Search results for: non-linear modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3034

Search results for: non-linear modelling

3034 X-Ray Dynamical Diffraction 'Third Order Nonlinear Renninger Effect'

Authors: Minas Balyan

Abstract:

Nowadays X-ray nonlinear diffraction and nonlinear effects are investigated due to the presence of the third generation synchrotron sources and XFELs. X-ray third order nonlinear dynamical diffraction is considered as well. Using the nonlinear model of the usual visible light optics the third-order nonlinear Takagi’s equations for monochromatic waves and the third-order nonlinear time-dependent dynamical diffraction equations for X-ray pulses are obtained by the author in previous papers. The obtained equations show, that even if the Fourier-coefficients of the linear and the third order nonlinear susceptibilities are zero (forbidden reflection), the dynamical diffraction in the nonlinear case is related to the presence in the nonlinear equations the terms proportional to the zero order and the second order nonzero Fourier coefficients of the third order nonlinear susceptibility. Thus, in the third order nonlinear Bragg diffraction case a nonlinear analogue of the well-known Renninger effect takes place. In this work, the 'third order nonlinear Renninger effect' is considered theoretically.

Keywords: Bragg diffraction, nonlinear Takagi’s equations, nonlinear Renninger effect, third order nonlinearity

Procedia PDF Downloads 385
3033 Identification of Nonlinear Systems Using Radial Basis Function Neural Network

Authors: C. Pislaru, A. Shebani

Abstract:

This paper uses the radial basis function neural network (RBFNN) for system identification of nonlinear systems. Five nonlinear systems are used to examine the activity of RBFNN in system modeling of nonlinear systems; the five nonlinear systems are dual tank system, single tank system, DC motor system, and two academic models. The feed forward method is considered in this work for modelling the non-linear dynamic models, where the K-Means clustering algorithm used in this paper to select the centers of radial basis function network, because it is reliable, offers fast convergence and can handle large data sets. The least mean square method is used to adjust the weights to the output layer, and Euclidean distance method used to measure the width of the Gaussian function.

Keywords: system identification, nonlinear systems, neural networks, radial basis function, K-means clustering algorithm

Procedia PDF Downloads 469
3032 An Approach on Robust Multi Inversion of a Nonlinear Model for an Omni-Directional Mobile

Authors: Fernando P. Silva, Valter J. S. Leite, Erivelton G. Nepomuceno

Abstract:

In this paper, a nonlinear controller design for an omnidirectional mobile is presented. The robot controller consists of an inner-loop controller and an outer-loop controller, the first is designed using state feedback (robust allocation) and the second controller is designed based on Robust Multi Inversion (RMI) approach. The objective of RMI controller is rendering the robust inversion of the dynamic, when the model is affected by uncertainties. A model nonlinear MIMO of an omni-directional robot (small-league of Robocup) is used to simulate the RMI approach. The parameters of linear and nonlinear model are varied to cause modelling uncertainties among the model and the real model (real system) generating an error in inner-loop controller signal that must be compensated by RMI controller. The simulation test results show that the RMI is capable of compensating the uncertainties and keep the system stable and controlled under uncertainties.

Keywords: robust multi inversion, omni-directional robot, robocup, nonlinear control

Procedia PDF Downloads 585
3031 Genetic Programming: Principles, Applications and Opportunities for Hydrological Modelling

Authors: Oluwaseun K. Oyebode, Josiah A. Adeyemo

Abstract:

Hydrological modelling plays a crucial role in the planning and management of water resources, most especially in water stressed regions where the need to effectively manage the available water resources is of critical importance. However, due to the complex, nonlinear and dynamic behaviour of hydro-climatic interactions, achieving reliable modelling of water resource systems and accurate projection of hydrological parameters are extremely challenging. Although a significant number of modelling techniques (process-based and data-driven) have been developed and adopted in that regard, the field of hydrological modelling is still considered as one that has sluggishly progressed over the past decades. This is majorly as a result of the identification of some degree of uncertainty in the methodologies and results of techniques adopted. In recent times, evolutionary computation (EC) techniques have been developed and introduced in response to the search for efficient and reliable means of providing accurate solutions to hydrological related problems. This paper presents a comprehensive review of the underlying principles, methodological needs and applications of a promising evolutionary computation modelling technique – genetic programming (GP). It examines the specific characteristics of the technique which makes it suitable to solving hydrological modelling problems. It discusses the opportunities inherent in the application of GP in water related-studies such as rainfall estimation, rainfall-runoff modelling, streamflow forecasting, sediment transport modelling, water quality modelling and groundwater modelling among others. Furthermore, the means by which such opportunities could be harnessed in the near future are discussed. In all, a case for total embracement of GP and its variants in hydrological modelling studies is made so as to put in place strategies that would translate into achieving meaningful progress as it relates to modelling of water resource systems, and also positively influence decision-making by relevant stakeholders.

