH according to the unified soil classification system was stabilized using A-3 soil (AASHTO soil classification system). The clay soil was replaced with 0%, 10%, 20% to 100% A-3 soil, compacted at both the BSL and BSH compaction energy level and using unconfined compressive strength as evaluation criteria. The MDD of the compactions at both the BSL and BSH compaction energy levels showed increase in MDD from 0% A-3 soil replacement to 40% A-3 soil replacement after which the values reduced to 100% A-3 soil replacement. The trend of the OMC with varied A-3 soil replacement is similar to that of MDD but in a reversed order. The OMC reduced from 0% A-3 soil replacement to 40% A-3 soil replacement after which the values increased to 100% A-3 soil replacement. This trend was attributed to the observed reduction in the void ratio from 0% A-3 soil replacement to 40% A-3 soil replacement after which the void ratio increased to 100% A-3 soil replacement. The maximum UCS for clay at varied A-3 soil replacement increased from 272 and 770kN/m2 for BSL and BSH compaction energy level at 0% A-3 soil replacement to 295 and 795kN/m2 for BSL and BSH compaction energy level respectively at 10% A-3 soil replacement after which the values reduced to 22 and 60kN/m2 for BSL and BSH compaction energy level respectively at 70% A-3 soil replacement. Beyond 70% A-3 soil replacement, the mixture cannot be moulded for UCS test.Keywords: A-3 soil, clay minerals, pozzolanic action, stabilization
Procedia PDF Downloads 4444295 Settlement of the Foundation on the Improved Soil: A Case Study
Authors: Morteza Karami, Soheila Dayani
Abstract:
Deep Soil Mixing (DSM) is a soil improvement technique that involves mechanically mixing the soil with a binder material to improve its strength, stiffness, and durability. This technique is typically used in geotechnical engineering applications where weak or unstable soil conditions exist, such as in building foundations, embankment support, or ground improvement projects. In this study, the settlement of the foundation on the improved soil using the wet DSM technique has been analyzed for a case study. Before DSM production, the initial soil mixture has been determined based on the laboratory tests and then, the proper mix designs have been optimized based on the pilot scale tests. The results show that the spacing and depth of the DSM columns depend on the soil properties, the intended loading conditions, and other factors such as the available space and equipment limitations. Moreover, monitoring instruments installed in the pilot area verify that the settlement of the foundation has been placed in an acceptable range to ensure that the soil mixture is providing the required strength and stiffness to support the structure or load. As an important result, if the DSM columns touch or penetrate into the stiff soil layer, the settlement of the foundation can be significantly decreased. Furthermore, the DSM columns should be allowed to cure sufficiently before placing any significant loads on the structure to prevent excessive deformation or settlement.Keywords: deep soil mixing, soil mixture, settlement, instrumentation, curing age
Procedia PDF Downloads 854294 Effects of Organic Amendments on Primary Nutrients (N, P and K) in a Sandy Soil
Authors: Nejib Turki, Karima Kouki Khalfallah
Abstract:
The effect of six treatments of organic amendments were evaluated on a sandy soil in the region of Soukra in Tunisia. T1: cattle manure 55 t.ha-1, T2: commercial compost from Germany to 1 t.ha-1, T3: a mixture of 27.5 t.ha-1 of T1 with 0.5 t. ha-1 of T2, T4: commercial compost from France 2 t.ha-1, T5: a Tunisian commercial compost to 10 t.ha-1 and T0: control without treatment. The nitrogen in the soil increase to 0.029 g.kg-1 of soil treatment for the T1 and 0.021 g. kg-1 of soil treatment for the T3. The highest content of P2O5 has been registered by the T3 treatment that 0.44 g kg-1 soil with respect to the control (T0), which shows a content of 0.36 g.kg-1 soil. The soil was initially characterized by a potassium content of 0.8 g kg-1 soil, K2O exchangeable rate varied between 0.63 g.Kg-1 and 0.71 g.kg-1 soil respectively T2 and T1.Keywords: compost, organic amendement, Ntot, P2O5, K2O
Procedia PDF Downloads 6324293 Effect of Cocoa Pod Ash and Poultry Manure on Soil Properties and Cocoyam Productivity of Nutrient-Depleted Tropical Alfisol
Authors: T. M. Agbede, A. O. Adekiya
Abstract:
An experiment was carried out for three consecutive years at Owo, southwest Nigeria. The objective of the investigation was to determine the effect of Cocoa Pod Ash (CPA) and Poultry Manure (PM) applied solely and their combined form, as sources of fertilizers on soil properties, leaf nutrient composition, growth and yield of cocoyam. Three soil amendments: CPA, PM (sole forms), CPA and PM (mixture), were applied at 7.5 t ha-1 with an inorganic fertilizer (NPK 15-15-15) at 400 kg ha-1 as a reference and a natural soil fertility, NSF (control), arranged in a randomized complete block design with three replications. Results showed that soil amendments significantly increased (p = 0.05) corm and cormel weights and growth of cocoyam, soil and leaf N, P, K, Ca and Mg, soil pH and organic carbon (OC) concentrations compared with the NSF (control). The mixture of CPA+PM treatment increased corm and cormel weights, plant height and leaf area of cocoyam by 40, 39, 42, and 48%, respectively, compared with inorganic fertilizer (NPK) and 13, 12, 15 and 7%, respectively, compared with PM alone. Sole or mixed forms of soil amendments showed remarkable improvement in soil physical properties compared with NPK and the NSF (control). The mixture of CPA+PM applied at 7.5 t ha-1 was the most effective treatment in improving cocoyam yield and growth parameters, soil and leaf nutrient composition.Keywords: Cocoa pod ash, cocoyam, poultry manure, soil and leaf nutrient composition.
