Abstracts | Environmental and Ecological Engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3594

World Academy of Science, Engineering and Technology

[Environmental and Ecological Engineering]

Online ISSN : 1307-6892

3534 Study of Halophytic Vegetation of Chott Gamra (Batna, High Plateaus of Eastern Algeria)

Authors: Marref C., Marref S., Melakhssou M. A.

Abstract:

The halophytic vegetation of Chott Gamra (Gadaïne Eco-complex, High Plateaus of Eastern Algeria) is characterized by a very rich cover. It is structured according to the variation in soil salinity and moisture. The objective of this study is to understand the biodiversity, distribution, and classification of halophytic vegetation. This wetland is characterized by a Mediterranean climate in the semi-arid to cool winter stage. The wetland area of the High Plateaus of Eastern Algeria constitutes a biodiversity reservoir. It is considered exceptional, although it remains little explored and documented to date. The study was conducted over consecutive spring seasons (2020/2021). Indeed, the inventory we established includes forty plant species belonging to fourteen different families, the majority of which are resistant to salinity and drought. These halophytic species that thrive there establish themselves in bands according to their tolerance threshold to salinity and their affinity to the hygroscopic level of the soil. Thus, other edaphic factors may come into play in the zonation of halophytes in saline environments. Species belonging to the Juncaceae and Poaceae families dominate by far the non-flooded vegetation cover of this site. These plants are perfectly adapted to saline environments.

Keywords: halophytes, biodiversity, salinity, wetland

Procedia PDF Downloads 15
3533 Flood Mapping and Inoudation on Weira River Watershed (in the Case of Hadiya Zone, Shashogo Woreda)

Authors: Alilu Getahun Sulito

Abstract:

Exceptional floods are now prevalent in many places in Ethiopia, resulting in a large number of human deaths and property destruction. Lake Boyo watershed, in particular, had also traditionally been vulnerable to flash floods throughout the Boyo watershed. The goal of this research is to create flood and inundation maps for the Boyo Catchment. The integration of Geographic information system(GIS) technology and the hydraulic model (HEC-RAS) were utilized as methods to attain the objective. The peak discharge was determined using Fuller empirical methodology for intervals of 5, 10, 15, and 25 years, and the results were 103.2 m3/s, 158 m3/s, 222 m3/s, and 252 m3/s, respectively. River geometry, boundary conditions, manning's n value of varying land cover, and peak discharge at various return periods were all entered into HEC-RAS, and then an unsteady flow study was performed. The results of the unsteady flow study demonstrate that the water surface elevation in the longitudinal profile rises as the different periods increase. The flood inundation charts clearly show that regions on the right and left sides of the river with the greatest flood coverage were 15.418 km2 and 5.29 km2, respectively, flooded by 10,20,30, and 50 years. High water depths typically occur along the main channel and progressively spread to the floodplains. The latest study also found that flood-prone areas were disproportionately affected on the river's right bank. As a result, combining GIS with hydraulic modelling to create a flood inundation map is a viable solution. The findings of this study can be used to care again for the right bank of a Boyo River catchment near the Boyo Lake kebeles, according to the conclusion. Furthermore, it is critical to promote an early warning system in the kebeles so that people can be evacuated before a flood calamity happens. Keywords: Flood, Weira River, Boyo, GIS, HEC- GEORAS, HEC- RAS, Inundation Mapping

Keywords: Weira River, Boyo, GIS, HEC- GEORAS, HEC- RAS, Inundation Mapping

Procedia PDF Downloads 18
3532 Research on Transverse Ecological Compensation Mechanism in Yangtze River Economic Belt Based on Evolutionary Game Theory

Authors: Tingyu Zhang

Abstract:

The cross-basin ecological compensation mechanism is key to stimulating active participation in ecological protection across the entire basin. This study constructs an evolutionary game model of cross-basin ecological compensation in the Yangtze River Economic Belt (YREB), introducing a central government constraint and incentive mechanism (CGCIM) to explore the conditions for achieving strategies of protection and compensation that meet societal expectations. Furthermore, using a water quality-water quantity model combined with factual data from the YREB in 2020, the amount of ecological compensation is calculated. The results indicate that the stability of the evolutionary game model of the upstream and downstream governments in the YREB is closely related to the CGCIM. When the sum of the central government's reward amount to the upstream government and the penalty amount to both sides simultaneously is greater than 39.948 billion yuan, and the sum of the reward amount to the downstream government and the penalty amount to only the lower reaches is greater than 1.567 billion yuan, or when the sum of the reward amount to the downstream government and the penalty amount to both sides simultaneously is greater than 1.567 billion yuan, and the sum of the reward amount to the upstream government and the penalty amount to only the upstream government is greater than 399.48 billion yuan, the protection and compensation become the only evolutionarily stable strategy for the evolutionary game system composed of the upstream and downstream governments in the YREB. At this point, the total ecological compensation that the downstream government of the YREB should pay to the upstream government is 1.567 billion yuan, with Hunan paying 0.03 billion yuan, Hubei 2.53 billion yuan, Jiangxi 0.18 billion yuan, Anhui 1.68 billion yuan, Zhejiang 0.75 billion yuan, Jiangsu 6.57 billion yuan, and Shanghai 3.93 billion yuan. The research results can provide a reference for promoting the improvement and perfection of the cross-basin ecological compensation system in the YREB.

