Search results for: Angélica Parra
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 80

Search results for: Angélica Parra

80 Development of Heating Elements Based on Fe₂O₃ Reduction Products by Waste Active Sludge

Authors: Abigail Parra Parra, Jorge L. Morelos Hernandez, Pedro A. Marquez Agilar, Marina Vlasova, Jesus Colin De La Cruz

Abstract:

Carbothermal reduction of metal oxides is widely used both in metallurgical processes and in the production of oxygen-free refractory ceramics. As a rule, crushed coke and graphite are used as a reducing agent. The products of carbonization of organic compounds are among the innovative reducing agents. The aim of this work was to study the process of reduction of iron oxide (hematite) down to iron by waste active sludge (WAS) carbonization products. WAS was chosen due to the accumulation of a large amount of this type of waste, soil pollution, and the relevance of the development of technologies for its disposal. The studies have shown that the temperature treatment of mixtures WAS-Fe₂O₃ in the temperature range 900-1000 ºC for 1-5 hours under oxygen deficiency is described by the following scheme: WAS + Fe₂O₃→ C,CO + Fe₂O₃→ C + FexO → Fe (amorphous and crystalline). During the heat treatment of the mixtures, strong samples are formed. The study of the electrical conductive properties of such samples showed that, depending on the ratio of the components in the initial mixtures, it is possible to change the values of electrical resistivity from 5.6 Ω‧m to 151.6 Ω‧m When a current is passed through the samples, they are heated from 240 to 378ºC. Thus, based on WAS-Fe₂O₃ mixtures, heating elements can be created that can be used to heat ceramics and concrete.

Keywords: Fe₂O₃, reduction, waste activate sludge, electroconductivity

Procedia PDF Downloads 137
79 Use of Waste Active Sludge for Reducing Fe₂O₃

Authors: A. Parra Parra, M. Vlasova, P. A. Marquez, M. Kakazey, M. C. Resendiz Gonzalez

Abstract:

The work of water treatment plants from various sources of pollution includes a biological treatment stage using activated sludge. Due to the large volume of toxic activated sludge waste (WAS) generated and soil contamination during its storage, WAS disposal technologies are being continuously developed. The most common is the carbonization of WAS. The carbonization products are various forms of ordered and disordered carbon material having different reactivity. The aim of this work was to study the reduction process of Fe₂O₃ mixed with activated sludge waste (WAS). It could be assumed that the simultaneous action of the WAS thermal decomposition process, accompanied by the formation of reactive nano-carbon, with carbothermal reduction of the Fe₂O₃, will permit intensify reduction of metal oxide up to stage of metal and iron carbide formation. The studies showed that the temperature treatment in the region of (800-1000) °C for 1 hour under conditions of oxygen deficiency is accompanied by the occurrence of reactions: Fe₂O₃ → Fe₃O₄ → FeO → Fe, which are typical for the metallurgical process of iron smelting, but less energy-intensive. Depending on the ratio of the WAS - Fe₂O₃ components and the temperature-time regime of reduction of iron oxide, it is possible to distinguish the stages of the predominant formation of ferromagnetic compounds, cast iron, and iron carbide. The results indicated the promise of using WAS as a metals oxide reducing agent and obtaining of ceramic-based on metal carbides.

Keywords: carbothermal reduction, Fe₂O₃, FeₓOᵧ-C, waste activated sludge

Procedia PDF Downloads 134
78 Increased Envy and Schadenfreude in Parents of Newborns

Authors: Ana-María Gómez-Carvajal, Hernando Santamaría-García, Mateo Bernal, Mario Valderrama, Daniela Lizarazo, Juliana Restrepo, María Fernanda Barreto, Angélica Parra, Paula Torres, Diana Matallana, Jaime Silva, José Santamaría-García, Sandra Baez

Abstract:

Higher levels of oxytocin are associated with better performance on social cognition tasks. However, higher levels of oxytocin have also been associated with increased levels of envy and schadenfreude. Considering these antecedents, this study aims to explore social emotions (i.e., envy and schadenfreude) and other components of social cognition (i.e. ToM and empathy), in women in the puerperal period and their respective partners, compared to a control group of men and women without children or partners. Control women should be in the luteal phase of the menstrual cycle or taking oral contraceptives as they allow oxytocin levels to remain stable. We selected this population since increased levels of oxytocin are present in both mothers and fathers of newborn babies. Both groups were matched by age, sex, and education level. Twenty-two parents of newborns (11 women, 11 men) and 15 controls (8 women, 7 men) performed an experimental task designed to trigger schadenfreude and envy. In this task, each participant was shown a real-life photograph and a description of two target characters matched in age and gender with the participant. The task comprised two experimental blocks. In the first block, participants read 15 sentences describing fortunate events involving either character. After reading each sentence, participants rated the event in terms of how much envy they felt for the character (1=no envy, 9=extreme envy). In the second block, participants read and reported the intensity of their pleasure (schadenfreude, 1=no pleasure, 9=extreme pleasure) in response to 15 unfortunate events happening to the characters. Five neutral events were included in each block. Moreover, participants were assessed with ToM and empathy tests. Potential confounding variables such as general cognitive functioning, stress levels, hours of sleep and depression symptoms were also measured. Results showed that parents of newborns showed increased levels of envy and schadenfreude. These effects are not explained by any confounding factor. Moreover, no significant differences were found in ToM or empathy tests. Our results offer unprecedented evidence of specific differences in envy and schadenfreude levels in parents of newborns. Our findings support previous studies showing a negative relationship between oxytocin levels and negative social emotions. Further studies should assess the direct relationship between oxytocin levels in parents of newborns and the performance in social emotions tasks.

Keywords: envy, empathy, oxytocin, schadenfreude, social emotions, theory of mind

Procedia PDF Downloads 317
77 Characterization and Calibration of a Fluxgate Magnetometer Sensor 539

Authors: Luz Yoali Alfaro Luna, Angélica Hernández Rayas, Teodoro Córdova Fraga

Abstract:

This work characterizes and calibrates a fluxgate 539 magnetometer sensor, implementing a real-time monitoring interface to measure magnetic fields with high precision. The objective is to develop an innovative prototype integrating the Fluxgate 539 sensor, a WX-DC2412 power supply, and an Arduino UNO. Methods include interface programming and data conversion to Gauss units. The results show accurate measurements after calibrating the sensor, establishing a foundation for further research in magnetobiology.

Keywords: calibration, fluxgate 539, magnetobiology, magnetic field measurement, monitoring interface, sensor characterization

Procedia PDF Downloads 14
76 Analysis of the Internationalisation of Spanish Enterprises in Colombia through Cooperation Agreements

Authors: Sandoval H. Leyla Angélica, Casani Fernando

Abstract:

The objective of this study is to analyse how enterprises in developed countries use cooperation agreements to expand into developing countries. Starting from the literature review, seven theoretical prepositions were derived. The qualitative methodology used includes case study, through interviews conducted with eight enterprises from Spain and Colombia. Results show that the cooperation agreements have provided a quick and solid connection that facilitates internationalization, bearing in mind aspects such as: strategic factors, partners, network, technology, experience, communication methods, social benefit and the connection between these aspects and allied enterprises.

Keywords: internationalisation, firms, cooperation agreement, case study, Spain, Colombia

Procedia PDF Downloads 554
75 Computational Approach to the Interaction of Neurotoxins and Kv1.3 Channel

Authors: Janneth González, George Barreto, Ludis Morales, Angélica Sabogal

Abstract:

Sea anemone neurotoxins are peptides that interact with Na+ and K+ channels, resulting in specific alterations on their functions. Some of these neurotoxins (1ROO, 1BGK, 2K9E, 1BEI) are important for the treatment of nearly eighty autoimmune disorders due to their specificity for Kv1.3 channel. The aim of this study was to identify the common residues among these neurotoxins by computational methods, and establish whether there is a pattern useful for the future generation of a treatment for autoimmune diseases. Our results showed eight new key common residues between the studied neurotoxins interacting with a histidine ring and the selectivity filter of the receptor, thus showing a possible pattern of interaction. This knowledge may serve as an input for the design of more promising drugs for autoimmune treatments.

Keywords: neurotoxins, potassium channel, Kv1.3, computational methods, autoimmune diseases

Procedia PDF Downloads 374
74 Optimization of Maritime Platform Transport Problem of Solid, Special and Dangerous Waste

Authors: Ocotlán Díaz-Parra, Jorge A. Ruiz-Vanoye, Alejandro Fuentes-Penna, Beatriz Bernabe-Loranca, Patricia Ambrocio-Cruz, José J. Hernández-Flores

Abstract:

The Maritime Platform Transport Problem of Solid, Special and Dangerous Waste consist of to minimize the monetary value of carry different types of waste from one location to another location using ships. We offer a novel mathematical, the characterization of the problem and the use CPLEX to find the optimal values to solve the Solid, Special and Hazardous Waste Transportation Problem of offshore platforms instances of Mexican state-owned petroleum company (PEMEX). The set of instances used are WTPLib real instances and the tool CPLEX solver to solve the MPTPSSDW problem.