Procedia PDF Downloads 3734292 Effects of Sole and Integrated Application of Cocoa Pod Ash and Poultry Manure on Soil Properties and Leaf Nutrient Composition and Performance of White Yam
Authors: T. M. Agbede, A. O. Adekiya
Abstract:
Field experiments were conducted during 2013, 2014 and 2015 cropping seasons at Rufus Giwa Polytechnic, Owo, Ondo State, southwest Nigeria. The objective of the investigation was to determine the effect of Cocoa Pod Ash (CPA) and Poultry Manure (PM) applied solely and their combined form, as sources of fertilizers on soil properties, leaf nutrient composition, growth and yield of yam. Three soil amendments: CPA, PM (sole forms), CPA and PM (mixture), were applied at 20 t ha-1 with an inorganic fertilizer (NPK 15-15-15) at 400 kg ha-1 as a reference and a natural soil fertility, NSF (control). The five treatments were arranged in a randomized complete block design with three replications. The test soil was slightly acidic, low in organic carbon (OC), N, P, K, Ca and Mg. Results showed that soil amendments significantly increased (p = 0.05) tuber weights and growth of yam, soil and leaf N, P, K, Ca and Mg, soil pH and OC concentrations compared with the NSF (control). The mixture of CPA+PM treatment increased tuber weights of yam by 36%, compared with inorganic fertilizer (NPK) and 19%, compared with PM alone. Sole PM increased tuber weight of yam by 15%, compared with NPK. Sole or mixed forms of soil amendments showed remarkable improvement in soil physical properties, nutrient availability, compared with NPK and the NSF (control). Integrated application of CPA at 10 t ha-1 + PM at 10 t ha-1 was the most effective treatment in improving soil physical properties, increasing nutrient availability and yam performance than sole application of any of the fertilizer materials.Keywords: cocoa pod ash, leaf nutrient composition, poultry manure, soil properties, yam
Procedia PDF Downloads 3244291 Heavy Metal Reduction in Plant Using Soil Amendment
Authors: C. Chaiyaraksa, T. Khamko
Abstract:
This study investigated the influence of limestone and sepiolite on heavy metals accumulation in the soil and soybean. The soil was synthesized to contaminate with zinc 150 mg/kg, copper 100 mg/kg, and cadmium 1 mg/kg. The contaminated soil was mixed with limestone and sepiolite at the ratio of 1:0, 0:1, 1:1, and 2:1. The amount of soil modifier added to soil was 0.2%, 0.4%, and 0.8%. The metals determination was performed on soil both before and after soybean planting and in the root, shoot, and seed of soybean after harvesting. The study was also on metal translocate from root to seed and on bioaccumulation factor. Using of limestone and sepiolite resulted in a reduction of metals accumulated in soybean. For soil containing a high concentration of copper, cadmium, and zinc, a mixture of limestone and sepiolite (1:1) was recommended to mix with soil with the amount of 0.2%. Zinc could translocate from root to seed more than copper, and cadmium. From studying the movement of metals from soil to accumulate in soybean, the result was that soybean could absorb the highest amount of cadmium, followed by zinc, and copper, respectively.Keywords: heavy metals, limestone, sepiolite, soil, soybean
Procedia PDF Downloads 1544290 Biochar - A Multi-Beneficial and Cost-Effective Amendment to Clay Soil for Stormwater Runoff Treatment
Authors: Mohammad Khalid, Mariya Munir, Jacelyn Rice Boyaue
Abstract:
Highways are considered a major source of pollution to storm-water, and its runoff can introduce various contaminants, including nutrients, Indicator bacteria, heavy metals, chloride, and phosphorus compounds, which can have negative impacts on receiving waters. This study assessed the ability of biochar for contaminants removal and to improve the water holding capacity of soil biochar mixture. For this, ten commercially available biochar has been strategically selected. Lab scale batch testing was done at 3% and 6% by the weight of the soil to find the preliminary estimate of contaminants removal along with hydraulic conductivity and water retention capacity. Furthermore, from the above-conducted studies, six best performing candidate and an application rate of 6% has been selected for the column studies. Soil biochar mixture was filled in 7.62 cm assembled columns up to a fixed height of 76.2 cm based on hydraulic conductivity. A total of eight column experiments have been conducted for nutrient, heavy metal, and indicator bacteria analysis over a period of one year, which includes a drying as well as a deicing period. The saturated hydraulic conductivity was greatly improved, which is attributed to the high porosity of the biochar soil mixture. Initial data from the column testing shows that biochar may have the ability to significantly remove nutrients, indicator bacteria, and heavy metals. The overall study demonstrates that biochar could be efficiently applied with clay soil to improve the soil's hydraulic characteristics as well as remove the pollutants from the stormwater runoff.Keywords: biochar, nutrients, indicator bacteria, storm-water treatment, sustainability
Procedia PDF Downloads 1204289 A Learning-Based EM Mixture Regression Algorithm
Authors: Yi-Cheng Tian, Miin-Shen Yang
Abstract:
The mixture likelihood approach to clustering is a popular clustering method where the expectation and maximization (EM) algorithm is the most used mixture likelihood method. In the literature, the EM algorithm had been used for mixture regression models. However, these EM mixture regression algorithms are sensitive to initial values with a priori number of clusters. In this paper, to resolve these drawbacks, we construct a learning-based schema for the EM mixture regression algorithm such that it is free of initializations and can automatically obtain an approximately optimal number of clusters. Some numerical examples and comparisons demonstrate the superiority and usefulness of the proposed learning-based EM mixture regression algorithm.Keywords: clustering, EM algorithm, Gaussian mixture model, mixture regression model