Keywords: computational modelling, evolutionary algorithms, genetic programming, hydrological modelling

Procedia PDF Downloads 298
3030 Response Regimes and Vibration Mitigation in Equivalent Mechanical Model of Strongly Nonlinear Liquid Sloshing

Authors: Maor Farid, Oleg Gendelman

Abstract:

Equivalent mechanical model of liquid sloshing in partially-filled cylindrical vessel is treated in the cases of free oscillations and of horizontal base excitation. The model is designed to cover both the linear and essentially nonlinear sloshing regimes. The latter fluid behaviour might involve hydraulic impacts interacting with the inner walls of the tank. These impulsive interactions are often modeled by high-power potential and dissipation functions. For the sake of analytical description, we use the traditional approach by modeling the impacts with velocity-dependent restitution coefficient. This modelling is similar to vibro-impact nonlinear energy sink (VI NES) which was recently explored for its vibration mitigation performances and nonlinear response regimes. Steady-state periodic regimes and chaotic strongly modulated responses (CSMR) are detected. Those dynamical regimes were described by the system's slow motion on the slow invariant manifold (SIM). There is a good agreement between the analytical results and numerical simulations. Subsequently, Finite-Element (FE) method is used to determine and verify the model parameters and to identify dominant dynamical regimes, natural modes and frequencies. The tank failure modes are identified and critical locations are identified. Mathematical relation is found between degrees-of-freedom (DOFs) motion and the mechanical stress applied in the tank critical section. This is the prior attempt to take under consideration large-amplitude nonlinear sloshing and tank structure elasticity effects for design, regulation definition and resistance analysis purposes. Both linear (tuned mass damper, TMD) and nonlinear (nonlinear energy sink, NES) passive energy absorbers contribution to the overall system mitigation is firstly examined, in terms of both stress reduction and time for vibration decay.

Keywords: nonlinear energy sink (NES), reduced-order modelling, liquid sloshing, vibration mitigation, vibro-impact dynamics

Procedia PDF Downloads 145
3029 A New Nonlinear State-Space Model and Its Application

Authors: Abdullah Eqal Al Mazrooei

Abstract:

In this work, a new nonlinear model will be introduced. The model is in the state-space form. The nonlinearity of this model is in the state equation where the state vector is multiplied by its self. This technique makes our model generalizes many famous models as Lotka-Volterra model and Lorenz model which have many applications in the real life. We will apply our new model to estimate the wind speed by using a new nonlinear estimator which suitable to work with our model.

Keywords: nonlinear systems, state-space model, Kronecker product, nonlinear estimator

Procedia PDF Downloads 691
3028 Achieving Better Security by Using Nonlinear Cellular Automata as a Cryptographic Primitive

Authors: Swapan Maiti, Dipanwita Roy Chowdhury

Abstract:

Nonlinear functions are essential in different cryptoprimitives as they play an important role on the security of the cipher designs. Rule 30 was identified as a powerful nonlinear function for cryptographic applications. However, an attack (MS attack) was mounted against Rule 30 Cellular Automata (CA). Nonlinear rules as well as maximum period CA increase randomness property. In this work, nonlinear rules of maximum period nonlinear hybrid CA (M-NHCA) are studied and it is shown to be a better crypto-primitive than Rule 30 CA. It has also been analysed that the M-NHCA with single nonlinearity injection proposed in the literature is vulnerable against MS attack, whereas M-NHCA with multiple nonlinearity injections provide maximum length cycle as well as better cryptographic primitives and they are also secure against MS attack.