Keywords: ecological compensation, evolutionary game model, central government constraint and incentive mechanism, Yangtze river economic belt

Procedia PDF Downloads 16
3531 Water Resources Green Efficiency in China: Evaluation, Spatial Association Network Structure Analysis, and Influencing Factors

Authors: Tingyu Zhang

Abstract:

This paper utilizes the Super-SBM model to assess water resources green efficiency (WRGE) among provinces in China and investigate its spatial and temporal features, based on the characteristic framework of “economy-environment-society.” The social network analysis is employed to examine the network pattern and spatial interaction of WRGE. Further, the quadratic assignment procedure method is utilized for examining the influencing factors of the spatial association of WRGE regarding “relationship.” The study reveals that: (1) the spatial distribution of WRGE demonstrates a distribution pattern of Eastern>Western>Central; (2) a remarkable spatial association exists among provinces; however, no strict hierarchical structure is observed. The internal structure of the WRGE network is characterized by the feature of "Eastern strong and Western weak". The block model analysis discovers that the members of the “net spillover” and “two-way spillover” blocks are mostly in the eastern and central provinces; “broker” block, which plays an intermediary role, is mostly in the central provinces; and members of the “net beneficiary” block are mostly in the western region. (3) Differences in economic development, degree of urbanization, water use environment, and water management have significant impacts on the spatial connection of WRGE. This study is dedicated to the realization of regional linkages and synergistic enhancement of WRGE, which provides a meaningful basis for building a harmonious society of human and water coexistence.

Keywords: water resources green efficiency, super-SBM model, social network analysis, quadratic assignment procedure

Procedia PDF Downloads 16
3530 Application of a Hybrid Modified Blade Element Momentum Theory/Computational Fluid Dynamics Approach for Wine Turbine Aerodynamic Performances Prediction

Authors: Samah Laalej, Abdelfattah Bouatem

Abstract:

In the field of wind turbine blades, it is complicated to evaluate the aerodynamic performances through experimental measurements as it requires a lot of computing time and resources. Therefore, in this paper, a hybrid BEM-CFD numerical technique is developed to predict power and aerodynamic forces acting on the blades. Computational fluid dynamics (CFD) simulation was conducted to calculate the drag and lift forces through Ansys software using the K-w model. Then an enhanced BEM code was created to predict the power outputs generated by the wind turbine using the aerodynamic properties extracted from the CFD approach. The numerical approach was compared and validated with experimental data. The power curves calculated from this hybrid method were in good agreement with experimental measurements for all velocity ranges.

Keywords: blade element momentum, aerodynamic forces, wind turbine blades, computational fluid dynamics approach

Procedia PDF Downloads 15
3529 Urban Hydrology in Morocco: Navigating Challenges and Seizing Opportunities

Authors: Abdelghani Qadem

Abstract:

Urbanization in Morocco has ushered in profound shifts in hydrological dynamics, presenting a spectrum of challenges and avenues for sustainable water management. This abstract delves into the nuances of urban hydrology in Morocco, spotlighting the ramifications of rapid urban expansion, the imprint of climate change, and the imperative for cohesive water management strategies. The swift urban sprawl across Morocco has engendered a surge in impermeable surfaces, reshaping the natural hydrological cycle and amplifying quandaries such as urban inundations and water scarcity. Moreover, the specter of climate change looms large, heralding alterations in precipitation regimes and a heightened frequency of extreme meteorological events, thus compounding the hydrological conundrum. However, amidst these challenges, urban hydrology in Morocco also unfolds vistas of innovation and sustainability. The integration of green infrastructure, encompassing solutions like permeable pavements and vegetated roofs, emerges as a linchpin in ameliorating the hydrological imbalances wrought by urbanization, fostering infiltration, and curbing surface runoff. Additionally, embracing the tenets of water-sensitive urban design promises to fortify water efficiency and resilience in urban landscapes. Effectively navigating urban hydrology in Morocco mandates a cross-disciplinary approach that interweaves urban planning, water resource governance, and climate resilience strategies. A collaborative ethos, bridging governmental entities, academic institutions, and grassroots communities, assumes paramount importance in crafting and executing comprehensive solutions that grapple with the intricate interplay of urbanization, hydrology, and climate dynamics. In summation, confronting the labyrinthine challenges of urban hydrology in Morocco necessitates proactive strides toward fostering sustainable urban growth and bolstering resilience to climate vagaries. By embracing cutting-edge technologies and embracing an ethos of integrated water management, Morocco can forge a path toward a more water-secure and resilient urban future.

Keywords: urban hydrology, Morocco, urbanization, climate change, water management, green infrastructure, sustainable development

Procedia PDF Downloads 14
3528 Impacts of Land Use and Land Cover Change on Stream Flow and Sediment Yield of Genale Dawa Dam III Watershed, Ethiopia

Authors: Aklilu Getahun Sulito

Abstract:

Land Use and Land Cover change dynamics is a result of complex interactions betweenseveral bio- physical and socio-economic conditions. The impacts of the landcoverchange on stream flow and sediment yield were analyzed statistically usingthehydrological model, SWAT. Genale Dawa Dam III watershed is highly af ectedbydeforestation, over grazing, and agricultural land expansion. This study was aimedusingSWAT model for the assessment of impacts of land use land cover change on sediment yield, evaluating stream flow on wet &dry seasons and spatial distribution sediment yieldfrom sub-basins of the Genale Dawa Dam III watershed. Land use land cover maps(LULC) of 2000, 2008 and 2016 were used with same corresponding climate data. During the study period most parts of the forest, dense forest evergreen and grass landchanged to cultivated land. The cultivated land increased by 26.2%but forest land, forest evergreen lands and grass lands decreased by 21.33%, 11.59 % and 7.28 %respectively, following that the mean annual sediment yield of watershed increased by 7.37ton/haover16 years period (2000 – 2016). The analysis of stream flow for wet and dry seasonsshowed that the steam flow increased by 25.5% during wet season, but decreasedby29.6% in the dry season. The result an average annual spatial distribution of sediment yield increased by 7.73ton/ha yr -1 from (2000_2016). The calibration results for bothstream flow and sediment yield showed good agreement between observed and simulateddata with the coef icient of determination of 0.87 and 0.84, Nash-Sutclif e ef iciencyequality to 0.83 and 0.78 and percentage bias of -7.39% and -10.90%respectively. Andthe result for validation for both stream flow and sediment showed good result withCoef icient of determination equality to 0.83 and 0.80, Nash-Sutclif e ef iciency of 0.78and 0.75 and percentage bias of 7.09% and 3.95%. The result obtained fromthe model based on the above method was the mean annual sediment load at Genale DawaDamIIIwatershed increase from 2000 to 2016 for the reason that of the land uses change. Sotouse the Genale Dawa Dam III the land use management practices are neededinthefuture to prevent further increase of sediment yield of the watershed.

Keywords: Genale Dawa Dam III watershed, land use land cover change, SWAT, spatial distribution, sediment yield, stream flow

Procedia PDF Downloads 14
3527 Modelling the Hydrological Response of Connected Blue-Breen Roofs by HYDRUS-1D

Authors: Mehrnoosh Moghanian, Rodrigo Mora, Colleen Chan

Abstract:

Connected blue-green roofs are novel vegetative roof systems that include a moisture-storage component (soil substrate) and an additional transient storage component (detention-retention layer) underneath, contributing to the roofs’ total water detention and retention capacity. Hydrological models aid in assessing the vegetative roofs' response under various climates and sizing them appropriately. Despite their potential, few studies have modelled the blue-green roofs' hydrological performance. In the present study, collected data from a blue-green roof module, located in Vancouver, BC, from January 2020 until August 2021 is used to fill the modelling knowledge gap of these roofs. HYDRUS-1D, as a physics-based model, was successfully adapted to model blue-green roofs. The accuracy of the model was confirmed after calibration and validation procedures, resulting in simulated runoff and soil moisture content during short-term simulations. Even though the accuracy of the soil water content model predictions was low, the error in the predicted runoff flow rates was acceptable. The predicted flow rates were more accurate in the dry seasons than in the rainy seasons. Further studies are needed to improve the accuracy of the models to support their design and integration into the urban rainwater infrastructure.

Keywords: connected blue-green roofs, hydrological models, HYDRUS-1D model, runoff simulation, soil moisture content prediction, green infrastructure

Procedia PDF Downloads 13
3526 Rewilding the River: Assessing the Environmental Effects and Regulatory Influences of the Condit Dam Removal Process

Authors: Neda Safari, Jacob Petersen-Perlman

Abstract:

There are more than two million dams in the United States, and a considerable portion of them are either non-operational or approaching the end of their designed lifespan. However, this emerging trend is new, and the majority of dam sites have not undergone thorough research and assessments after their removal to determine the overall effectiveness of restoration initiatives, particularly in the case of large-scale dams that may significantly impact their surrounding areas. A crucial factor to consider is the lack of specific regulations pertaining to dam removal at the federal level. Consequently, other environmental regulations that were not originally designed with dam removal considerations are used to execute these projects. This can result in delays or challenges for dam removal initiatives. The process of removing dams is usually the most important first step to restore the ecological and biological health of the river, but often there is a lack of measurable indicators to assess if it has achieved its intended objectives. In addition, the majority of studies on dam removal are only short-term and focus on a particular measure of response. Therefore, it is essential to conduct extensive and continuous monitoring to analyze the river's response throughout every aspect. Our study is divided into two sections. The first section of my research will analyze the establishment and utilization of dam removal laws and regulations in the Condit Dam removal process. We will highlight the areas where the frameworks for policy and dam removal projects remain in need of improvement in order to facilitate successful dam removals in the future. In this part, We will review the policies and plans that affected the decision-making process to remove the Condit dam while also looking at how they impacted the physical changes to the river after the dam was removed. In the second section, we will look at the effects of the dam removal over a decade later and attempt to determine how the river's physical response has been impacted by this modification. Our study aims to investigate the Condit dam removal process and its impact on the ecological response of the river. We anticipate identifying areas for improvement in policies pertaining to dam removal projects and exploring ways to enhance them to ensure improved project outcomes in the future.