Procedia PDF Downloads 5104288 Combined Use of Microbial Consortia for the Enhanced Degradation of Type-IIx Pyrethroids
Authors: Parminder Kaur, Chandrajit B. Majumder
Abstract:
The unrestrained usage of pesticides to meet the burgeoning demand of enhanced crop productivity has led to the serious contamination of both terrestrial and aquatic ecosystem. The remediation of mixture of pesticides is a challenging affair regarding inadvertent mixture of pesticides from agricultural lands treated with various compounds. Global concerns about the excessive use of pesticides have driven the need to develop more effective and safer alternatives for their remediation. We focused our work on the microbial degradation of a mixture of three Type II-pyrethroids, namely Cypermethrin, Cyhalothrin and Deltamethrin commonly applied for both agricultural and domestic purposes. The fungal strains (Fusarium strain 8-11P and Fusarium sp. zzz1124) had previously been isolated from agricultural soils and their ability to biotransform this amalgam was studied. In brief, the experiment was conducted in two growth systems (added carbon and carbon-free) enriched with variable concentrations of pyrethroids between 100 to 300 mgL⁻¹. Parameter optimization (pH, temperature, concentration and time) was done using a central composite design matrix of Response Surface Methodology (RSM). At concentrations below 200 mgL⁻¹, complete removal was observed; however, degradation of 95.6%/97.4 and 92.27%/95.65% (in carbon-free/added carbon) was observed for 250 and 300 mgL⁻¹ respectively. The consortium has been shown to degrade the pyrethroid mixture (300 mg L⁻¹) within 120 h. After 5 day incubation, the residual pyrethroids concentration in unsterilized soil were much lower than in sterilized soil, indicating that microbial degradation predominates in pyrethroids elimination with the half-life (t₁/₂) of 1.6 d and R² ranging from 0.992-0.999. Overall, these results showed that microbial consortia might be more efficient than single degrader strains. The findings will complement our current understanding of the bioremediation of mixture of Type II pyrethroids with microbial consortia and potentially heighten the importance for considering bioremediation as an effective alternative for the remediation of such pollutants.Keywords: bioremediation, fungi, pyrethroids, soil
Procedia PDF Downloads 1474287 Evaluation of Numerical Modeling of Jet Grouting Design Using in situ Loading Test
Authors: Reza Ziaie Moayed, Ehsan Azini
Abstract:
Jet grouting (JG) is one of the methods of improving and increasing the strength and bearing of soil in which the high pressure water or grout is injected through the nozzles into the soil. During this process, a part of the soil and grout particles comes out of the drill borehole, and the other part is mixed up with the grout in place, as a result of this process, a mass of modified soil is created. The purpose of this method is to change the soil into a mixture of soil and cement, commonly known as "soil-cement". In this paper, first, the principles of high pressure injection and then the effective parameters in the JG method are described. Then, the tests on the samples taken from the columns formed from the excavation around the soil-cement columns, as well as the static loading test on the created column, are discussed. In the other part of this paper, the soil behavior models for numerical modeling in PLAXIS software are mentioned. The purpose of this paper is to evaluate the results of numerical modeling based on in-situ static loading tests. The results indicate an acceptable agreement between the results of the tests mentioned and the modeling results. Also, modeling with this software as an appropriate option for technical feasibility can be used to soil improvement using JG.Keywords: jet grouting column, soil improvement, numerical modeling, in-situ loading test
Procedia PDF Downloads 1434286 Influence of Compactive Efforts on the Hydraulic Conductivity of Bagasse Ash Treated Black Cotton Soil
Authors: T. S. Ijimdiya, K. J. Osinubi
Abstract:
This study examines the influence of compactive efforts on hydraulic conductivity behaviour of compacted black cotton soil treated with bagasse ash which is necessary in assessing the performance of the soil - bagasse ash mixture for use as a suitable barrier material in waste containment application. Black cotton soil treated with up to 12% bagasse ash (obtained from burning the fibrous residue from the extraction of sugar juice from sugarcane) by dry weight of soil for use in waste containment application. The natural soil classifies as A-7-6 or CH in accordance with the AASHTO and the Unified Soil Classification System, respectively. The treated soil samples were prepared at molding water contents of -2, 0, +2, and +4 % of optimum moisture contents and compacted using four compactive efforts of Reduced British Standard Light (RBSL), British Standard light (BSL), West African Standard (WAS) and British Standard Heavy (BSH). The results obtained show that hydraulic conductivity decreased with increase in bagasse ash content, moulding water content and compaction energy.Keywords: bagasse ash treatment, black cotton soil, hydraulic conductivity, moulding water contents, compactive efforts
