Search results for: seismo-tectonic features
3850 Seismotectonic Deformations along Strike-Slip Fault Systems of the Maghreb Region, Western Mediterranean
Authors: Abdelkader Soumaya, Noureddine Ben Ayed, Mojtaba Rajabi, Mustapha Meghraoui, Damien Delvaux, Ali Kadri, Moritz Ziegler, Said Maouche, Ahmed Braham, Aymen Arfaoui
Abstract:
The northern Maghreb region (Western Mediterranean) is a key area to study the seismotectonic deformations across the Africa-Eurasia convergent plate boundary. On the basis of young geologic fault slip data and stress inversion of focal mechanisms, we defined a first-order transpression-compatible stress field and a second-order spatial variation of tectonic regime across the Maghreb region, with a relatively stable SHmax orientation from east to west. Therefore, the present-day active contraction of the western Africa-Eurasia plate boundary is accommodated by (1) E-W strike-slip faulting with a reverse component along the Eastern Tell and Saharan-Tunisian Atlas, (2) a predominantly NE trending thrust faulting with strike-slip component in the Western Tell part, and (3) a conjugate strike-slip faulting regime with a normal component in the Alboran/Rif domain. This spatial variation of the active stress field and the tectonic regime is relatively in agreement with the inferred stress information from neotectonic features. According to newly suggested structural models, we highlight the role of main geometrically complex shear zones in the present-day stress pattern of the Maghreb region. Then, different geometries of these major preexisting strike-slip faults and related fractures (V-shaped conjugate fractures, horsetail splays faults, and Riedel fractures) impose their component on the second- and third-order stress regimes. Smoothed present-day and Neotectonic stress maps (mean SHmax orientation) reveal that plate boundary forces acting on the Africa-Eurasia collisional plates control the long wavelength of the stress field pattern in the Maghreb. The seismotectonic deformations and the upper crustal stress field in the study area are governed by the interplay of the oblique plate convergence (i.e., Africa-Eurasia), lithosphere-mantle interaction, and preexisting tectonic weakness zones.Keywords: Maghreb, strike-slip fault, seismotectonic, focal mechanism, inversion
Procedia PDF Downloads 1223849 Seismic Microzonation of El-Fayoum New City, Egypt
Authors: Suzan Salem, Heba Moustafa, Abd El-Aziz Abd El-Aal
Abstract:
Seismic micro hazard zonation for urban areas is the first step towards a seismic risk analysis and mitigation strategy. Essential here is to obtain a proper understanding of the local subsurface conditions and to evaluate ground-shaking effects. In the present study, an attempt has been made to evaluate the seismic hazard considering local site effects by carrying out detailed geotechnical and geophysical site characterization in El-Fayoum New City. Seismic hazard analysis and microzonation of El-Fayoum New City are addressed in three parts: in the first part, estimation of seismic hazard is done using seismotectonic and geological information. The second part deals with site characterization using geotechnical and shallow geophysical techniques. In the last part, local site effects are assessed by carrying out one-dimensional (1-D) ground response analysis using the equivalent linear method by program SHAKE 2000. Finally, microzonation maps have been prepared. The detailed methodology, along with experimental details, collected data, results and maps are presented in this paper.Keywords: El-Fayoum, microzonation, seismotectonic, Egypt
Procedia PDF Downloads 3813848 Seismic Hazard Assessment of Tehran
Authors: Dorna Kargar, Mehrasa Masih
Abstract:
Due to its special geological and geographical conditions, Iran has always been exposed to various natural hazards. Earthquake is one of the natural hazards with random nature that can cause significant financial damages and casualties. This is a serious threat, especially in areas with active faults. Therefore, considering the population density in some parts of the country, locating and zoning high-risk areas are necessary and significant. In the present study, seismic hazard assessment via probabilistic and deterministic method for Tehran, the capital of Iran, which is located in Alborz-Azerbaijan province, has been done. The seismicity study covers a range of 200 km from the north of Tehran (X=35.74° and Y= 51.37° in LAT-LONG coordinate system) to identify the seismic sources and seismicity parameters of the study region. In order to identify the seismic sources, geological maps at the scale of 1: 250,000 are used. In this study, we used Kijko-Sellevoll's method (1992) to estimate seismicity parameters. The maximum likelihood estimation of earthquake hazard parameters (maximum regional magnitude Mmax, activity rate λ, and the Gutenberg-Richter parameter b) from incomplete data files is extended to the case of uncertain magnitude values. By the combination of seismicity