Keywords: dam removal, ecolocgical change, water related regulation, water resources

Procedia PDF Downloads 16
3525 Integration of Agroforestry Shrub for Diversification and Improved Smallholder Production: A Case of Cajanus cajan-Zea Mays (Pigeonpea-Maize) Production in Ghana

Authors: F. O. Danquah, F. Frimpong, E. Owusu Danquah, T. Frimpong, J. Adu, S. K. Amposah, P. Amankwaa-Yeboah, N. E. Amengor

Abstract:

In the face of global concerns such as population increase, climate change, and limited natural resources, sustainable agriculture practices are critical for ensuring food security and environmental stewardship. The study was conducted in the Forest zones of Ghana during the major and minor seasons of 2023 cropping seasons to evaluate maize yield productivity improvement and profitability of integrating Cajanus cajan (pigeonpea) into a maize production system described as a pigeonpea-maize cropping system. This is towards an integrated soil fertility management (ISFM) with a legume shrub pigeonpea for sustainable maize production while improving smallholder farmers' resilience to climate change. A split-plot design with maize-pigeonpea (Pigeonpea-Maize intercrop – MPP and No pigeonpea/ Sole maize – NPP) and inorganic fertilizer rate (250 kg/ha of 15-15-15 N-P2O5-K2O + 250 kg/ha Sulphate of Ammonia (SoA) – Full rate (FR), 125 kg/ha of 15-15-15 N-P2O5-K2O + 125 kg/ha Sulphate of Ammonia (SoA) – Half rate (HR) and no inorganic fertilizer (NF) as control) was used as the main plot and subplot treatments respectively. The results indicated a significant interaction of the pigeonpea-maize cropping system and inorganic fertilizer rate on the growth and yield of the maize with better and similar maize productivity when HR and FR were used with pigeonpea biomass. Thus, the integration of pigeonpea and its biomass would result in the reduction of recommended fertiliser rate to half. This would improve farmers’ income and profitability for sustainable maize production in the face of climate change.

Keywords: agroforestry tree, climate change, integrated soil fertility management, resource use efficiency

Procedia PDF Downloads 17
3524 Enhancing Algal Bacterial Photobioreactor Efficiency: Nutrient Removal and Cost Analysis Comparison for Light Source Optimization

Authors: Shahrukh Ahmad, Purnendu Bose

Abstract:

Algal-Bacterial photobioreactors (ABPBRs) have emerged as a promising technology for sustainable biomass production and wastewater treatment. Nutrient removal is seldom done in sewage treatment plants and large volumes of wastewater which still have nutrients are being discharged and that can lead to eutrophication. That is why ABPBR plays a vital role in wastewater treatment. However, improving the efficiency of ABPBR remains a significant challenge. This study aims to enhance ABPBR efficiency by focusing on two key aspects: nutrient removal and cost-effective optimization of the light source. By integrating nutrient removal and cost analysis for light source optimization, this study proposes practical strategies for improving ABPBR efficiency. To reduce organic carbon and convert ammonia to nitrates, domestic wastewater from a 130 MLD sewage treatment plant (STP) was aerated with a hydraulic retention time (HRT) of 2 days. The treated supernatant had an approximate nitrate and phosphate values of 16 ppm as N and 6 ppm as P, respectively. This supernatant was then fed into the ABPBR, and the removal of nutrients (nitrate as N and phosphate as P) was observed using different colored LED bulbs, namely white, blue, red, yellow, and green. The ABPBR operated with a 9-hour light and 3-hour dark cycle, using only one color of bulbs per cycle. The study found that the white LED bulb, with a photosynthetic photon flux density (PPFD) value of 82.61 µmol.m-2 .sec-1 , exhibited the highest removal efficiency. It achieved a removal rate of 91.56% for nitrate and 86.44% for phosphate, surpassing the other colored bulbs. Conversely, the green LED bulbs showed the lowest removal efficiencies, with 58.08% for nitrate and 47.48% for phosphate at an HRT of 5 days. The quantum PAR (Photosynthetic Active Radiation) meter measured the photosynthetic photon flux density for each colored bulb setting inside the photo chamber, confirming that white LED bulbs operated at a wider wavelength band than the others. Furthermore, a cost comparison was conducted for each colored bulb setting. The study revealed that the white LED bulb had the lowest average cost (Indian Rupee)/light intensity (µmol.m-2 .sec-1 ) value at 19.40, while the green LED bulbs had the highest average cost (INR)/light intensity (µmol.m-2 .sec-1 ) value at 115.11. Based on these comparative tests, it was concluded that the white LED bulbs were the most efficient and costeffective light source for an algal photobioreactor. They can be effectively utilized for nutrient removal from secondary treated wastewater which helps in improving the overall wastewater quality before it is discharged back into the environment.

Keywords: algal bacterial photobioreactor, domestic wastewater, nutrient removal, led bulbs

Procedia PDF Downloads 15
3523 Generation Transcritical Flow Influenced by Dissipation over a Hole

Authors: Mohammed Daher Albalwi

Abstract:

The transcritical flow of a stratified fluid over an obstacle for negative forcing amplitude (hole) that generation upstream and downstream, connected by an unsteady solution, is examined. In the weakly nonlinear, weakly dispersive regime, the problem is formulated in the forced Korteweg-de Vries–Burgers framework. This is done by including the influence of the viscosity of the fluid beyond the Korteweg–de Vries approximation. The results show that the influence of viscosity is crucial in determining various wave properties, including the amplitudes of solitary waves in the upstream and downstream directions, as well as the widths of the bores. We focused here on weak damping, and the results are presented for transcritical, supercritical, and subcritical flows. In general, the outcomes are not qualitatively similar to those from the forced Korteweg-de–Vries equation when the value of the viscous is small, interesting differences emerge as the magnitude of the value of viscous increases.