Procedia PDF Downloads 4334285 Analysis of the Variation on Earth Pressure by Addition of Construction Demolition Waste (C&D Waste) In Black Cotton Soil
Authors: Nirav Jadav, M. G.Vanza
Abstract:
Black cotton soils mainly exhibit the property of swelling/shrinkage when they react to moisture variations. This property causes development of cracks in the structures resting on these soils, which poses instability to the structures. Soil stabilization is a technique to enhance the geotechnical characteristics of Black cotton soils by changing their properties. Due to rapid growth in construction industry, a lot of waste material is being generated every day, which poses the problem of its disposal. If the waste material can be utilized for soil stabilization, it will mitigate the problems of its disposal. The tests results evaluate that the strength of the Black cotton soils increased by the use of C&D waste material. This study determines various Index and engineering properties of soil and compare for different proportions of soil and C&D Waste. For finding properties of soil and C&D Waste, various test is carried out like sieve analysis, hydrometer test, specific gravity test, Atterberg’s limit test, Standard proctor test and soil Triaxial unconsolidated undrained test. It also takes into account the characteristics alteration due to addition of C&D Waste in active and passive pressure. This study presents the efficacy for use of C&D Waste as a stabilizing material to be mixed with backfill soil in retaining walls. Standard proctor test was conducted at proportions S1W0 (soil = 100%, Waste = 0%), S7W1 (soil = 87.5%, waste = 12.5%), S3W1, S5W3 and S1W1. From these, S5W3 showed optimum results, so this proportion was considered for Soil Triaxial UU-Test. Also, S1W0 was considered too. When 37.5% of soil is replaced by C&D Waste, the Optimum moisture content (OMC) decrease by 11.48%, further, increase C&D Waste in soil OMC remains constant, and maximum dry density (MDD) were observed to be increased by 9.27%, further increased C&D Waste in soil MDD reduces. Carried out strength test, which shows cohesion decreased by 162% and the internal friction angle increased by 49.4% with compare to virgin soil. The study focuses on the potential use of C&D Waste as a stabilizing material in the retaining wall backfill. The active earth pressure decreases, and the passive earth pressure increases in the S5W3 mixture compared to the S1W0 mixture at the same depth.Keywords: black cotton soil, construction demolition waste, compaction test, strength test
Procedia PDF Downloads 824284 Soil-Geopolymer Mixtures for Pavement Base and Subbase Layers
Authors: Mohammad Khattak, Bikash Adhikari, Sambodh Adhikari
Abstract:
This research deals with the physical, microstructural, mechanical, and shrinkage characteristics of flyash-based soil-geopolymer mixtures. Medium and high plastic soils were obtained from local construction projects. Class F flyash was used with a mixture of sodium silicate and sodium hydroxide solution to develop soil-geopolymer mixtures. Several mixtures were compacted, cured at different curing conditions, and tested for unconfined compressive strength (UCS), linear shrinkage, and observed under scanning electron microscopy (SEM). The results of the study demonstrated that the soil-geopolymer mixtures fulfilled the UCS criteria of cement treated design (CTD) and cement stabilized design (CSD) as recommended by the department of transportation for pavement base and subbase layers. It was found that soil-geopolymer demonstrated either similar or better UCS and shrinkage characteristics relative to conventional soil-cement mixtures. The SEM analysis revealed that microstructure of soil-geopolymer mixtures exhibited development and steady growth of geopolymerization during the curing period. Based on mechanical, shrinkage, and microstructural characteristics it was suggested that the soil-geopolymer mixtures, has an immense potential to be used as pavement subgrade, subbase, and base layers.Keywords: soil-geopolymer, pavement base, soil stabilization, unconfined compressive strength, shrinkage, microstructure, and morphology
Procedia PDF Downloads 1944283 Effects of Post-Emergence Herbicides on Soil Micro-Flora and Nitrogen Fixing Bacteria in Pea Field
Authors: Ali M. Zaid, Muftah Mayouf, Yahya Said Farouj
Abstract:
The effect of post emergence herbicides on soil micro-flora and nitrogen fixing bacteria was studied in pea field. Pea (Pisum sativum) was grown and treated with one or a mixture of two of several herbicides 2 weeks after sowing. Soil samples were collected 2 weeks after herbicides application. Average number of colony forming units per gram of soil of bacteria, actinomycetes and fungi were determined. Average number of nodules per plant was obtained at the end of the growing season. The results of the study showed MCPB, Bentazon, MCPB+Fluozifop-p-butyl, Bentazon+Fluozifop-p-butyl, Metribuzin, Flouzifop-p-butyl+Metribuzin, Cycloxydin, and Sethoxydin increased the population of soil fungi, with 4 to 10 times compared with the control. The herbicides used showed no significant effects on nitrogen fixing bacteria. The effects of herbicides on soil bacteria and actinomycetes were different. The study showed the use of herbicides could influence the biological balance of soil microflora, which has an important role in soil fertility and microbial ecosystem.Keywords: herbicides, post emergence, nitrogen fixing bacteria, environmental systems
Procedia PDF Downloads 4014282 Key Parameters for Controlling Swell of Expansive Soil-Hydraulic Cement Admixture
Authors: Aung Phyo Kyaw, Kuo Chieh Chao
Abstract:
Expansive soils are more complicated than normal soils, although the soil itself is not very complicated. When evaluating foundation performance on expansive soil, it is important to consider soil expansion. The primary focus of this study is on hydraulic cement and expansive soil mixtures, and the research aims to identify key parameters for controlling the swell of the expansive soil-hydraulic cement mixture. Treatment depths can be determined using hydraulic cement ratios of 4%, 8%, 12%, and 15% for treating expansive soil. To understand the effect of hydraulic cement percentages on the swelling of expansive soil-hydraulic admixture, performing the consolidation-swell test σ''ᶜˢ is crucial. This investigation primarily focuses on consolidation-swell tests σ''ᶜˢ, although the heave index Cₕ is also needed to determine total heave. The heave index can be measured using the percent swell in the specific inundation stress in both the consolidation-swell test and the constant-volume test swelling pressure. Obtaining the relationship between swelling pressure and σ''ᶜⱽ determined from the "constant volume test" is useful in predicting heave from a single oedometer test. The relationship between σ''ᶜˢ and σ''ᶜⱽ is based on experimental results of expansive soil behavior and facilitates heave prediction for each soil. In this method, the soil property "m" is used as a parameter, and common soil property tests include compaction, particle size distribution, and the Atterberg limit. The Electricity Generating Authority of Thailand (EGAT) provided the soil sample for this study, and all laboratory testing is performed according to American Society for Testing and Materials (ASTM) standards.Keywords: expansive soil, swelling pressure, total heave, treatment depth
Procedia PDF Downloads 854281 Effects of the Type of Soil on the Efficiency of a Bioremediation Dispositive by Using Bacterium Hydrocarbonoclastes
Authors: Amel Bouderhem, Aminata Ould El Hadj Khelil, Amina N. Djrarbaoui, Aroussi Aroussi
Abstract:
The present work aims to find the influence of the nature of the soil on the effectiveness of the biodegradation of hydrocarbons by a mixture of bacterial strains hydrocarbonoclastes. Processes of bioaugmentation and biostimulation trial are applied to samples of soils polluted voluntarily by the crude oil. For the evaluation of the biodegradation of hydrocarbons, the bacterial load, the pH and organic carbon total are followed in the different experimental batches. He bacterial load of the sandy soil varies among the witnesses of 45,2 .108 CFU/ml at the beginning of the experimentation to 214,07.108 CFU/ml at the end of the experiment. Of the soil silty-clay varies between 103,31 .108 CFU/ml and 614,86.108 CFU/ml . It was found a strong increase in the bacterial biomass during the processing of all samples. This increase is more important in the samples of sand bioaugmente or biomass increased from 63.16 .108 CFU/ml to 309.68 .108 CFU/ml than in soil samples silty clay- bioaugmente whose content in bacteria evolved of 73,01 .108 CFU/ml to 631.80 . 108CFU/mlKeywords: pollution, hydrocarbons, bioremediation, bacteria hydrocarbonoclastes, ground, texture
Procedia PDF Downloads 4734280 A Review of Soil Stabilization Techniques
Authors: Amin Chegenizadeh, Mahdi Keramatikerman
Abstract:
Soil stabilization is a crucial issue that helps to remove of risks associated with the soil failure. As soil has applications in different industries such as construction, pavement and railways, the means of stabilizing soil are varied. This paper will focus on the techniques of stabilizing soils. It will do so by gathering useful information on the state of the art in the field of soil stabilization, investigating both traditional and advanced methods. To inquire into the current knowledge, the existing literature will be divided into categories addressing the different techniques.Keywords: review, soil, stabilization, techniques
Procedia PDF Downloads 5454279 Effect of Ecologic Fertilizers on Productivity and Yield Quality of Common and Spelt Wheat
Authors: Danutė Jablonskytė-Raščė, Audronė MankevičIenė, Laura Masilionytė
Abstract:
During the period 2009–2015, in Joniškėlis Experimental Station of the Lithuanian Research Centre for Agriculture and Forestry, the effect of ecologic fertilizers Ekoplant, bio-activators Biokal 01 and Terra Sorb Foliar and their combinations on the formation of the productivity elements, grain yield and quality of winter wheat, spelt (Triticum spelta L.), and common wheat (Triticum aestivum L.) was analysed in ecological agro-system. The soil under FAO classification – Endocalcari-Endo-hypogleyic-Cambisol. In a clay loam soil, ecological fertilizer produced from sunflower hull ash and this fertilizer in combination with plant extracts and bio-humus exerted an influence on the grain yield of spelt and common wheat and their mixture (increased the grain yield by 10.0%, compared with the unfertilized crops). Spelt grain yield was by on average 16.9% lower than that of common wheat and by 11.7% lower than that of the mixture, but the role of spelt in organic production systems is important because with no mineral fertilization it produced grains with a higher (by 4%) gluten content and exhibited a greater ability to suppress weeds (by on average 61.9% lower weed weight) compared with the grain yield and weed suppressive ability of common wheat and mixture. Spelt cultivation in a mixture with common wheat significantly improved quality indicators of the mixture (its grain contained by 2.0% higher protein content and by 4.0% higher gluten content than common wheat grain), reduced disease incidence (by 2-8%), and weed infestation level (by 34-81%).Keywords: common and spelt-wheat, ecological fertilizers, bio-activators, productivity elements, yield, quality