and seismotectonic studies of the site, the acceleration with antiseptic probability may happen during the useful life of the structure is calculated with probabilistic and deterministic methods. Applying the results of performed seismicity and seismotectonic studies in the project and applying proper weights in used attenuation relationship, maximum horizontal and vertical acceleration for return periods of 50, 475, 950 and 2475 years are calculated. Horizontal peak ground acceleration on the seismic bedrock for 50, 475, 950 and 2475 return periods are 0.12g, 0.30g, 0.37g and 0.50, and Vertical peak ground acceleration on the seismic bedrock for 50, 475, 950 and 2475 return periods are 0.08g, 0.21g, 0.27g and 0.36g.Keywords: peak ground acceleration, probabilistic and deterministic, seismic hazard assessment, seismicity parameters
Procedia PDF Downloads 693847 Relevant LMA Features for Human Motion Recognition
Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier
Abstract:
Motion recognition from videos is actually a very complex task due to the high variability of motions. This paper describes the challenges of human motion recognition, especially motion representation step with relevant features. Our descriptor vector is inspired from Laban Movement Analysis method. We propose discriminative features using the Random Forest algorithm in order to remove redundant features and make learning algorithms operate faster and more effectively. We validate our method on MSRC-12 and UTKinect datasets.Keywords: discriminative LMA features, features reduction, human motion recognition, random forest
Procedia PDF Downloads 1953846 Impact of Variability in Delineation on PET Radiomics Features in Lung Tumors
Authors: Mahsa Falahatpour
Abstract:
Introduction: This study aims to explore how inter-observer variability in manual tumor segmentation impacts the reliability of radiomic features in non–small cell lung cancer (NSCLC). Methods: The study included twenty-three NSCLC tumors. Each patient had three tumor segmentations (VOL1, VOL2, VOL3) contoured on PET/CT scans by three radiation oncologists. Dice coefficients (DCS) were used to measure the segmentation variability. Radiomic features were extracted with 3D-slicer software, consisting of 66 features: first-order (n=15), second-order (GLCM, GLDM, GLRLM, and GLSZM) (n=33). The inter-observer variability of radiomic features was assessed using the intraclass correlation coefficient (ICC). An ICC > 0.8 indicates good stability. Results: The mean DSC of VOL1, VOL2, and VOL3 was 0.80 ± 0.04, 0.85 ± 0.03, and 0.76 ± 0.06, respectively. 92% of all extracted radiomic features were found to be stable (ICC > 0.8). The GLCM texture features had the highest stability (96%), followed by GLRLM features (90%) and GLSZM features (87%). The DSC was found to be highly correlated with the stability of radiomic features. Conclusion: The variability in inter-observer segmentation significantly impacts radiomics analysis, leading to a reduction in the number of appropriate radiomic features.Keywords: PET/CT, radiomics, radiotherapy, segmentation, NSCLC
Procedia PDF Downloads 443845 Tree Species Classification Using Effective Features of Polarimetric SAR and Hyperspectral Images
Authors: Milad Vahidi, Mahmod R. Sahebi, Mehrnoosh Omati, Reza Mohammadi
Abstract:
Forest management organizations need information to perform their work effectively. Remote sensing is an effective method to acquire information from the Earth. Two datasets of remote sensing images were used to classify forested regions. Firstly, all of extractable features from hyperspectral and PolSAR images were extracted. The optical features were spectral indexes related to the chemical, water contents, structural indexes, effective bands and absorption features. Also, PolSAR features were the original data, target decomposition components, and SAR discriminators features. Secondly, the particle swarm optimization (PSO) and the genetic algorithms (GA) were applied to select optimization features. Furthermore, the support vector machine (SVM) classifier was used to classify the image. The results showed that the combination of PSO and SVM had higher overall accuracy than the other cases. This combination provided overall accuracy about 90.56%. The effective features were the spectral index, the bands in shortwave infrared (SWIR) and the visible ranges and certain PolSAR features.Keywords: hyperspectral, PolSAR, feature selection, SVM
Procedia PDF Downloads 4163844 Active Features Determination: A Unified Framework
Authors: Meenal Badki
Abstract:
We address the issue of active feature determination, where the objective is to determine the set of examples on which additional data (such as lab tests) needs to be gathered, given a large number of examples with some features (such as demographics) and some examples with all the features (such as the complete Electronic Health Record). We note that certain features may be more costly, unique, or laborious to gather. Our proposal is a general active learning approach that is independent of classifiers and similarity metrics. It allows us to identify examples that differ from the full data set and obtain all the features for the examples that match. Our comprehensive evaluation shows the efficacy of this approach, which is driven by four authentic clinical tasks.Keywords: feature determination, classification, active learning, sample-efficiency