Keywords: cellular automata, maximum period nonlinear CA, Meier and Staffelbach attack, nonlinear functions

Procedia PDF Downloads 314
3027 Parameter Estimation via Metamodeling

Authors: Sergio Haram Sarmiento, Arcady Ponosov

Abstract:

Based on appropriate multivariate statistical methodology, we suggest a generic framework for efficient parameter estimation for ordinary differential equations and the corresponding nonlinear models. In this framework classical linear regression strategies is refined into a nonlinear regression by a locally linear modelling technique (known as metamodelling). The approach identifies those latent variables of the given model that accumulate most information about it among all approximations of the same dimension. The method is applied to several benchmark problems, in particular, to the so-called ”power-law systems”, being non-linear differential equations typically used in Biochemical System Theory.

Keywords: principal component analysis, generalized law of mass action, parameter estimation, metamodels

Procedia PDF Downloads 517
3026 Nonlinear Observer Canonical Form for Genetic Regulation Process

Authors: Bououden Soraya

Abstract:

This paper aims to study the existence of the change of coordinates which permits to transform a class of nonlinear dynamical systems into the so-called nonlinear observer canonical form (NOCF). Moreover, an algorithm to construct such a change of coordinates is given. Based on this form, we can design an observer with a linear error dynamic. This enables us to estimate the state of a nonlinear dynamical system. A concrete example (biological model) is provided to illustrate the feasibility of the proposed results.

Keywords: nonlinear observer canonical form, observer, design, gene regulation, gene expression

Procedia PDF Downloads 432
3025 X-Ray Dynamical Diffraction Rocking Curves in Case of Third Order Nonlinear Renninger Effect

Authors: Minas Balyan

Abstract:

In the third-order nonlinear Takagi’s equations for monochromatic waves and in the third-order nonlinear time-dependent dynamical diffraction equations for X-ray pulses for forbidden reflections the Fourier-coefficients of the linear and the third order nonlinear susceptibilities are zero. The dynamical diffraction in the nonlinear case is related to the presence in the nonlinear equations the terms proportional to the zero order and the second order nonzero Fourier coefficients of the third order nonlinear susceptibility. Thus in the third order nonlinear Bragg diffraction case a nonlinear analogue of the well known Renninger effect takes place. In this work, the ‘third order nonlinear Renninger effect’ is considered theoretically and numerically. If the reflection exactly is forbidden the diffracted wave’s amplitude is zero both in Laue and Bragg cases since the boundary conditions and dynamical diffraction equations are compatible with zero solution. But in real crystals due to some percent of dislocations and other localized defects, the atoms are displaced with respect to their equilibrium positions. Thus in real crystals susceptibilities of forbidden reflection are by some order small than for usual not forbidden reflections but are not exactly equal to zero. The numerical calculations for susceptibilities two order less than for not forbidden reflection show that in Bragg geometry case the nonlinear reflection curve’s behavior is the same as for not forbidden reflection, but for forbidden reflection the rocking curves’ width, center and boundaries are two order sensitive on the input intensity value. This gives an opportunity to investigate third order nonlinear X-ray dynamical diffraction for not intense beams – 0.001 in the units of critical intensity.

Keywords: third order nonlinearity, Bragg diffraction, nonlinear Renninger effect, rocking curves

Procedia PDF Downloads 406
3024 A Filtering Algorithm for a Nonlinear State-Space Model

Authors: Abdullah Eqal Al Mazrooei

Abstract:

Kalman filter is a famous algorithm that utilizes to estimate the state in the linear systems. It has numerous applications in technology and science. Since of the most of applications in real life can be described by nonlinear systems. So, Kalman filter does not work with the nonlinear systems because it is suitable to linear systems only. In this work, a nonlinear filtering algorithm is presented which is suitable to use with the special kinds of nonlinear systems. This filter generalizes the Kalman filter. This means that this filter also can be used for the linear systems. Our algorithm depends on a special linearization of the second degree. We introduced the nonlinear algorithm with a bilinear state-space model. A simulation example is presented to illustrate the efficiency of the algorithm.