Procedia PDF Downloads 2984278 Sludge and Compost Amendments in Tropical Soils: Impact on Coriander (Coriandrum sativum) Nutrient Content
Authors: M. López-Moreno, L. Lugo Avilés, F. Román, J. Lugo Rosas, J. Hernández-Viezcas Jr., Peralta-Videa, J. Gardea-Torresdey
Abstract:
Degradation of agricultural soils has increased rapidly during the last 20 years due to the indiscriminate use of pesticides and other anthropogenic activities. Currently, there is an urgent need of soil restoration to increase agricultural production. Utilization of sewage sludge or municipal solid waste is an important way to recycle nutrient elements and improve soil quality. With these amendments, nutrient availability in the aqueous phase might be increased and production of healthier crops can be accomplished. This research project aimed to achieve sustainable management of tropical agricultural soils, specifically in Puerto Rico, through the amendment of water treatment plant sludge’s. This practice avoids landfill disposal of sewage sludge and at the same time results cost-effective practice for recycling solid waste residues. Coriander sativum was cultivated in a compost-soil-sludge mixture at different proportions. Results showed that Coriander grown in a mixture of 25% compost+50% Voladora soi+25% sludge had the best growth and development. High chlorophyll content (33.01 ± 0.8) was observed in Coriander plants cultivated in 25% compost+62.5% Coloso soil+ 12.5% sludge compared to plants grown with no sludge (32.59 ± 0.7). ICP-OES analysis showed variations in mineral element contents (macro and micronutrients) in coriander plant grown I soil amended with sludge and compost.Keywords: compost, Coriandrum sativum, nutrients, waste sludge
Procedia PDF Downloads 4064277 The Effect of Nanoclay on the Hydraulic Conductivity of Clayey Sand Soils
Authors: Javad Saeidaskari, Mohammad Hassan Baziar
Abstract:
Soil structures have been frequently damaged during piping, earthquake and other types of failures. As far as adverse circumstances were developed subsequent to piping or other similar failure types, hydraulic parameters of soil such as hydraulic conductivity should be considered. As a result, acquiring an approach to diminish soil permeability is inevitable. There are many ground improvement methods to reduce seepage, which are classified under soil treatment and stabilization methods. Recently, one of the soil improvement methods is known as nanogeotechnology. This study aims to investigate the influence of Cloisite 30B nanoclay on permeability of compacted clayey sand soils. The samples are prepared by mixing two soil types, including Kaolin clay and Firouzkooh sand, in 1:9 and 1:5 clay:sand (by mass) proportions. In experimental procedure, initially, the optimum water content and maximum dry unit weight of each samples were obtained for compaction. Then, series of permeability tests were conducted by triaxial apparatus on prepared specimens with identical relative density of 95% of maximum dry density and water content of 1% wet of optimum for different weight percentages of nanoclay (1% to 4%). Therefore, in this paper, the effect of time on treated specimen was appraised, as well as two approaches of manual mixing and ball milling were compared to reveal the importance of dispersion issue. The results show that adding nanoclay up to 3%, as its optimum content, causes notable reduction in permeability (1.60e-03 to 5.51e-05 cm/s and 3.32e-04 to 8.44e-07 cm/s in samples with 1:9 and 1:5 mixture proportions, respectively). The hydraulic conductivity of treated clayey sand (1:5 mixture proportion with 3% nanoclay) decreases gradually from 8.44e-07 to 3.00e-07 cm/s within 90 days and then tends to be consistent. The influence of mixing method on permeability results shows that the utilization of ball mill mixing effectively leads to lower values than those of manual mixing, in other words, by adding 3% nanoclay, hydraulic conductivity of specimen declines from 8.44e-07 to 2.00e-07 cm/s. In order to evaluate the interaction between soil particles and, to ensure proper dispersion of nanoparticles through clayey sand mixture, they were magnified by means of scanning electron microscope (SEM). In conclusion, the nanoclay particles in vicinity of moisture can cause soil stabilization to prevent water penetration, which eventually result in lower usage of clay and operation costs.Keywords: nanoclay, cloisite 30b, clayey sand, hydraulic conductivity
Procedia PDF Downloads 3494276 Experimental Investigation of The Influence of Cement on Soil-Municipal Solid Waste Incineration Fly ash Mix Properties
Authors: Gehan Aouf, Diala Tabbal, Abd El Rahim Sabsabi, Rashad Aouf
Abstract:
The aim of this study is to assess the viability of utilizing Municipal Solid Waste Incineration Fly Ash (MSWIFA) with Ordinary Portland cement as soil reinforcement materials for geotechnical engineering applications. A detailed experimental program is carried out, followed by analysis of results. Soil samples were prepared by adding Cement to MSWIFA-soil mix at different percentages. Then, a series of laboratory tests were performed, namely: Sieve analysis, Atterberg limits tests, Unconfined compression test, and Proctor tests. A parametric study is conducted to investigate the effect of adding the cement at different percentages on the unconfined compression strength, maximum dry density, and optimum moisture content of clayey soil-MSWIFA The variation of contents of admixtures were 10%, 20%, and 30% for MSWIFA by dry total weight of soil and 10%, 15%, and 20% for Portland cement by dry total weight of the mix. The test results reveal that adding MSWIFA to the soil up to 20% increased the MDD of the mixture and decreased the OMC, then an opposite trend for results were found when the percentage of MSWIFA exceeds 20%. This is due to the low specific gravity of MSWIFA and to the greater water absorption of MSWIFA. The laboratory tests also indicate that the UCS values were found to be increased for all the mixtures with curing periods of 7, 14, and 28 days. It is also observed that the cement increased the strength of the finished product of the mix of soil and MSWIFA.Keywords: clayey soil, cement, MSWIFA, unconfined compression strength