Keywords: Korteweg–de Vries–Burgers equation, soliton, transcritical flow, viscous flow

Procedia PDF Downloads 17
3522 Climate Change and Urban Flooding: The Need to Rethinking Urban Flood Management through Resilience

Authors: Suresh Hettiarachchi, Conrad Wasko, Ashish Sharma

Abstract:

The ever changing and expanding urban landscape increases the stress on urban systems to support and maintain safe and functional living spaces. Flooding presents one of the more serious threats to this safety, putting a larger number of people in harm’s way in congested urban settings. Climate change is adding to this stress by creating a dichotomy in the urban flood response. On the one hand, climate change is causing storms to intensify, resulting in more destructive, rarer floods, while on the other hand, longer dry periods are decreasing the severity of more frequent, less intense floods. This variability is creating a need to be more agile and innovative in how we design for and manage urban flooding. Here, we argue that to cope with this challenge climate change brings, we need to move towards urban flood management through resilience rather than flood prevention. We also argue that dealing with the larger variation in flood response to climate change means that we need to look at flooding from all aspects rather than the single-dimensional focus of flood depths and extents. In essence, we need to rethink how we manage flooding in the urban space. This change in our thought process and approach to flood management requires a practical way to assess and quantify resilience that is built into the urban landscape so that informed decision-making can support the required changes in planning and infrastructure design. Towards that end, we propose a Simple Urban Flood Resilience Index (SUFRI) based on a robust definition of resilience as a tool to assess flood resilience. The application of a simple resilience index such as the SUFRI can provide a practical tool that considers urban flood management in a multi-dimensional way and can present solutions that were not previously considered. When such an index is grounded on a clear and relevant definition of resilience, it can be a reliable and defensible way to assess and assist the process of adapting to the increasing challenges in urban flood management with climate change.

Keywords: urban flood resilience, climate change, flood management, flood modelling

Procedia PDF Downloads 11
3521 The Paradox of Environmental Social Governance (ESG) in Addressing Environmental Justice

Authors: Barbara Ballan

Abstract:

Environmental Justice (EJ) and Environmental Social Governance (ESG) are trending terms used to address the impacts of corporate actions and environmental and social regulations on the people and the planet. ESG is a private governance invention (though increasingly required by public law) that aims to disclose environmental and social criteria while fostering value for businesses. On the other hand, EJ was borne as a social movement that evolved into a regulatory tool employed by EJ advocates and governmental agencies to assess inequalities in environmental impacts and regulations. However, EJ usage is expanding, and private environmental governance in the form of ESG disclosure frameworks is incorporating EJ criteria, indexes, and tools as part of its metric-driven approach. There is an existing tension between (1) the notion of social justice at the heart of the environmental justice movement and (2) the nature of for-profit corporations which generate value by externalizing costs, translated to environmental injustices. This study aims to explore the paradoxical relation of ESG, including EJ criteria, despite their opposing notions, in response to the need for innovative mechanisms to address today’s pressing social and environmental challenges. To that end, this study will evaluate and critically assess the inclusion of EJ in ESG reporting. Furthermore, it identifies gaps in ESG frameworks and proposes the integration of EJ tools to address these deficiencies. This work is intended to help both businesses looking to expand their ESG frameworks and include EJ criteria to inform corporate decisions and assure long-term corporate viability, as well as EJ supporters in understanding the complex dynamic of ESG disclosure for the pursuit of EJ objectives.

Keywords: environmental justice, ESG, sustainability reporting, corporate law, environmental law, social justice

Procedia PDF Downloads 16
3520 Urban Flood Resilience Comprehensive Assessment of "720" Rainstorm in Zhengzhou Based on Multiple Factors

Authors: Meiyan Gao, Zongmin Wang, Haibo Yang, Qiuhua Liang

Abstract:

Under the background of global climate change and rapid development of modern urbanization, the frequency of climate disasters such as extreme precipitation in cities around the world is gradually increasing. In this paper, Hi-PIMS model is used to simulate the "720" flood in Zhengzhou, and the continuous stages of flood resilience are determined with the urban flood stages are divided. The flood resilience curve under the influence of multiple factors were determined and the urban flood toughness was evaluated by combining the results of resilience curves. The flood resilience of urban unit grid was evaluated based on economy, population, road network, hospital distribution and land use type. Firstly, the rainfall data of meteorological stations near Zhengzhou and the remote sensing rainfall data from July 17 to 22, 2021 were collected. The Kriging interpolation method was used to expand the rainfall data of Zhengzhou. According to the rainfall data, the flood process generated by four rainfall events in Zhengzhou was reproduced. Based on the results of the inundation range and inundation depth in different areas, the flood process was divided into four stages: absorption, resistance, overload and recovery based on the once in 50 years rainfall standard. At the same time, based on the levels of slope, GDP, population, hospital affected area, land use type, road network density and other aspects, the resilience curve was applied to evaluate the urban flood resilience of different regional units, and the difference of flood process of different precipitation in "720" rainstorm in Zhengzhou was analyzed. Faced with more than 1,000 years of rainstorm, most areas are quickly entering the stage of overload. The influence levels of factors in different areas are different, some areas with ramps or higher terrain have better resilience, and restore normal social order faster, that is, the recovery stage needs shorter time. Some low-lying areas or special terrain, such as tunnels, will enter the overload stage faster in the case of heavy rainfall. As a result, high levels of flood protection, water level warning systems and faster emergency response are needed in areas with low resilience and high risk. The building density of built-up area, population of densely populated area and road network density all have a certain negative impact on urban flood resistance, and the positive impact of slope on flood resilience is also very obvious. While hospitals can have positive effects on medical treatment, they also have negative effects such as population density and asset density when they encounter floods. The result of a separate comparison of the unit grid of hospitals shows that the resilience of hospitals in the distribution range is low when they encounter floods. Therefore, in addition to improving the flood resistance capacity of cities, through reasonable planning can also increase the flood response capacity of cities. Changes in these influencing factors can further improve urban flood resilience, such as raise design standards and the temporary water storage area when floods occur, train the response speed of emergency personnel and adjust emergency support equipment.