Keywords: Kalman filter, filtering algorithm, nonlinear systems, state-space model

Procedia PDF Downloads 375
3023 Frequency Response of Complex Systems with Localized Nonlinearities

Authors: E. Menga, S. Hernandez

Abstract:

Finite Element Models (FEMs) are widely used in order to study and predict the dynamic properties of structures and usually, the prediction can be obtained with much more accuracy in the case of a single component than in the case of assemblies. Especially for structural dynamics studies, in the low and middle frequency range, most complex FEMs can be seen as assemblies made by linear components joined together at interfaces. From a modelling and computational point of view, these types of joints can be seen as localized sources of stiffness and damping and can be modelled as lumped spring/damper elements, most of time, characterized by nonlinear constitutive laws. On the other side, most of FE programs are able to run nonlinear analysis in time-domain. They treat the whole structure as nonlinear, even if there is one nonlinear degree of freedom (DOF) out of thousands of linear ones, making the analysis unnecessarily expensive from a computational point of view. In this work, a methodology in order to obtain the nonlinear frequency response of structures, whose nonlinearities can be considered as localized sources, is presented. The work extends the well-known Structural Dynamic Modification Method (SDMM) to a nonlinear set of modifications, and allows getting the Nonlinear Frequency Response Functions (NLFRFs), through an ‘updating’ process of the Linear Frequency Response Functions (LFRFs). A brief summary of the analytical concepts is given, starting from the linear formulation and understanding what the implications of the nonlinear one, are. The response of the system is formulated in both: time and frequency domain. First the Modal Database is extracted and the linear response is calculated. Secondly the nonlinear response is obtained thru the NL SDMM, by updating the underlying linear behavior of the system. The methodology, implemented in MATLAB, has been successfully applied to estimate the nonlinear frequency response of two systems. The first one is a two DOFs spring-mass-damper system, and the second example takes into account a full aircraft FE Model. In spite of the different levels of complexity, both examples show the reliability and effectiveness of the method. The results highlight a feasible and robust procedure, which allows a quick estimation of the effect of localized nonlinearities on the dynamic behavior. The method is particularly powerful when most of the FE Model can be considered as acting linearly and the nonlinear behavior is restricted to few degrees of freedom. The procedure is very attractive from a computational point of view because the FEM needs to be run just once, which allows faster nonlinear sensitivity analysis and easier implementation of optimization procedures for the calibration of nonlinear models.

Keywords: frequency response, nonlinear dynamics, structural dynamic modification, softening effect, rubber

Procedia PDF Downloads 266
3022 Nonlinear Impact Responses for a Damped Frame Supported by Nonlinear Springs with Hysteresis Using Fast FEA

Authors: T. Yamaguchi, M. Watanabe, M. Sasajima, C. Yuan, S. Maruyama, T. B. Ibrahim, H. Tomita

Abstract:

This paper deals with nonlinear vibration analysis using finite element method for frame structures consisting of elastic and viscoelastic damping layers supported by multiple nonlinear concentrated springs with hysteresis damping. The frame is supported by four nonlinear concentrated springs near the four corners. The restoring forces of the springs have cubic non-linearity and linear component of the nonlinear springs has complex quantity to represent linear hysteresis damping. The damping layer of the frame structures has complex modulus of elasticity. Further, the discretized equations in physical coordinate are transformed into the nonlinear ordinary coupled differential equations using normal coordinate corresponding to linear natural modes. Comparing shares of strain energy of the elastic frame, the damping layer and the springs, we evaluate the influences of the damping couplings on the linear and nonlinear impact responses. We also investigate influences of damping changed by stiffness of the elastic frame on the nonlinear coupling in the damped impact responses.