Keywords: oil platform, transport problem, waste, solid waste

Procedia PDF Downloads 471
73 A Bayesian Model with Improved Prior in Extreme Value Problems

Authors: Eva L. Sanjuán, Jacinto Martín, M. Isabel Parra, Mario M. Pizarro

Abstract:

In Extreme Value Theory, inference estimation for the parameters of the distribution is made employing a small part of the observation values. When block maxima values are taken, many data are discarded. We developed a new Bayesian inference model to seize all the information provided by the data, introducing informative priors and using the relations between baseline and limit parameters. Firstly, we studied the accuracy of the new model for three baseline distributions that lead to a Gumbel extreme distribution: Exponential, Normal and Gumbel. Secondly, we considered mixtures of Normal variables, to simulate practical situations when data do not adjust to pure distributions, because of perturbations (noise).

Keywords: bayesian inference, extreme value theory, Gumbel distribution, highly informative prior

Procedia PDF Downloads 198
72 Make Up Flash: Web Application for the Improvement of Physical Appearance in Images Based on Recognition Methods

Authors: Stefania Arguelles Reyes, Octavio José Salcedo Parra, Alberto Acosta López

Abstract:

This paper presents a web application for the improvement of images through recognition. The web application is based on the analysis of picture-based recognition methods that allow an improvement on the physical appearance of people posting in social networks. The basis relies on the study of tools that can correct or improve some features of the face, with the help of a wide collection of user images taken as reference to build a facial profile. Automatic facial profiling can be achieved with a deeper study of the Object Detection Library. It was possible to improve the initial images with the help of MATLAB and its filtering functions. The user can have a direct interaction with the program and manually adjust his preferences.

Keywords: Matlab, make up, recognition methods, web application

Procedia PDF Downloads 144
71 Online Electric Current Based Diagnosis of Stator Faults on Squirrel Cage Induction Motors

Authors: Alejandro Paz Parra, Jose Luis Oslinger Gutierrez, Javier Olaya Ochoa

Abstract:

In the present paper, five electric current based methods to analyze electric faults on the stator of induction motors (IM) are used and compared. The analysis tries to extend the application of the multiple reference frames diagnosis technique. An eccentricity indicator is presented to improve the application of the Park’s Vector Approach technique. Most of the fault indicators are validated and some others revised, agree with the technical literatures and published results. A tri-phase 3hp squirrel cage IM, especially modified to establish different fault levels, is used for validation purposes.

Keywords: motor fault diagnosis, induction motor, MCSA, ESA, Extended Park´s vector approach, multiparameter analysis

Procedia PDF Downloads 348
70 Monte Carlo Simulation of Magnetic Properties in Bit Patterned Media

Authors: O. D. Arbeláez-Echeverri, E. Restrepo-Parra, J. C. Riano-Rojas

Abstract:

A two dimensional geometric model of Bit Patterned Media is proposed, the model is based on the crystal structure of the materials commonly used to produce the nano islands in bit patterned materials and the possible defects that may arise from the interaction between the nano islands and the matrix material. The dynamic magnetic properties of the material are then computed using time aware integration methods for the multi spin Hamiltonian. The Hamiltonian takes into account both the spatial and topological disorder of the sample as well as the high perpendicular anisotropy that is pursued when building bit patterned media. The main finding of the research was the possibility of replicating the results of previous experiments on similar materials and the ability of computing the switching field distribution given the geometry of the material and the parameters required by the model.

Keywords: nanostructures, Monte Carlo, pattern media, magnetic properties

Procedia PDF Downloads 503
69 Electroencephalogram Based Alzheimer Disease Classification using Machine and Deep Learning Methods

Authors: Carlos Roncero-Parra, Alfonso Parreño-Torres, Jorge Mateo Sotos, Alejandro L. Borja

Abstract:

In this research, different methods based on machine/deep learning algorithms are presented for the classification and diagnosis of patients with mental disorders such as alzheimer. For this purpose, the signals obtained from 32 unipolar electrodes identified by non-invasive EEG were examined, and their basic properties were obtained. More specifically, different well-known machine learning based classifiers have been used, i.e., support vector machine (SVM), Bayesian linear discriminant analysis (BLDA), decision tree (DT), Gaussian Naïve Bayes (GNB), K-nearest neighbor (KNN) and Convolutional Neural Network (CNN). A total of 668 patients from five different hospitals have been studied in the period from 2011 to 2021. The best accuracy is obtained was around 93 % in both ADM and ADA classifications. It can be concluded that such a classification will enable the training of algorithms that can be used to identify and classify different mental disorders with high accuracy.