Keywords: urban flood resilience, resilience assessment, hydrodynamic model, resilience curve

Procedia PDF Downloads 14
3519 Assessing the Risk of Socio-economic Drought: A Case Study of Chuxiong Yi Autonomous Prefecture, China

Authors: Mengdan Guo, Zongmin Wang, Haibo Yang

Abstract:

Drought is one of the most complex and destructive natural disasters, with a huge impact on both nature and society. In recent years, adverse climate conditions and uncontrolled human activities have exacerbated the occurrence of global droughts, among which socio-economic droughts are closely related to human survival. The study of socio-economic drought risk assessment is crucial for sustainable social development. Therefore, this study comprehensively considered the risk of disaster causing factors, the exposure level of the disaster-prone environment, and the vulnerability of the disaster bearing body to construct a socio-economic drought risk assessment model for Chuxiong Prefecture in Yunnan Province. Firstly, a threedimensional frequency analysis of intensity area duration drought was conducted, followed by a statistical analysis of the drought risk of the socio-economic system. Secondly, a grid analysis model was constructed to assess the exposure levels of different agents and study the effects of drought on regional crop growth, industrial economic growth, and human consumption thresholds. Thirdly, an agricultural vulnerability model for different irrigation levels was established by using the DSSAT crop model. Industrial economic vulnerability and domestic water vulnerability under the impact of drought were investigated by constructing a standardized socio-economic drought index and coupling water loss. Finally, the socio-economic drought risk was assessed by combining hazard, exposure, and vulnerability. The results show that the frequency of drought occurrence in Chuxiong Prefecture, Yunnan Province is relatively high, with high population and economic exposure concentrated in urban areas of various counties and districts, and high agricultural exposure concentrated in mountainous and rural areas. Irrigation can effectively reduce agricultural vulnerability in Chuxiong, and the yield loss rate under the 20mm winter irrigation scenario decreased by 10.7% compared to the rain fed scenario. From the perspective of comprehensive risk, the distribution of long-term socio-economic drought risk in Chuxiong Prefecture is relatively consistent, with the more severe areas mainly concentrated in Chuxiong City and Lufeng County, followed by counties such as Yao'an, Mouding and Yuanmou. Shuangbai County has the lowest socio-economic drought risk, which is basically consistent with the economic distribution trend of Chuxiong Prefecture. And in June, July, and August, the drought risk in Chuxiong Prefecture is generally high. These results can provide constructive suggestions for the allocation of water resources and the construction of water conservancy facilities in Chuxiong Prefecture, and provide scientific basis for more effective drought prevention and control. Future research is in the areas of data quality and availability, climate change impacts, human activity impacts, and countermeasures for a more comprehensive understanding and effective response to drought risk in Chuxiong Prefecture.

Keywords: DSSAT model, risk assessment, socio-economic drought, standardized socio-economic drought index

Procedia PDF Downloads 14
3518 Coupling Large Language Models with Disaster Knowledge Graphs for Intelligent Construction

Authors: Zhengrong Wu, Haibo Yang

Abstract:

In the context of escalating global climate change and environmental degradation, the complexity and frequency of natural disasters are continually increasing. Confronted with an abundance of information regarding natural disasters, traditional knowledge graph construction methods, which heavily rely on grammatical rules and prior knowledge, demonstrate suboptimal performance in processing complex, multi-source disaster information. This study, drawing upon past natural disaster reports, disaster-related literature in both English and Chinese, and data from various disaster monitoring stations, constructs question-answer templates based on large language models. Utilizing the P-Tune method, the ChatGLM2-6B model is fine-tuned, leading to the development of a disaster knowledge graph based on large language models. This serves as a knowledge database support for disaster emergency response.

Keywords: large language model, knowledge graph, disaster, deep learning

Procedia PDF Downloads 17
3517 From By-product To Brilliance: Transforming Adobe Brick Construction Using Meat Industry Waste-derived Glycoproteins

Authors: Amal Balila, Maria Vahdati

Abstract:

Earth is a green building material with very low embodied energy and almost zero greenhouse gas emissions. However, it lacks strength and durability in its natural state. By responsibly sourcing stabilisers, it's possible to enhance its strength. This research draws inspiration from the robustness of termite mounds, where termites incorporate glycoproteins from their saliva during construction. Biomimicry explores the potential of these termite stabilisers in producing bio-inspired adobe bricks. The meat industry generates significant waste during slaughter, including blood, skin, bones, tendons, gastrointestinal contents, and internal organs. While abundant, many meat by-products raise concerns regarding human consumption, religious orders, cultural and ethical beliefs, and also heavily contribute to environmental pollution. Extracting and utilising proteins from this waste is vital for reducing pollution and increasing profitability. Exploring the untapped potential of meat industry waste, this research investigates how glycoproteins could revolutionize adobe brick construction. Bovine serum albumin (BSA) from cows' blood and mucin from porcine stomachs were the chosen glycoproteins used as stabilisers for adobe brick production. Despite their wide usage across various fields, they have very limited utilisation in food processing. Thus, both were identified as potential stabilisers for adobe brick production in this study. Two soil types were utilised to prepare adobe bricks for testing, comparing controlled unstabilised bricks with glycoprotein-stabilised ones. All bricks underwent testing for unconfined compressive strength and erosion resistance. The primary finding of this study is the efficacy of BSA, a glycoprotein derived from cows' blood and a by-product of the beef industry, as an earth construction stabiliser. Adding 0.5% by weight of BSA resulted in a 17% and 41% increase in the unconfined compressive strength for British and Sudanese adobe bricks, respectively. Further, adding 5% by weight of BSA led to a 202% and 97% increase in the unconfined compressive strength for British and Sudanese adobe bricks, respectively. Moreover, using 0.1%, 0.2%, and 0.5% by weight of BSA resulted in erosion rate reductions of 30%, 48%, and 70% for British adobe bricks, respectively, with a 97% reduction observed for Sudanese adobe bricks at 0.5% by weight of BSA. However, mucin from the porcine stomach did not significantly improve the unconfined compressive strength of adobe bricks. Nevertheless, employing 0.1% and 0.2% by weight of mucin resulted in erosion rate reductions of 28% and 55% for British adobe bricks, respectively. These findings underscore BSA's efficiency as an earth construction stabiliser for wall construction and mucin's efficacy for wall render, showcasing their potential for sustainable and durable building practices.

Keywords: biomimicry, earth construction, industrial waste management, sustainable building materials, termite mounds.

Procedia PDF Downloads 13
3516 Influence of Water Reservoir Parameters on the Climate and Coastal Areas

Authors: Lia Matchavariani

Abstract:

Water reservoir construction on the rivers flowing into the sea complicates the coast protection, seashore starts to degrade causing coast erosion and disaster on the backdrop of current climate change. The instruments of the impact of a water reservoir on the climate and coastal areas are its contact surface with the atmosphere and the area irrigated with its water or humidified with infiltrated waters. The Black Sea coastline is characterized by the highest ecological vulnerability. The type and intensity of the water reservoir impact are determined by its morphometry, type of regulation, level regime, and geomorphological and geological characteristics of the adjoining area. Studies showed the impact of the water reservoir on the climate, on its comfort parameters is positive if it is located in the zone of insufficient humidity and vice versa, is negative if the water reservoir is found in the zone with abundant humidity. There are many natural and anthropogenic factors determining the peculiarities of the impact of the water reservoir on the climate, which can be assessed with maximum accuracy by the so-called “long series” method, which operates on the meteorological elements (temperature, wind, precipitations, etc.) with the long series formed with the stationary observation data. This is the time series, which consists of two periods with statistically sufficient duration. The first period covers the observations up to the formation of the water reservoir and another period covers the observations accomplished during its operation. If no such data are available, or their series is statistically short, “an analog” method is used. Such an analog water reservoir is selected based on the similarity of the environmental conditions. It must be located within the zone of the designed water reservoir, under similar environmental conditions, and besides, a sufficient number of observations accomplished in its coastal zone.

Keywords: coast-constituent sediment, eustasy, meteorological parameters, seashore degradation, water reservoirs impact

Procedia PDF Downloads 16
3515 Decision Support Model for Selecting Construction and Demolition Waste Management Alternatives: A Life Cycle-Based Approach

Authors: Yanqing Yi, Maria Cristina Lavagnolo, Alessandro Manzardo

Abstract:

Construction and demolition waste (C&DW) represents a pressing concern within the European Union, underscoring the urgent need for effective waste management strategies. The selection of these solutions constitutes a complex task, entailing the identification of efficient C&DW management strategies that balance appropriate practices, regulatory compliance, resource conservation, economic viability, and environmental considerations. Techniques for evaluating different types of criteria enable the application of multi-criteria analysis in life cycle assessment (LCA). LCA is widely utilized to assess environmental impact, yet the economic aspect has not been adequately incorporated into the LCA process in the field of C&DW management. The life cycle costing (LCC) methodology has been tailored to assess economic performance in conjunction with LCA. The selection of an appropriate multi-criteria decision-making (MCDM) method is vital for the C&DW system. This study seeks to propose a model that employs MCDM to integrate the LCA and LCC results, thereby augmenting both environmental and economic sustainability. A widely used compensatory MCDM technique, TOPSIS, has been chosen to identify the most effective C&DW management scheme by comparing and ranking various scenarios. Our study introduces a framework for C&DW management by integrating LCA and LCC factors into MCDM, using AHP for weight determination, and applying TOPSIS for alternative ranking. Four waste management alternatives were examined in the Lombardy region of Italy, namely, (i) landfill; (ii) recycling for concrete production and road construction, incineration with energy recovery; (iii) recycling for road construction; (iv) recycling for concrete production and road construction. We determine that, with the implementation of various scenarios, the most suitable scenario emerges to be recycled for concrete production and road construction, with a score of 0.711/1; recycling for road construction, with a final score of 0.291/1, ranks second; recycling for concrete production and road construction, incineration with energy recovery scores 0.002/1, ranks third; and landfill (scores: 0/1) is the worst choice, signifying it has the highest environmental impacts and the least economic benefits. Lastly, recommendations were formulated to enhance the environmental performance of the system.