Keywords: dynamic response, nonlinear impact response, finite element analysis, numerical analysis

Procedia PDF Downloads 434
3021 A Nonlinear Visco-Hyper Elastic Constitutive Model for Modelling Behavior of Polyurea at Large Deformations

Authors: Shank Kulkarni, Alireza Tabarraei

Abstract:

The fantastic properties of polyurea such as flexibility, durability, and chemical resistance have brought it a wide range of application in various industries. Effective prediction of the response of polyurea under different loading and environmental conditions necessitates the development of an accurate constitutive model. Similar to most polymers, the behavior of polyurea depends on both strain and strain rate. Therefore, the constitutive model should be able to capture both these effects on the response of polyurea. To achieve this objective, in this paper, a nonlinear hyper-viscoelastic constitutive model is developed by the superposition of a hyperelastic and a viscoelastic model. The proposed constitutive model can capture the behavior of polyurea under compressive loading conditions at various strain rates. Four parameter Ogden model and Mooney Rivlin model are used to modeling the hyperelastic behavior of polyurea. The viscoelastic behavior is modeled using both a three-parameter standard linear solid (SLS) model and a K-BKZ model. Comparison of the modeling results with experiments shows that Odgen and SLS model can more accurately predict the behavior of polyurea. The material parameters of the model are found by curve fitting of the proposed model to the uniaxial compression test data. The proposed model can closely reproduce the stress-strain behavior of polyurea for strain rates up to 6500 /s.

Keywords: constitutive modelling, ogden model, polyurea, SLS model, uniaxial compression test

Procedia PDF Downloads 243
3020 Direct Design of Steel Bridge Using Nonlinear Inelastic Analysis

Authors: Boo-Sung Koh, Seung-Eock Kim

Abstract:

In this paper, a direct design using a nonlinear inelastic analysis is suggested. Also, this paper compares the load carrying capacity obtained by a nonlinear inelastic analysis with experiment results to verify the accuracy of the results. The allowable stress design results of a railroad through a plate girder bridge and the safety factor of the nonlinear inelastic analysis were compared to examine the safety performance. As a result, the load safety factor for the nonlinear inelastic analysis was twice as high as the required safety factor under the allowable stress design standard specified in the civil engineering structure design standards for urban magnetic levitation railways, which further verified the advantages of the proposed direct design method.

Keywords: direct design, nonlinear inelastic analysis, residual stress, initial geometric imperfection

Procedia PDF Downloads 531
3019 Nonlinear Pollution Modelling for Polymeric Outdoor Insulator

Authors: Rahisham Abd Rahman

Abstract:

In this paper, a nonlinear pollution model has been proposed to compute electric field distribution over the polymeric insulator surface under wet contaminated conditions. A 2D axial-symmetric insulator geometry, energized with 11kV was developed and analysed using Finite Element Method (FEM). A field-dependent conductivity with simplified assumptions was established to characterize the electrical properties of the pollution layer. Comparative field studies showed that simulation of dynamic pollution model results in a more realistic field profile, offering better understanding on how the electric field behaves under wet polluted conditions.

Keywords: electric field distributions, pollution layer, dynamic model, polymeric outdoor insulators, finite element method (FEM)

Procedia PDF Downloads 400
3018 Soliton Solutions of the Higher-Order Nonlinear Schrödinger Equation with Dispersion Effects

Authors: H. Triki, Y. Hamaizi, A. El-Akrmi

Abstract:

We consider the higher order nonlinear Schrödinger equation model with fourth-order dispersion, cubic-quintic terms, and self-steepening. This equation governs the propagation of fem to second pulses in optical fibers. We present new bright and dark solitary wave type solutions for such a model under certain parametric conditions. This kind of solution may be useful to explain some physical phenomena related to wave propagation in a nonlinear optical fiber systems supporting high-order nonlinear and dispersive effects.

Keywords: nonlinear Schrödinger equation, high-order effects, soliton solution

Procedia PDF Downloads 634
3017 State Estimation Method Based on Unscented Kalman Filter for Vehicle Nonlinear Dynamics

Authors: Wataru Nakamura, Tomoaki Hashimoto, Liang-Kuang Chen

Abstract:

This paper provides a state estimation method for automatic control systems of nonlinear vehicle dynamics. A nonlinear tire model is employed to represent the realistic behavior of a vehicle. In general, all the state variables of control systems are not precisedly known, because those variables are observed through output sensors and limited parts of them might be only measurable. Hence, automatic control systems must incorporate some type of state estimation. It is needed to establish a state estimation method for nonlinear vehicle dynamics with restricted measurable state variables. For this purpose, unscented Kalman filter method is applied in this study for estimating the state variables of nonlinear vehicle dynamics. The objective of this paper is to propose a state estimation method using unscented Kalman filter for nonlinear vehicle dynamics. The effectiveness of the proposed method is verified by numerical simulations.