Procedia PDF Downloads 753843 2D Point Clouds Features from Radar for Helicopter Classification
Authors: Danilo Habermann, Aleksander Medella, Carla Cremon, Yusef Caceres
Abstract:
This paper aims to analyze the ability of 2d point clouds features to classify different models of helicopters using radars. This method does not need to estimate the blade length, the number of blades of helicopters, and the period of their micro-Doppler signatures. It is also not necessary to generate spectrograms (or any other image based on time and frequency domain). This work transforms a radar return signal into a 2D point cloud and extracts features of it. Three classifiers are used to distinguish 9 different helicopter models in order to analyze the performance of the features used in this work. The high accuracy obtained with each of the classifiers demonstrates that the 2D point clouds features are very useful for classifying helicopters from radar signal.Keywords: helicopter classification, point clouds features, radar, supervised classifiers
Procedia PDF Downloads 2273842 Dynamic Gabor Filter Facial Features-Based Recognition of Emotion in Video Sequences
Authors: T. Hari Prasath, P. Ithaya Rani
Abstract:
In the world of visual technology, recognizing emotions from the face images is a challenging task. Several related methods have not utilized the dynamic facial features effectively for high performance. This paper proposes a method for emotions recognition using dynamic facial features with high performance. Initially, local features are captured by Gabor filter with different scale and orientations in each frame for finding the position and scale of face part from different backgrounds. The Gabor features are sent to the ensemble classifier for detecting Gabor facial features. The region of dynamic features is captured from the Gabor facial features in the consecutive frames which represent the dynamic variations of facial appearances. In each region of dynamic features is normalized using Z-score normalization method which is further encoded into binary pattern features with the help of threshold values. The binary features are passed to Multi-class AdaBoost classifier algorithm with the well-trained database contain happiness, sadness, surprise, fear, anger, disgust, and neutral expressions to classify the discriminative dynamic features for emotions recognition. The developed method is deployed on the Ryerson Multimedia Research Lab and Cohn-Kanade databases and they show significant performance improvement owing to their dynamic features when compared with the existing methods.Keywords: detecting face, Gabor filter, multi-class AdaBoost classifier, Z-score normalization
Procedia PDF Downloads 2783841 New Features for Copy-Move Image Forgery Detection
Authors: Michael Zimba
Abstract:
A novel set of features for copy-move image forgery, CMIF, detection method is proposed. The proposed set presents a new approach which relies on electrostatic field theory, EFT. Solely for the purpose of reducing the dimension of a suspicious image, firstly performs discrete wavelet transform, DWT, of the suspicious image and extracts only the approximation subband. The extracted subband is then bijectively mapped onto a virtual electrostatic field where concepts of EFT are utilised to extract robust features. The extracted features are shown to be invariant to additive noise, JPEG compression, and affine transformation. The proposed features can also be used in general object matching.Keywords: virtual electrostatic field, features, affine transformation, copy-move image forgery
Procedia PDF Downloads 5433840 Using Reservoir Models for Monitoring Geothermal Surface Features
Authors: John P. O’Sullivan, Thomas M. P. Ratouis, Michael J. O’Sullivan
Abstract:
As the use of geothermal energy grows internationally more effort is required to monitor and protect areas with rare and important geothermal surface features. A number of approaches are presented for developing and calibrating numerical geothermal reservoir models that are capable of accurately representing geothermal surface features. The approaches are discussed in the context of cases studies of the Rotorua geothermal system and the Orakei-korako geothermal system, both of which contain important surface features. The results show that models are able to match the available field data accurately and hence can be used as valuable tools for predicting the future response of the systems to changes in use.Keywords: geothermal reservoir models, surface features, monitoring, TOUGH2