Keywords: alzheimer, machine learning, deep learning, EEG

Procedia PDF Downloads 126
68 Discriminant Analysis as a Function of Predictive Learning to Select Evolutionary Algorithms in Intelligent Transportation System

Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, Daniel Vélez-Díaz, Edith Olaco García

Abstract:

In this paper, we present the use of the discriminant analysis to select evolutionary algorithms that better solve instances of the vehicle routing problem with time windows. We use indicators as independent variables to obtain the classification criteria, and the best algorithm from the generic genetic algorithm (GA), random search (RS), steady-state genetic algorithm (SSGA), and sexual genetic algorithm (SXGA) as the dependent variable for the classification. The discriminant classification was trained with classic instances of the vehicle routing problem with time windows obtained from the Solomon benchmark. We obtained a classification of the discriminant analysis of 66.7%.

Keywords: Intelligent Transportation Systems, data-mining techniques, evolutionary algorithms, discriminant analysis, machine learning

Procedia PDF Downloads 472
67 Incorporating Anomaly Detection in a Digital Twin Scenario Using Symbolic Regression

Authors: Manuel Alves, Angelica Reis, Armindo Lobo, Valdemar Leiras

Abstract:

In industry 4.0, it is common to have a lot of sensor data. In this deluge of data, hints of possible problems are difficult to spot. The digital twin concept aims to help answer this problem, but it is mainly used as a monitoring tool to handle the visualisation of data. Failure detection is of paramount importance in any industry, and it consumes a lot of resources. Any improvement in this regard is of tangible value to the organisation. The aim of this paper is to add the ability to forecast test failures, curtailing detection times. To achieve this, several anomaly detection algorithms were compared with a symbolic regression approach. To this end, Isolation Forest, One-Class SVM and an auto-encoder have been explored. For the symbolic regression PySR library was used. The first results show that this approach is valid and can be added to the tools available in this context as a low resource anomaly detection method since, after training, the only requirement is the calculation of a polynomial, a useful feature in the digital twin context.

Keywords: anomaly detection, digital twin, industry 4.0, symbolic regression

Procedia PDF Downloads 120
66 Voice Signal Processing and Coding in MATLAB Generating a Plasma Signal in a Tesla Coil for a Security System

Authors: Juan Jimenez, Erika Yambay, Dayana Pilco, Brayan Parra

Abstract:

This paper presents an investigation of voice signal processing and coding using MATLAB, with the objective of generating a plasma signal on a Tesla coil within a security system. The approach focuses on using advanced voice signal processing techniques to encode and modulate the audio signal, which is then amplified and applied to a Tesla coil. The result is the creation of a striking visual effect of voice-controlled plasma with specific applications in security systems. The article explores the technical aspects of voice signal processing, the generation of the plasma signal, and its relationship to security. The implications and creative potential of this technology are discussed, highlighting its relevance at the forefront of research in signal processing and visual effect generation in the field of security systems.

Keywords: voice signal processing, voice signal coding, MATLAB, plasma signal, Tesla coil, security system, visual effects, audiovisual interaction

Procedia PDF Downloads 93
65 Antimicrobial Activity of Biosynthesized Silver Nanoparticles with Handroanthus Chrysanthus Flower Extract

Authors: Eduardo Padilla, Luis Daniel Rodriguez, Ivan Sanchez, Angelica Sofia Go

Abstract:

The synthesis and application of metallic nanoparticles have increased in recent years. Biological methods go beyond the chemical and physical synthesis that is expensive and not friendly to the environment. Therefore, in this study, silver nanoparticles were synthesized biologically in an environmentally friendly way by Handroanthus chrysanthus flower aqueous extract (AgNPs) that contains phytochemicals capable of reducing silver nitrate. AgNPs were characterized visually by UV-visible spectroscopy and TEM. The antimicrobial activity of the AgNPs was tested by determining the minimum inhibitory concentration (MIC), and minimal bactericidal concentration (MBC) in Escherichia coli and Staphylococcus aureus strains AgNPs showed potent antimicrobial activity against gram-negative and gram-positive bacteria. MIC and MBC values were as low as 41.6, and 83.2 ug/mL using AgNPs biosynthesized by H. chrysanthus flower extract. This nanoparticle could be the basis for the formulation of disinfectants for use in the food and pharmaceutical industry.