Keywords: state estimation, control systems, observer systems, nonlinear systems

Procedia PDF Downloads 133
3016 A Mathematical Model of Power System State Estimation for Power Flow Solution

Authors: F. Benhamida, A. Graa, L. Benameur, I. Ziane

Abstract:

The state estimation of the electrical power system operation state is very important for supervising task. With the nonlinearity of the AC power flow model, the state estimation problem (SEP) is a nonlinear mathematical problem with many local optima. This paper treat the mathematical model for the SEP and the monitoring of the nonlinear systems of great dimensions with an application on power electrical system, the modelling, the analysis and state estimation synthesis in order to supervise the power system behavior. in fact, it is very difficult, to see impossible, (for reasons of accessibility, techniques and/or of cost) to measure the excessive number of the variables of state in a large-sized system. It is thus important to develop software sensors being able to produce a reliable estimate of the variables necessary for the diagnosis and also for the control.

Keywords: power system, state estimation, robustness, observability

Procedia PDF Downloads 523
3015 Modeling and Control of a 4DoF Robotic Assistive Device for Hand Rehabilitation

Authors: Christopher Spiewak, M. R. Islam, Mohammad Arifur Rahaman, Mohammad H. Rahman, Roger Smith, Maarouf Saad

Abstract:

For those who have lost the ability to move their hand, going through repetitious motions with the assistance of a therapist is the main method of recovery. We have been developed a robotic assistive device to rehabilitate the hand motions in place of the traditional therapy. The developed assistive device (RAD-HR) is comprised of four degrees of freedom enabling basic movements, hand function, and assists in supporting the hand during rehabilitation. We used a nonlinear computed torque control technique to control the RAD-HR. The accuracy of the controller was evaluated in simulations (MATLAB/Simulink environment). To see the robustness of the controller external disturbance as modelling uncertainty (±10% of joint torques) were added in each joints.

Keywords: biorobotics, rehabilitation, robotic assistive device, exoskeleton, nonlinear control

Procedia PDF Downloads 479
3014 Numerical Iteration Method to Find New Formulas for Nonlinear Equations

Authors: Kholod Mohammad Abualnaja

Abstract:

A new algorithm is presented to find some new iterative methods for solving nonlinear equations F(x)=0 by using the variational iteration method. The efficiency of the considered method is illustrated by example. The results show that the proposed iteration technique, without linearization or small perturbation, is very effective and convenient.

Keywords: variational iteration method, nonlinear equations, Lagrange multiplier, algorithms

Procedia PDF Downloads 543
3013 Simulation of Propagation of Cos-Gaussian Beam in Strongly Nonlocal Nonlinear Media Using Paraxial Group Transformation

Authors: A. Keshavarz, Z. Roosta

Abstract:

In this paper, propagation of cos-Gaussian beam in strongly nonlocal nonlinear media has been stimulated by using paraxial group transformation. At first, cos-Gaussian beam, nonlocal nonlinear media, critical power, transfer matrix, and paraxial group transformation are introduced. Then, the propagation of the cos-Gaussian beam in strongly nonlocal nonlinear media is simulated. Results show that beam propagation has periodic structure during self-focusing effect in this case. However, this simple method can be used for investigation of propagation of kinds of beams in ABCD optical media.

Keywords: paraxial group transformation, nonlocal nonlinear media, cos-Gaussian beam, ABCD law

Procedia PDF Downloads 342
3012 On the Strong Solutions of the Nonlinear Viscous Rotating Stratified Fluid

Authors: A. Giniatoulline

Abstract:

A nonlinear model of the mathematical fluid dynamics which describes the motion of an incompressible viscous rotating fluid in a homogeneous gravitational field is considered. The model is a generalization of the known Navier-Stokes system with the addition of the Coriolis parameter and the equations for changeable density. An explicit algorithm for the solution is constructed, and the proof of the existence and uniqueness theorems for the strong solution of the nonlinear problem is given. For the linear case, the localization and the structure of the spectrum of inner waves are also investigated.