Procedia PDF Downloads 4143839 Myanmar Character Recognition Using Eight Direction Chain Code Frequency Features
Authors: Kyi Pyar Zaw, Zin Mar Kyu
Abstract:
Character recognition is the process of converting a text image file into editable and searchable text file. Feature Extraction is the heart of any character recognition system. The character recognition rate may be low or high depending on the extracted features. In the proposed paper, 25 features for one character are used in character recognition. Basically, there are three steps of character recognition such as character segmentation, feature extraction and classification. In segmentation step, horizontal cropping method is used for line segmentation and vertical cropping method is used for character segmentation. In the Feature extraction step, features are extracted in two ways. The first way is that the 8 features are extracted from the entire input character using eight direction chain code frequency extraction. The second way is that the input character is divided into 16 blocks. For each block, although 8 feature values are obtained through eight-direction chain code frequency extraction method, we define the sum of these 8 feature values as a feature for one block. Therefore, 16 features are extracted from that 16 blocks in the second way. We use the number of holes feature to cluster the similar characters. We can recognize the almost Myanmar common characters with various font sizes by using these features. All these 25 features are used in both training part and testing part. In the classification step, the characters are classified by matching the all features of input character with already trained features of characters.Keywords: chain code frequency, character recognition, feature extraction, features matching, segmentation
Procedia PDF Downloads 3203838 An Experimental Study for Assessing Email Classification Attributes Using Feature Selection Methods
Authors: Issa Qabaja, Fadi Thabtah
Abstract:
Email phishing classification is one of the vital problems in the online security research domain that have attracted several scholars due to its impact on the users payments performed daily online. One aspect to reach a good performance by the detection algorithms in the email phishing problem is to identify the minimal set of features that significantly have an impact on raising the phishing detection rate. This paper investigate three known feature selection methods named Information Gain (IG), Chi-square and Correlation Features Set (CFS) on the email phishing problem to separate high influential features from low influential ones in phishing detection. We measure the degree of influentially by applying four data mining algorithms on a large set of features. We compare the accuracy of these algorithms on the complete features set before feature selection has been applied and after feature selection has been applied. After conducting experiments, the results show 12 common significant features have been chosen among the considered features by the feature selection methods. Further, the average detection accuracy derived by the data mining algorithms on the reduced 12-features set was very slight affected when compared with the one derived from the 47-features set.Keywords: data mining, email classification, phishing, online security
Procedia PDF Downloads 4323837 Exploring Syntactic and Semantic Features for Text-Based Authorship Attribution
Authors: Haiyan Wu, Ying Liu, Shaoyun Shi
Abstract:
Authorship attribution is to extract features to identify authors of anonymous documents. Many previous works on authorship attribution focus on statistical style features (e.g., sentence/word length), content features (e.g., frequent words, n-grams). Modeling these features by regression or some transparent machine learning methods gives a portrait of the authors' writing style. But these methods do not capture the syntactic (e.g., dependency relationship) or semantic (e.g., topics) information. In recent years, some researchers model syntactic trees or latent semantic information by neural networks. However, few works take them together. Besides, predictions by neural networks are difficult to explain, which is vital in authorship attribution tasks. In this paper, we not only utilize the statistical style and content features but also take advantage of both syntactic and semantic features. Different from an end-to-end neural model, feature selection and prediction are two steps in our method. An attentive n-gram network is utilized to select useful features, and logistic regression is applied to give prediction and understandable representation of writing style. Experiments show that our extracted features can improve the state-of-the-art methods on three benchmark datasets.Keywords: authorship attribution, attention mechanism, syntactic feature, feature extraction
Procedia PDF Downloads 1363836 Using New Machine Algorithms to Classify Iranian Musical Instruments According to Temporal, Spectral and Coefficient Features