Keywords: antimicrobial, silver nanoparticles, flower extract, Handroanthus

Procedia PDF Downloads 112
64 Legal Basis for Water Resources Management in Brazil: Case Study of the Rio Grande Basin

Authors: Janaína F. Guidolini, Jean P. H. B. Ometto, Angélica Giarolla, Peter M. Toledo, Carlos A. Valera

Abstract:

The water crisis, a major problem of the 21st century, occurs mainly due to poor management. The central issue that should govern the management is the integration of the various aspects that interfere with the use of water resources and their protection, supported by legal basis. A watershed is a unit of water interacting with the physical, biotic, social, economic and cultural variables. The Brazilian law recognized river basin as the territorial management unit. Based on the diagnosis of the current situation of the water resources of the Rio Grande Basin, a discussion informed in the Brazilian legal basis was made to propose measures to fight or mitigate damages and environmental degradation in the Basin. To manage water resources more efficiently, conserve water and optimize their multiple uses, the integration of acquired scientific knowledge and management is essential. Moreover, it is necessary to monitor compliance with environmental legislation.

Keywords: conservation of soil and water, environmental laws, river basin, sustainability

Procedia PDF Downloads 279
63 Base Change for Fisher Metrics: Case of the q-Gaussian Inverse Distribution

Authors: Gabriel I. Loaiza Ossa, Carlos A. Cadavid Moreno, Juan C. Arango Parra

Abstract:

It is known that the Riemannian manifold determined by the family of inverse Gaussian distributions endowed with the Fisher metric has negative constant curvature κ= -1/2, as does the family of usual Gaussian distributions. In the present paper, firstly, we arrive at this result by following a different path, much simpler than the previous ones. We first put the family in exponential form, thus endowing the family with a new set of parameters, or coordinates, θ₁, θ₂; then we determine the matrix of the Fisher metric in terms of these parameters; and finally we compute this matrix in the original parameters. Secondly, we define the inverse q-Gaussian distribution family (q < 3) as the family obtained by replacing the usual exponential function with the Tsallis q-exponential function in the expression for the inverse Gaussian distribution and observe that it supports two possible geometries, the Fisher and the q-Fisher geometry. And finally, we apply our strategy to obtain results about the Fisher and q-Fisher geometry of the inverse q-Gaussian distribution family, similar to the ones obtained in the case of the inverse Gaussian distribution family.

Keywords: base of changes, information geometry, inverse Gaussian distribution, inverse q-Gaussian distribution, statistical manifolds

Procedia PDF Downloads 244
62 Public Economic Efficiency and Case-Based Reasoning: A Theoretical Framework to Police Performance

Authors: Javier Parra-Domínguez, Juan Manuel Corchado

Abstract:

At present, public efficiency is a concept that intends to maximize return on public investment focus on minimizing the use of resources and maximizing the outputs. The concept takes into account statistical criteria drawn up according to techniques such as DEA (Data Envelopment Analysis). The purpose of the current work is to consider, more precisely, the theoretical application of CBR (Case-Based Reasoning) from economics and computer science, as a preliminary step to improving the efficiency of law enforcement agencies (public sector). With the aim of increasing the efficiency of the public sector, we have entered into a phase whose main objective is the implementation of new technologies. Our main conclusion is that the application of computer techniques, such as CBR, has become key to the efficiency of the public sector, which continues to require economic valuation based on methodologies such as DEA. As a theoretical result and conclusion, the incorporation of CBR systems will reduce the number of inputs and increase, theoretically, the number of outputs generated based on previous computer knowledge.

Keywords: case-based reasoning, knowledge, police, public efficiency

Procedia PDF Downloads 135
61 Education in Technology for Sustainable Development Applied to School Gardens

Authors: Sara Blanc, José V. Benlloch-Dualde, Laura Grindei, Ana C. Torres, Angélica Monteiro

Abstract:

This paper presents a study that leads a new experience by introducing digital learning applied to a case study focused on primary and secondary school garden-based education. The approach represents an example of interaction among different education and research agents at different countries and levels, such as universities, public and private research, and schools, to get involved in the implementation of education for sustainable development that will make students become more sensible to natural environment, more responsible for their consumption, more aware about waste reduction and recycling, more conscious of the sustainable use of natural resources and, at the same time, more ‘digitally competent’. The experience was designed attending to the European digital education context and OECD directives in transversal skills education. The paper presents the methodology carried out in the study as well as outcomes obtained from experience.