Keywords: Galerkin method, Navier-Stokes equations, nonlinear partial differential equations, Sobolev spaces, stratified fluid

Procedia PDF Downloads 309
3011 Design of a Fuzzy Luenberger Observer for Fault Nonlinear System

Authors: Mounir Bekaik, Messaoud Ramdani

Abstract:

We present in this work a new technique of stabilization for fault nonlinear systems. The approach we adopt focus on a fuzzy Luenverger observer. The T-S approximation of the nonlinear observer is based on fuzzy C-Means clustering algorithm to find local linear subsystems. The MOESP identification approach was applied to design an empirical model describing the subsystems state variables. The gain of the observer is given by the minimization of the estimation error through Lyapunov-krasovskii functional and LMI approach. We consider a three tank hydraulic system for an illustrative example.

Keywords: nonlinear system, fuzzy, faults, TS, Lyapunov-Krasovskii, observer

Procedia PDF Downloads 331
3010 Modelling Railway Noise Over Large Areas, Assisted by GIS

Authors: Conrad Weber

Abstract:

The modelling of railway noise over large projects areas can be very time consuming in terms of preparing the noise models and calculation time. An open-source GIS program has been utilised to assist with the modelling of operational noise levels for 675km of railway corridor. A range of GIS algorithms were utilised to break up the noise model area into manageable calculation sizes. GIS was utilised to prepare and filter a range of noise modelling inputs, including building files, land uses and ground terrain. A spreadsheet was utilised to manage the accuracy of key input parameters, including train speeds, train types, curve corrections, bridge corrections and engine notch settings. GIS was utilised to present the final noise modelling results. This paper explains the noise modelling process and how the spreadsheet and GIS were utilised to accurately model this massive project efficiently.

Keywords: noise, modeling, GIS, rail

Procedia PDF Downloads 122
3009 Dynamic Modelling of Hepatitis B Patient Using Sihar Model

Authors: Alakija Temitope Olufunmilayo, Akinyemi, Yagba Joy

Abstract:

Hepatitis is the inflammation of the liver tissue that can cause whiteness of the eyes (Jaundice), lack of appetite, vomiting, tiredness, abdominal pain, diarrhea. Hepatitis is acute if it resolves within 6 months and chronic if it last longer than 6 months. Acute hepatitis can resolve on its own, lead to chronic hepatitis or rarely result in acute liver failure. Chronic hepatitis may lead to scarring of the liver (Cirrhosis), liver failure and liver cancer. Modelling Hepatitis B may become necessary in order to reduce its spread. So, dynamic SIR model can be used. This model consists of a system of three coupled non-linear ordinary differential equation which does not have an explicit formula solution. It is an epidemiological model used to predict the dynamics of infectious disease by categorizing the population into three possible compartments. In this study, a five-compartment dynamic model of Hepatitis B disease was proposed and developed by adding control measure of sensitizing the public called awareness. All the mathematical and statistical formulation of the model, especially the general equilibrium of the model, was derived, including the nonlinear least square estimators. The initial parameters of the model were derived using nonlinear least square embedded in R code. The result study shows that the proportion of Hepatitis B patient in the study population is 1.4 per 1,000,000 populations. The estimated Hepatitis B induced death rate is 0.0108, meaning that 1.08% of the infected individuals die of the disease. The reproduction number of Hepatitis B diseases in Nigeria is 6.0, meaning that one individual can infect more than 6.0 people. The effect of sensitizing the public on the basic reproduction number is significant as the reproduction number is reduced. The study therefore recommends that programme should be designed by government and non-governmental organization to sensitize the entire Nigeria population in order to reduce cases of Hepatitis B disease among the citizens.