Authors: Ronak Khosravi, Mahmood Abbasi Layegh, Siamak Haghipour, Avin Esmaili
Abstract:
In this paper, a study on classification of musical woodwind instruments using a small set of features selected from a broad range of extracted ones by the sequential forward selection method was carried out. Firstly, we extract 42 features for each record in the music database of 402 sound files belonging to five different groups of Flutes (end blown and internal duct), Single –reed, Double –reed (exposed and capped), Triple reed and Quadruple reed. Then, the sequential forward selection method is adopted to choose the best feature set in order to achieve very high classification accuracy. Two different classification techniques of support vector machines and relevance vector machines have been tested out and an accuracy of up to 96% can be achieved by using 21 time, frequency and coefficient features and relevance vector machine with the Gaussian kernel function.Keywords: coefficient features, relevance vector machines, spectral features, support vector machines, temporal features
Procedia PDF Downloads 3203835 Exploring Chess Game AI Features Application
Authors: Bashayer Almalki, Mayar Bajrai, Dana Mirah, Kholood Alghamdi, Hala Sanyour
Abstract:
This research aims to investigate the features of an AI chess app that are most preferred by users. A questionnaire was used as the methodology to gather responses from a varied group of participants. The questionnaire consisted of several questions related to the features of the AI chess app. The responses were analyzed using descriptive statistics and factor analysis. The findings indicate that the most preferred features of an AI chess app are the ability to play against the computer, the option to adjust the difficulty level, and the availability of tutorials and puzzles. The results of this research could be useful for developers of AI chess apps to enhance the user experience and satisfaction.Keywords: chess, game, application, computics
Procedia PDF Downloads 683834 Research on Perceptual Features of Couchsurfers on New Hospitality Tourism Platform Couchsurfing
Authors: Yuanxiang Miao
Abstract:
This paper aims to examine the perceptual features of couchsurfers on a new hospitality tourism platform, the free homestay website couchsurfing. As a local host, the author has accepted 61 couchsurfers in Kyoto, Japan, and attempted to figure out couchsurfers' characteristics on perception by hosting them. Moreover, the methodology of this research is mainly based on in-depth interviews, by talking with couchsurfers, observing their behaviors, doing questionnaires, etc. Five dominant perceptual features of couchsurfers were identified: (1) Trusting; (2) Meeting; (3) Sharing; (4) Reciprocity; (5) Worries. The value of this research lies in figuring out a deeper understanding of the perceptual features of couchsurfers, and the author indeed hosted and stayed with 61 couchsurfers from 30 countries and areas over one year. Lastly, the author offers practical suggestions for future research.Keywords: couchsurfing, depth interview, hospitality tourism, perceptual features
Procedia PDF Downloads 1453833 The Latent Model of Linguistic Features in Korean College Students’ L2 Argumentative Writings: Syntactic Complexity, Lexical Complexity, and Fluency
Authors: Jiyoung Bae, Gyoomi Kim
Abstract:
This study explores a range of linguistic features used in Korean college students’ argumentative writings for the purpose of developing a model that identifies variables which predict writing proficiencies. This study investigated the latent variable structure of L2 linguistic features, including syntactic complexity, the lexical complexity, and fluency. One hundred forty-six university students in Korea participated in this study. The results of the study’s confirmatory factor analysis (CFA) showed that indicators of linguistic features from this study-provided a foundation for re-categorizing indicators found in extant research on L2 Korean writers depending on each latent variable of linguistic features. The CFA models indicated one measurement model of L2 syntactic complexity and L2 learners’ writing proficiency; these two latent factors were correlated with each other. Based on the overall findings of the study, integrated linguistic features of L2 writings suggested some pedagogical implications in L2 writing instructions.Keywords: linguistic features, syntactic complexity, lexical complexity, fluency
Procedia PDF Downloads 1703832 Comparison between XGBoost, LightGBM and CatBoost Using a Home Credit Dataset
Authors: Essam Al Daoud
Abstract:
Gradient boosting methods have been proven to be a very important strategy. Many successful machine learning solutions were developed using the XGBoost and its derivatives. The aim of this study is to investigate and compare the efficiency of three gradient methods. Home credit dataset is used in this work which contains 219 features and 356251 records. However, new features are generated and several techniques are used to rank and select the best features. The implementation indicates that the LightGBM is faster and more accurate than CatBoost and XGBoost using variant number of features and records.Keywords: gradient boosting, XGBoost, LightGBM, CatBoost, home credit