Keywords: school gardens, primary education, secondary education, science technology and innovation in education, digital learning, sustainable development goals, university, knowledge transference

Procedia PDF Downloads 118
60 Encouraging Skills and Entrepreneurial Spirit to Improve Employability of Young Artists

Authors: Olga Lasaga, Carmen Parra

Abstract:

Within the EU 'New Skills for New Jobs' initiative, the art and music sector is considered one of the most vulnerable. Its graduates are faced with the threat of the dole or of not finding work in the sector in which they trained. In this regard, an increasing number of students are graduating every year from European Conservatories and Fine Arts Centres, while the number of job opportunities in this sector has stagnated or decreased. Moreover, the traditional teaching of these institutes does not favour the acquisition of basic skills, such as team building, entrepreneurship, marketing, website design and the design of events, which are among the most important facets of project management and are precisely those aspects that are often most related to the improvement of employability in the art world. To remedy this situation, the results of the European Erasmus+ OMEGA project (Opening More Employment Gates for Art and Music Students) are presented. The OMEGA project aims to increase the employability of art and music students by equipping them with additional skills needed for the search for work. As a result of this project, a manual has been created, a pilot course has been designed and taught, and a comparative study has been conducted on the state of play of the participating countries.

Keywords: artists, employability, entrepreneurship, musicians, skills

Procedia PDF Downloads 243
59 Analysis of Energy Required for the Massive Incorporation of Electric Buses in the City of Ambato - Ecuador

Authors: Paola Quintana, Angélica Vaca, Sebastián Villacres, Henry Acurio

Abstract:

Ecuador through the Organic Law of Energy Efficiency establishes that "Starting in the year 2025, all vehicles that are incorporated into the urban and inter-parroquial public transport service must only be electric”, this marks a foundation for the introduction of electric mobility in the country. The present investigation is based on developing an analysis and projection of the Energy Required for the incorporation of electric buses for public passenger transport in the city of Ambato-Ecuador, taking into account the useful life of the vehicle fleet, number of existing vehicles and analysis of transport routes in the study city. The energy demand based on the vehicular dynamics is analyzed, determination of equations for the calculation of force in the wheel since it is considered a variable of slope due to the fact that this has a great incidence in the autonomy when speaking of electric mobility, later the energy analysis applied to public transport routes, finally a projection of the energy requirement is made based on the change of public transport units according to their useful life.

Keywords: public transport, electric mobility, energy, ecuador

Procedia PDF Downloads 87
58 Negative RT-PCR in a Newborn Infected with Zika Virus: A Case Report

Authors: Vallejo Michael, Acuña Edgar, Roa Juan David, Peñuela Rosa, Parra Alejandra, Casallas Daniela, Rodriguez Sheyla

Abstract:

Congenital Zika Virus Syndrome is an entity composed by a variety of birth defects presented in newborns that have been exposed to the Zika Virus during pregnancy. The syndrome characteristic features are severe microcephaly, cerebral tissue abnormalities, ophthalmological abnormalities such as uveitis and chorioretinitis, arthrogryposis, clubfoot deformity and muscular tone abnormalities. The confirmatory test is the Reverse transcription polymerase chain reaction (RT-PCR) associated to the physical findings. Here we present the case of a newborn with microcephaly whose mother presented a confirmed Zika Virus infection during the third trimester of pregnancy, despite of the evident findings and the history of Zika infection the RT-PCR in amniotic and cerebrospinal fluid of the newborn was negative. RT-PCR has demonstrated a low sensibility in samples with low viral loads, reason why, we propose a clinical diagnosis in patients with clinical history of Zika Virus infection during pregnancy accompanied by evident clinical manifestations of the child.

Keywords: congenital, Zika virus, microcephaly, reverse transcriptase polymerase chain reaction

Procedia PDF Downloads 211
57 Models, Resources and Activities of Project Scheduling Problems

Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, José J. Hernández-Flores, Edith Olaco Garcia

Abstract:

The Project Scheduling Problem (PSP) is a generic name given to a whole class of problems in which the best form, time, resources and costs for project scheduling are necessary. The PSP is an application area related to the project management. This paper aims at being a guide to understand PSP by presenting a survey of the general parameters of PSP: the Resources (those elements that realize the activities of a project), and the Activities (set of operations or own tasks of a person or organization); the mathematical models of the main variants of PSP and the algorithms used to solve the variants of the PSP. The project scheduling is an important task in project management. This paper contains mathematical models, resources, activities, and algorithms of project scheduling problems. The project scheduling problem has attracted researchers of the automotive industry, steel manufacturer, medical research, pharmaceutical research, telecommunication, industry, aviation industry, development of the software, manufacturing management, innovation and technology management, construction industry, government project management, financial services, machine scheduling, transportation management, and others. The project managers need to finish a project with the minimum cost and the maximum quality.