Procedia PDF Downloads 1304275 The Effect of Soil Treatment on Micro Metal Contents in Soil at UB Forest in Malang District, East Java, Indonesia
Authors: Adam Wiryawan
Abstract:
The levels of micro metal elements in the soil are influenced by soil management. In this research, the influence of soil management on the content of micro metal elements in the soil in the UB forest was studied. The metals studied include Zn, Mn, Cu, Fe, Cd, and Pb. Soil samples were taken from five sampling points on soil in the UB forest, both soils tilled and untilled. Before analysis, soil samples were digested with HNO₃ solution, and metal levels in soil samples were measured using atomic absorption spectrometry (AAS). The results of the analysis of metal content in the soil at the UB forest show that tilled land has consistently lower levels of metals like Zn, Mn, Cu, and Fe compared to untilled land. Meanwhile, Pb and Cd metals were not detected in all soil samples.Keywords: soil treatment, metal content, forest soil, Malang District
Procedia PDF Downloads 74274 Effect of Inclusion of Rubber on the Compaction Characteristics of Cement - MSWIFA- Clayey Soil Mixtures
Authors: Gehan Aouf, Diala Tabbal, Abd El Rahim Sabsabi, Rashad Aouf
Abstract:
The aim of this study is to show the effect of adding cement municipal solid incineration fly ash and rubber as stabilizer materials on weak soil. A detailed experimental study was conducted in order to show the viability of using these admixtures in improving the maximum dry density and optimum moisture content of the composite soil. Soil samples were prepared by adding Rubber and Cement to municipal solid waste incineration fly-ash - oil mix at different percentages. Then, a series of laboratory tests were performed, namely: Sieve analysis, Atterberg limits tests, Unconfined compression test, and Proctor tests. Three different percentages of fly ash (10%, 20%, and 30%) MSWFA by total dry weight of soil and three different percentages of Portland cement (10%, 15%, and 20%) by total dry weight of the mix and 0%, 5%, 10% for Rubber by total dry weight of the mix were used to find the optimum value. The test results reveal that adding MSWIFA to the soil up to 20% increased the MDD of the mixture and decreased the OMC, then an opposite trend for results were found when the percentage of MSWIFA exceeded 20%. This is due to the low specific gravity of MSWIFA and to the greater water absorption of MSWIFA. The laboratory tests also indicate that adding Rubber to the mix Soil-MSWIFA-Cement decreases its MDD due to the low specific gravity of rubber and it affects a slight decrease in OMC because the rubber has low absorption of water.Keywords: clayey soil, MSWIFA, proctor test, rubber
Procedia PDF Downloads 1154273 Durability of Lime Treated Soil Reinforced by Natural Fibre under Bending Force
Authors: Vivi Anggraini, Afshin Asadi, Bujang B. K. Huat
Abstract:
Earth structures constructed of marine clay soils have tendency to crack. In order to improve the flexural strength and brittleness, a technique of mixing short fibers is introduced to the soil lime mixture. Coir fiber was used in this study as reinforcing elements. An experimental investigation consisting primarily of flexural tensile tests was conducted to examine the influence of coir fibers on the flexural behaviour of the reinforced soils. The test results demonstrated that the coir fibers were effective in improving the flexural strength and young’s modulus of all soils were examined and ductility after peak strength for reinforced marine clay soil was treated by lime. 5% lime treated soil and 1% coir fiber reinforced soil specimen’s demonstrated good strength and durability when submerged in water and retained 45% of their air-cured strengths.Keywords: flexural strength, durabilty, lime, coir fibers, bending force, ductility
Procedia PDF Downloads 4664272 Effect of Bamboo Chips in Cemented Sand Soil on Permeability and Mechanical Properties in Triaxial Compression
Authors: Sito Ismanti, Noriyuki Yasufuku
Abstract:
Cement utilization to improve the properties of soil is a well-known method applied in field. However, its addition in large quantity must be controlled. This study presents utilization of natural and environmental-friendly material mixed with small amount of cement content in soil improvement, i.e. bamboo chips. Absorbability, elongation, and flatness ratio of bamboo chips were examined to investigate and understand the influence of its characteristics in the mixture. Improvement of dilation behavior as a problem of loose and poorly graded sand soil is discussed. Bamboo chips are able to improve the permeability value that affects the dilation behavior of cemented sand soil. It is proved by the stress path as the result of triaxial compression test in the undrained condition. The effect of size and content variation of bamboo chips, as well as the curing time variation are presented and discussed.Keywords: bamboo chips, permeability, mechanical properties, triaxial compression