Procedia PDF Downloads 1713831 Native Language Identification with Cross-Corpus Evaluation Using Social Media Data: ’Reddit’
Authors: Yasmeen Bassas, Sandra Kuebler, Allen Riddell
Abstract:
Native language identification is one of the growing subfields in natural language processing (NLP). The task of native language identification (NLI) is mainly concerned with predicting the native language of an author’s writing in a second language. In this paper, we investigate the performance of two types of features; content-based features vs. content independent features, when they are evaluated on a different corpus (using social media data “Reddit”). In this NLI task, the predefined models are trained on one corpus (TOEFL), and then the trained models are evaluated on different data using an external corpus (Reddit). Three classifiers are used in this task; the baseline, linear SVM, and logistic regression. Results show that content-based features are more accurate and robust than content independent ones when tested within the corpus and across corpus.Keywords: NLI, NLP, content-based features, content independent features, social media corpus, ML
Procedia PDF Downloads 1373830 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine
Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour
Abstract:
Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.Keywords: decision tree, feature selection, intrusion detection system, support vector machine
Procedia PDF Downloads 2653829 Archaeoseismological Evidence for a Possible Destructive Earthquake in the 7th Century AD at the Ancient Sites of Bulla Regia and Chemtou (NW Tunisia): Seismotectonic and Structural Implications
Authors: Abdelkader Soumaya, Noureddine Ben Ayed, Ali Kadri, Said Maouche, Hayet Khayati Ammar, Ahmed Braham
Abstract:
The historic sites of Bulla Regia and Chemtou are among the most important archaeological monuments in northwestern Tunisia, which flourished as large, wealthy settlements during the Roman and Byzantine periods (2nd to 7th centuries AD). An archaeoseismological study provides the first indications about the impact of a possible ancient strong earthquake in the destruction of these cities. Based on previous archaeological excavation results, including numismatic evidence, pottery, economic meltdown and urban transformation, the abrupt ruin and destruction of the cities of Bulla Regia and Chemtou can be bracketed between 613 and 647 AD. In this study, we carried out the first attempt to use the analysis of earthquake archaeological effects (EAEs) that were observed during our field investigations in these two historic cities. The damage includes different types of EAEs: folds on regular pavements, displaced and deformed vaults, folded walls, tilted walls, collapsed keystones in arches, dipping broken corners, displaced-fallen columns, block extrusions in walls, penetrative fractures in brick-made walls and open fractures on regular pavements. These deformations are spread over 10 different sectors or buildings and include 56 measured EAEs. The structural analysis of the identified EAEs can indicate an ancient destructive earthquake that probably destroyed the Bulla Regia and Chemtou archaeological sites. We then analyzed these measurements using structural geological analysis to obtain the maximum horizontal strain of the ground (e.g., S ₕₘₐₓ) on each building-oriented damage. After the collection and analysis of these strain datasets, we proceed to plot the orientation of Sₕₘₐₓ trajectories on the map of the archaeological site (Bulla Regia). We concluded that the obtained Sₕₘₐₓ trajectories within this site could then be related to the mean direction of ground motion (oscillatory movement of the ground) triggered by a seismic event, as documented for some historical earthquakes across the world. These Sₕₘₐₓ orientations closely match the current active stress field, as highlighted by some instrumental events in northern Tunisia. In terms of the seismic source, we strongly suggest that the reactivation of a neotectonic strike-slip fault trending N50E must be responsible for this probable historic earthquake and the recent instrumental seismicity in this area. This fault segment, affecting the folded quaternary deposits south of Jebel Rebia, passes through the monument of Bulla Regia. Stress inversion of the observed and measured data along this fault shows an N150 - 160 trend of Sₕₘₐₓ under a transpressional tectonic regime, which is quite consistent with the GPS data and the state of the current stress field in this region.Keywords: NW Tunisia, archaeoseismology, earthquake archaeological effect, bulla regia - Chemtou, seismotectonic, neotectonic fault
Procedia PDF Downloads 483828 Task Distraction vs. Visual Enhancement: Which Is More Effective?