Keywords: hepatitis B, modelling, non-linear ordinary differential equation, sihar model, sensitization

Procedia PDF Downloads 89
3008 Scrutiny and Solving Analytically Nonlinear Differential at Engineering Field of Fluids, Heat, Mass and Wave by New Method AGM

Authors: Mohammadreza Akbari, Sara Akbari, Davood Domiri Ganji, Pooya Solimani, Reza Khalili

Abstract:

As all experts know most of engineering system behavior in practical are nonlinear process (especially heat, fluid and mass, etc.) and analytical solving (no numeric) these problems are difficult, complex and sometimes impossible like (fluids and gas wave, these problems can't solve with numeric method, because of no have boundary condition) accordingly in this symposium we are going to exposure a innovative approach which we have named it Akbari-Ganji's Method or AGM in engineering, that can solve sets of coupled nonlinear differential equations (ODE, PDE) with high accuracy and simple solution and so this issue will be emerged after comparing the achieved solutions by Numerical method (Runge-Kutte 4th) and so compare to other methods such as HPM, ADM,… and exact solutions. Eventually, AGM method will be proved that could be created huge evolution for researchers, professors and students (engineering and basic science) in whole over the world, because of AGM coding system, so by using this software we can analytically solve all complicated linear and nonlinear differential equations, with help of that there is no difficulty for solving nonlinear differential equations(ODE and PDE). In this paper, we investigate and solve 4 types of the nonlinear differential equation with AGM method : 1-Heat and fluid, 2-Unsteady state of nonlinear partial differential, 3-Coupled nonlinear partial differential in wave equation, and 4-Nonlinear integro-differential equation.

Keywords: new method AGM, sets of coupled nonlinear equations at engineering field, waves equations, integro-differential, fluid and thermal

Procedia PDF Downloads 546
3007 Asymptotic Spectral Theory for Nonlinear Random Fields

Authors: Karima Kimouche

Abstract:

In this paper, we consider the asymptotic problems in spectral analysis of stationary causal random fields. We impose conditions only involving (conditional) moments, which are easily verifiable for a variety of nonlinear random fields. Limiting distributions of periodograms and smoothed periodogram spectral density estimates are obtained and applications to the spectral domain bootstrap are given.

Keywords: spatial nonlinear processes, spectral estimators, GMC condition, bootstrap method

Procedia PDF Downloads 451
3006 Analytical Solving of Nonlinear Differential Equations in the Nonlinear Phenomena for Viscos Fluids

Authors: Arash Jafari, Mehdi Taghaddosi, Azin Parvin

Abstract:

In the paper, our purpose is to enhance the ability to solve a nonlinear differential equation which is about the motion of an incompressible fluid flow going down of an inclined plane without thermal effect with a simple and innovative approach which we have named it new method. Comparisons are made amongst the Numerical, new method, and HPM methods, and the results reveal that this method is very effective and simple and can be applied to other nonlinear problems. It is noteworthy that there are some valuable advantages in this way of solving differential equations, and also most of the sets of differential equations can be answered in this manner which in the other methods they do not have acceptable solutions up to now. A summary of the excellence of this method in comparison to the other manners is as follows: 1) Differential equations are directly solvable by this method. 2) Without any dimensionless procedure, we can solve equation(s). 3) It is not necessary to convert variables into new ones. According to the afore-mentioned assertions which will be proved in this case study, the process of solving nonlinear equation(s) will be very easy and convenient in comparison to the other methods.

Keywords: viscos fluid, incompressible fluid flow, inclined plane, nonlinear phenomena

Procedia PDF Downloads 283
3005 Existence Theory for First Order Functional Random Differential Equations

Authors: Rajkumar N. Ingle

Abstract:

In this paper, the existence of a solution of nonlinear functional random differential equations of the first order is proved under caratheodory condition. The study of the functional random differential equation has got importance in the random analysis of the dynamical systems of universal phenomena. Objectives: Nonlinear functional random differential equation is useful to the scientists, engineers, and mathematicians, who are engaged in N.F.R.D.E. analyzing a universal random phenomenon, govern by nonlinear random initial value problems of D.E. Applications of this in the theory of diffusion or heat conduction. Methodology: Using the concepts of probability theory, functional analysis, generally the existence theorems for the nonlinear F.R.D.E. are prove by using some tools such as fixed point theorem. The significance of the study: Our contribution will be the generalization of some well-known results in the theory of Nonlinear F.R.D.E.s. Further, it seems that our study will be useful to scientist, engineers, economists and mathematicians in their endeavors to analyses the nonlinear random problems of the universe in a better way.

Keywords: Random Fixed Point Theorem, functional random differential equation, N.F.R.D.E., universal random phenomenon

Procedia PDF Downloads 501