Procedia PDF Downloads 3334271 Allelopathic Effect of Duranta Repens on Salinity-Stressed Solanum Lycopersicum Seedlings
Authors: Olusola Nafisat Omoniyi
Abstract:
Aqueous extract of Duranta repens leaves was investigated for its allelopathic effect on Solanum lycopersicum Seedlings germinated and grown under salinity condition. The study was carried out using both laboratory petri dish and pot assays to simulate the plant’s natural environmental conditions. The experiment consisted of 5 groups (1-5), each containing 5 replicates (of 10 seeds). Group 1 was treated with distilled water; Group 2 was treated with 5 mM NaCl; Group 3 was treated with the Extract, Group 4 was treated with a mixture of 5 mM NaCl and the Extract (2:1 v/v), and Group 5 was treated with a mixture of 5 mM NaCl and the Extract (1:2 v/v). The results showed that treatment with NaCl caused significant reductions in germination, growth parameters (plumule and radicle lengths), and chlorophyll concentration of S. lycopersicum seedlings when compared to those treated with D. rupens aqueous leaf extract. Salinity also caused an increase in malondialdehyde and proline concentrations and lowered the activity of superoxide dismutase. However, in the presence of the extract, the adverse effects of the NaCl were attenuated, implying that the extract improved tolerance of S. lycopersicum seedlings. In conclusion, the findings of this study show that the extract is very important in the optimal growth of the plant in saline soil, which has become useful for the management of soil salinity problems.Keywords: agriculture, allelopathic, salinity, soil, tomato, production, photosynthesis
Procedia PDF Downloads 2194270 Evaluation of Carbon Dioxide Pressure through Radial Velocity Difference in Arterial Blood Modeled by Drift Flux Model
Authors: Aicha Rima Cheniti, Hatem Besbes, Joseph Haggege, Christophe Sintes
Abstract:
In this paper, we are interested to determine the carbon dioxide pressure in the arterial blood through radial velocity difference. The blood was modeled as a two phase mixture (an aqueous carbon dioxide solution with carbon dioxide gas) by Drift flux model and the Young-Laplace equation. The distributions of mixture velocities determined from the considered model permitted the calculation of the radial velocity distributions with different values of mean mixture pressure and the calculation of the mean carbon dioxide pressure knowing the mean mixture pressure. The radial velocity distributions are used to deduce a calculation method of the mean mixture pressure through the radial velocity difference between two positions which is measured by ultrasound. The mean carbon dioxide pressure is then deduced from the mean mixture pressure.Keywords: mean carbon dioxide pressure, mean mixture pressure, mixture velocity, radial velocity difference
Procedia PDF Downloads 4214269 Gas Pressure Evaluation through Radial Velocity Measurement of Fluid Flow Modeled by Drift Flux Model
Authors: Aicha Rima Cheniti, Hatem Besbes, Joseph Haggege, Christophe Sintes
Abstract:
In this paper, we consider a drift flux mixture model of the blood flow. The mixture consists of gas phase which is carbon dioxide and liquid phase which is an aqueous carbon dioxide solution. This model was used to determine the distributions of the mixture velocity, the mixture pressure, and the carbon dioxide pressure. These theoretical data are used to determine a measurement method of mean gas pressure through the determination of radial velocity distribution. This method can be applicable in experimental domain.Keywords: mean carbon dioxide pressure, mean mixture pressure, mixture velocity, radial velocity
Procedia PDF Downloads 3244268 Impact of Different Tillage Practices on Soil Health Status: Carbon Storage and Pools, Soil Aggregation, and Nutrient Use
Authors: Denis Constantin Topa, Irina Gabriela Cara, Gerard Jitareanu
Abstract:
Tillage is a fundamental soil practice with different soil disturbance intensities and unique implications in soil organic carbon, soil structure, and nutrient dynamics. However, the implication of tillage practice on soil organic carbon and soil health is complex and specific to the context. it study evaluated soil health status based on soil carbon sequestration and pools, soil aggregation, and nutrient use under two different tillage practices: conventional and minimum tillage. The results of our study are consistent with the hypothesis that, over time, minimum tillage typically boosts soil health in the 0-10 cm soil layer. Compared to the conventional practice (19.36 t C ha-1) there was a significant accumulation of soil organic carbon (0-30 cm) in the minimum-tillage practice (23.21 t C ha-1). Below 10 cm depth, the soil organic carbon stocks are close to that of the conventional layer (0-30 cm). Soil aggregate stability was improved under conservative tillage, due to soil carbon improvement which facilitated a greater volume of mesopores and micropores. Total nitrogen (TN), available potassium (AK) and phosphorus (AP) content in 0-10 cm depth under minimum-tillage practice were 26%, 6% and 32%, greater respectively, compared to the conventional treatment. Overall, the TN, AP and AK values decreased with depth within the soil profiles as a consequence of soil practice and minimum disturbance. The data show that minimum tillage is a sustainable and effective management practice that maintain soil health with soil carbon increase and efficient nutrient use.Keywords: minimum tillage, conventional tillage, soil organic carbon, nutrients, soil aggregation, soil health
Procedia PDF Downloads 9