Keywords: PSP, Combinatorial Optimization Problems, Project Management; Manufacturing Management, Technology Management.

Procedia PDF Downloads 418
56 Heuristic Classification of Hydrophone Recordings

Authors: Daniel M. Wolff, Patricia Gray, Rafael de la Parra Venegas

Abstract:

An unsupervised machine listening system is constructed and applied to a dataset of 17,195 30-second marine hydrophone recordings. The system is then heuristically supplemented with anecdotal listening, contextual recording information, and supervised learning techniques to reduce the number of false positives. Features for classification are assembled by extracting the following data from each of the audio files: the spectral centroid, root-mean-squared values for each frequency band of a 10-octave filter bank, and mel-frequency cepstral coefficients in 5-second frames. In this way both time- and frequency-domain information are contained in the features to be passed to a clustering algorithm. Classification is performed using the k-means algorithm and then a k-nearest neighbors search. Different values of k are experimented with, in addition to different combinations of the available feature sets. Hypothesized class labels are 'primarily anthrophony' and 'primarily biophony', where the best class result conforming to the former label has 104 members after heuristic pruning. This demonstrates how a large audio dataset has been made more tractable with machine learning techniques, forming the foundation of a framework designed to acoustically monitor and gauge biological and anthropogenic activity in a marine environment.

Keywords: anthrophony, hydrophone, k-means, machine learning

Procedia PDF Downloads 170
55 On the Influence of the Metric Space in the Critical Behavior of Magnetic Temperature

Authors: J. C. Riaño-Rojas, J. D. Alzate-Cardona, E. Restrepo-Parra

Abstract:

In this work, a study of generic magnetic nanoparticles varying the metric space is presented. As the metric space is changed, the nanoparticle form and the inner product are also varied, since the energetic scale is not conserved. This study is carried out using Monte Carlo simulations combined with the Wolff embedding and Metropolis algorithms. The Metropolis algorithm is used at high temperature regions to reach the equilibrium quickly. The Wolff embedding algorithm is used at low and critical temperature regions in order to reduce the critical slowing down phenomenon. The ions number is kept constant for the different forms and the critical temperatures using finite size scaling are found. We observed that critical temperatures don't exhibit significant changes when the metric space was varied. Additionally, the effective dimension according the metric space was determined. A study of static behavior for reaching the static critical exponents was developed. The objective of this work is to observe the behavior of the thermodynamic quantities as energy, magnetization, specific heat, susceptibility and Binder's cumulants at the critical region, in order to demonstrate if the magnetic nanoparticles describe their magnetic interactions in the Euclidean space or if there is any correspondence in other metric spaces.

Keywords: nanoparticles, metric, Monte Carlo, critical behaviour

Procedia PDF Downloads 516
54 Biodegradability Evaluation of Polylactic Acid Composite with Natural Fiber (Sisal)

Authors: A. Bárbara Cattozatto Fortunato, D. de Lucca Soave, E. Pinheiro de Mello, M. Piasentini Oliva, V. Tavares de Moraes, G. Wolf Lebrão, D. Fernandes Parra, S. Marraccini Giampietri Lebrão

Abstract:

Due to increasing environmental pressure for biodegradable products, especially in polymeric materials, in order to meet the demands of the biological cycles of the circular economy, new materials have been developed as a sustainability strategy. This study proposes a composite material developed from the biodegradable polymer PLA Ecovio® (polylactic acid - PLA) with natural sisal fibers, where the soybean ester was used as a plasticizer, which can aid in adhesion between the materials and fibers, making the most attractive final composite from an environmental point of view. The composites were obtained by extrusion. The materials tests were produced and submitted to biodegradation tests. Through the biodegradation tests, it can be seen that the biodegradable polymer composition with 5% sisal fiber presented about 12.4% more biodegradability compared to the polymer without fiber addition. It has also been found that the plasticizer was not a compatible with fibers and the polymer. Finally, fibers help to anticipate the decomposition process of the material when subjected to conditions of a landfill. Therefore, its intrinsic properties are not affected during its use, only the biodegradation process begins after its exposure to landfill conditions.