Authors: Huangmei Liu, Si Liu, Jia’nan Liu
Abstract:
The present experiment investigated and compared the effectiveness of two kinds of methods of attention control: Task distraction and visual enhancement. In the study, the effectiveness of task distractions to explicit features and of visual enhancement to implicit features of the same group of Chinese characters were compared based on their effect on the participants’ reaction time, subjective confidence rating, and verbal report. We found support that the visual enhancement on implicit features did overcome the contrary effect of training distraction and led to awareness of those implicit features, at least to some extent.Keywords: task distraction, visual enhancement, attention, awareness, learning
Procedia PDF Downloads 4303827 Security Features for Remote Healthcare System: A Feasibility Study
Authors: Tamil Chelvi Vadivelu, Nurazean Maarop, Rasimah Che Yusoff, Farhana Aini Saludin
Abstract:
Implementing a remote healthcare system needs to consider many security features. Therefore, before any deployment of the remote healthcare system, a feasibility study from the security perspective is crucial. Remote healthcare system using WBAN technology has been used in other countries for medical purposes but in Malaysia, such projects are still not yet implemented. This study was conducted qualitatively. The interview results involving five healthcare practitioners are further elaborated. The study has addressed four important security features in order to incorporate remote healthcare system using WBAN in Malaysian government hospitals.Keywords: remote healthcare, IT security, security features, wireless sensor application
Procedia PDF Downloads 3053826 Lateral Heterogeneity of 1/Q in Eastern and Southeastern Anatolia
Authors: Ufuk Aydın
Abstract:
The Coda attenuation and frequency dependency of seismic wave are strongly dependent on the effective stresses structures within the upper crust. In this study, the data of three different stations were used to examine the lateral variation of stress. The tectonic structures of these three areas have been examined comparatively using lateral coda tomography. In the study using the single scatter method, the window length selected to be 20 second. Coda values 80 with 94 and frequency dependency values obtained between 0.69 and 1.21. The 1/QC values for the three regions ranged from 0.0012 to 0.017, highlighting the regional differences in the seismotectonic activity of the crust. The lowest absorption values obtained from Erzurum station when the highest absorption values obtained at the Kemaliye station. The low Qc and high frequency dependency values obtained Kemaliye, which indicates that it has highest tectonic activity than other two regions. The seismo-dynamics data obtained from the study found to be in agreement with the tectonic structure of the region.Keywords: regional coda attenuation, tectonic stress, crustal deformation
Procedia PDF Downloads 1833825 Mood Recognition Using Indian Music
Authors: Vishwa Joshi
Abstract:
The study of mood recognition in the field of music has gained a lot of momentum in the recent years with machine learning and data mining techniques and many audio features contributing considerably to analyze and identify the relation of mood plus music. In this paper we consider the same idea forward and come up with making an effort to build a system for automatic recognition of mood underlying the audio song’s clips by mining their audio features and have evaluated several data classification algorithms in order to learn, train and test the model describing the moods of these audio songs and developed an open source framework. Before classification, Preprocessing and Feature Extraction phase is necessary for removing noise and gathering features respectively.Keywords: music, mood, features, classification
Procedia PDF Downloads 4953824 Systems Versioning: A Features-Based Meta-Modeling Approach
Authors: Ola A. Younis, Said Ghoul
Abstract:
Systems running these days are huge, complex and exist in many versions. Controlling these versions and tracking their changes became a very hard process as some versions are created using meaningless names or specifications. Many versions of a system are created with no clear difference between them. This leads to mismatching between a user’s request and the version he gets. In this paper, we present a system versions meta-modeling approach that produces versions based on system’s features. This model reduced the number of steps needed to configure a release and gave each version its unique specifications. This approach is applicable for systems that use features in its specification.Keywords: features, meta-modeling, semantic modeling, SPL, VCS, versioning
Procedia PDF Downloads 4463823 Machine Vision System for Measuring the Quality of Bulk Sun-dried Organic Raisins
Authors: Navab Karimi, Tohid Alizadeh
Abstract:
An intelligent vision-based system was designed to measure the quality and purity of raisins. A machine vision setup was utilized to capture the images of bulk raisins in ranges of 5-50% mixed pure-impure berries. The textural features of bulk raisins were extracted using Grey-level Histograms, Co-occurrence Matrix, and Local Binary Pattern (a total of 108 features). Genetic Algorithm and neural network regression were used for selecting and ranking the best features (21 features). As a result, the GLCM features set was found to have the highest accuracy (92.4%) among the other sets. Followingly, multiple feature combinations of the previous stage were fed into the second regression (linear regression) to increase accuracy, wherein a combination of 16 features was found to be the optimum. Finally, a Support Vector Machine (SVM) classifier was used to differentiate the mixtures, producing the best efficiency and accuracy of 96.2% and 97.35%, respectively.Keywords: sun-dried organic raisin, genetic algorithm, feature extraction, ann regression, linear regression, support vector machine, south azerbaijan.
Procedia PDF Downloads 733822 Training a Neural Network Using Input Dropout with Aggressive Reweighting (IDAR) on Datasets with Many Useless Features
Authors: Stylianos Kampakis
Abstract:
This paper presents a new algorithm for neural networks called “Input Dropout with Aggressive Re-weighting” (IDAR) aimed specifically at datasets with many useless features. IDAR combines two techniques (dropout of input neurons and aggressive re weighting) in order to eliminate the influence of noisy features. The technique can be seen as a generalization of dropout. The algorithm is tested on two different benchmark data sets: a noisy version of the iris dataset and the MADELON data set. Its performance is compared against three other popular techniques for dealing with useless features: L2 regularization, LASSO and random forests. The results demonstrate that IDAR can be an effective technique for handling data sets with many useless features.Keywords: neural networks, feature selection, regularization, aggressive reweighting
Procedia PDF Downloads 4553821 An Automatic Feature Extraction Technique for 2D Punch Shapes
Authors: Awais Ahmad Khan, Emad Abouel Nasr, H. M. A. Hussein, Abdulrahman Al-Ahmari
Abstract:
Sheet-metal parts have been widely applied in electronics, communication and mechanical industries in recent decades; but the advancement in sheet-metal part design and manufacturing is still behind in comparison with the increasing importance of sheet-metal parts in modern industry. This paper presents a methodology for automatic extraction of some common 2D internal sheet metal features. The features used in this study are taken from Unipunch ™ catalogue. The extraction process starts with the data extraction from STEP file using an object oriented approach and with the application of suitable algorithms and rules, all features contained in the catalogue are automatically extracted. Since the extracted features include geometry and engineering information, they will be effective for downstream application such as feature rebuilding and process planning.Keywords: feature extraction, internal features, punch shapes, sheet metal
Procedia PDF Downloads 615