Keywords: biocomposites, sisal, polilactic acid, Polylactic Acid (PLA)

Procedia PDF Downloads 247
53 Levels of Plastic Waste and Fish Landed By Beach Seine Fishers in Coastal Ghana

Authors: Francis Gbogbo, Angelica Ama Essandoh, Wendy Teresa Baffoe, Henry Groos, Charles Mario Boateng, Emmanuel Robert Blankson

Abstract:

Baseline data on plastic landing by fishers and monitoring of this is important in evaluating the success of plastic waste management efforts. This study investigated plastic and fish landed by beach seine fishers in Ghana, together with the rate of plastic deposition on an adjoining beach. Plastic constituted 31.6% of the total catch, and 41.7% of the fish landed by weight. There were significant differences between the average weight of fish (139.58±53.6kg) and plastic (65.73±14.6kg) landed per fishing session and the catch per unit effort of fish (183.4±76.7 kg/day) and plastic (88.4±35.2 kg/day). The mean weight of plastic landed per fishing session was higher than the mean weight of each of the 26 species of fisheries. The rate of plastic deposition on the beach was 8.1±2.5 plastic items per m2 per tidal cycle or 0.35±0.11kg plastic per m2 per tidal cycle, with food packs and tableware dominating the deposited plastic. The results suggested that ongoing water sachets and plastic bottle recycling in Ghana are yielding results and calls for targeted efforts in plastic food packs and tableware management.

Keywords: fishig, landing, plastic waste, intertidal area, fishing effort

Procedia PDF Downloads 91
52 Analysis of the Extreme Hydrometeorological Events in the Theorical Hydraulic Potential and Streamflow Forecast

Authors: Sara Patricia Ibarra-Zavaleta, Rabindranarth Romero-Lopez, Rosario Langrave, Annie Poulin, Gerald Corzo, Mathias Glaus, Ricardo Vega-Azamar, Norma Angelica Oropeza

Abstract:

The progressive change in climatic conditions worldwide has increased frequency and severity of extreme hydrometeorological events (EHE). Mexico is an example; this has been affected by the presence of EHE leaving economic, social and environmental losses. The objective of this research was to apply a Canadian distributed hydrological model (DHM) to tropical conditions and to evaluate its capacity to predict flows in a basin in the central Gulf of Mexico. In addition, the DHM (once calibrated and validated) was used to calculate the theoretical hydraulic power and the performance to predict streamflow before the presence of an EHE. The results of the DHM show that the goodness of fit indicators between the observed and simulated flows in the calibration process (NSE=0.83, RSR=0.021 and BIAS=-4.3) and validation: temporal was assessed at two points: point one (NSE=0.78, RSR=0.113 and BIAS=0.054) and point two (NSE=0.825, RSR=0.103 and BIAS=0.063) are satisfactory. The DHM showed its applicability in tropical environments and its ability to characterize the rainfall-runoff relationship in the study area. This work can serve as a tool for identifying vulnerabilities before floods and for the rational and sustainable management of water resources.

Keywords: HYDROTEL, hydraulic power, extreme hydrometeorological events, streamflow

Procedia PDF Downloads 341
51 Analyzing the Performance of Machine Learning Models to Predict Alzheimer's Disease and its Stages Addressing Missing Value Problem

Authors: Carlos Theran, Yohn Parra Bautista, Victor Adankai, Richard Alo, Jimwi Liu, Clement G. Yedjou

Abstract:

Alzheimer's disease (AD) is a neurodegenerative disorder primarily characterized by deteriorating cognitive functions. AD has gained relevant attention in the last decade. An estimated 24 million people worldwide suffered from this disease by 2011. In 2016 an estimated 40 million were diagnosed with AD, and for 2050 is expected to reach 131 million people affected by AD. Therefore, detecting and confirming AD at its different stages is a priority for medical practices to provide adequate and accurate treatments. Recently, Machine Learning (ML) models have been used to study AD's stages handling missing values in multiclass, focusing on the delineation of Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI), and normal cognitive (CN). But, to our best knowledge, robust performance information of these models and the missing data analysis has not been presented in the literature. In this paper, we propose studying the performance of five different machine learning models for AD's stages multiclass prediction in terms of accuracy, precision, and F1-score. Also, the analysis of three imputation methods to handle the missing value problem is presented. A framework that integrates ML model for AD's stages multiclass prediction is proposed, performing an average accuracy of 84%.

Keywords: alzheimer's disease, missing value, machine learning, performance evaluation

Procedia PDF Downloads 250