Keywords: life cycle assessment, construction and demolition waste, TOPSIS, multi-criteria decision making

Procedia PDF Downloads 15
3514 Traditional Lifestyles of the 'Mbuti' Indigenous Communities and the Relationship with the Preservation of Natural Resources in the Landscape of the Okapi Wildlife Reserve in a Context of Socio-cultural Upheaval, Democratic Republic of Congo

Authors: Chales Mumbere Musavandalo, Lucie B. Mugherwa, Gloire Kayitoghera Mulondi, Naanson Bweya, Muyisa Musongora, Francis Lelo Nzuzi

Abstract:

The landscape of the Okapi Wildlife Reserve in the Democratic Republic of Congo harbors a large community of Mbuti indigenous peoples, often described as the guardians of nature. Living in and off the forest has long been a sustainable strategy for preserving natural resources. This strategy, seen as a form of eco-responsible citizenship, draws upon ethnobotanical knowledge passed down through generations. However, these indigenous communities are facing socio-cultural upheaval, which impacts their traditional way of life. This study aims to assess the relationship between the Mbuti indigenous people’s way of life and the preservation of the Okapi Wildlife Reserve. The study was conducted under the assumption that, despite socio-cultural upheavals, the forest and its resources remain central to the Mbuti way of life. The study was conducted in six encampments, three of which were located inside the forest and two in the anthropized zone. The methodological approach initially involved group interviews in six Mbuti encampments. The objective of these interviews was to determine how these people perceive the various services provided by the forest and the resources obtained from this habitat. The technique of using pebbles was adopted to adapt the exercise of weighting services and resources to the understanding of these people. Subsequently, the study carried out ethnobotanical surveys to identify the wood resources frequently used by these communities. This survey was completed in third position by a transect inventory of 1000 m length and 25 m width in order to enhance the understanding of the abundance of these resources around the camps. Two transects were installed in each camp to carry out this inventory. Traditionally, the Mbuti communities sustain their livelihood through hunting, fishing, gathering for self-consumption, and basketry. The Manniophyton fulvum-based net remains the main hunting tool. The primary forest and the swamp are two habitats from which these peoples derive the majority of their resources. However, with the arrival of the Bantu people, who introduced agriculture based on cocoa production, the Mbuti communities started providing services to the Bantu in the form of labor and field guarding. This cultural symbiosis between Mbute and Bantu has also led to non-traditional practices, such as the use of hunting rifles instead of nets and fishing nets instead of creels. The socio-economic and ecological environment in which Mbuti communities live is changing rapidly, including the resources they depend on. By incorporating the time factor into their perception of ecosystem services, only their future (p-value = 0, 0,121), the provision of wood for energy (p-value = 0,1976), and construction (p-value = 0,2548) would be closely associated with the forest in their future. For other services, such as food supply, medicine, and hunting, adaptation to Bantu customs is conceivable. Additionally, the abundance of wood used by the Mbuti people has been high around encampments located in intact forests and low in those in anthropized areas. The traditional way of life of the Mbuti communities is influenced by the cultural symbiosis, reflected in their habits and the availability of resources. The land tenure security of Mbuti areas is crucial to preserve their tradition and forest biodiversity. Conservation efforts in the Okapi Wildlife Reserve must consider this cultural dynamism and promote positive values for the flagship species. The oversight of subsistence hunting is imperative to curtail the transition of these communities to poaching.

Keywords: traditional life, conservation, Indigenous people, cultural symbiosis, forest

Procedia PDF Downloads 17
3513 Hydrological Challenges and Solutions in the Nashik Region: A Multi Tracer and Geochemistry Approach to Groundwater Management

Authors: Gokul Prasad, Pennan Chinnasamy

Abstract:

The degradation of groundwater resources, attributed to factors such as excessive abstraction and contamination, has emerged as a global concern. This study delves into the stable isotopes of water) in a hard-rock aquifer situated in the Upper Godavari watershed, an agriculturally rich region in India underlain by Basalt. The higher groundwater draft (> 90%) poses significant risks; comprehending groundwater sources, flow patterns, and their environmental impacts is pivotal for researchers and water managers. The region has faced five droughts in the past 20 years; four are categorized as medium. The recharge rates are variable and show a very minimum contribution to groundwater. The rainfall pattern shows vast variability, with the region receiving seasonal monsoon rainfall for just four months and the rest of the year experiencing minimal rainfall. This research closely monitored monsoon precipitation inputs and examined spatial and temporal fluctuations in δ18O and δ2H in both groundwater and precipitation. By discerning individual recharge events during monsoons, it became possible to identify periods when evaporation led to groundwater quality deterioration, characterized by elevated salinity and stable isotope values in the return flow. The locally derived meteoric water line (LMWL) (δ2H = 6.72 * δ18O + 1.53, r² = 0.6) provided valuable insights into the groundwater system. The leftward shift of the Nashik LMWL in relation to the GMWL and LMWL indicated groundwater evaporation (-33 ‰), supported by spatial variations in electrical conductivity (EC) data. Groundwater in the eastern and northern watershed areas exhibited higher salinity > 3000uS/cm, expanding > 40% of the area compared to the western and southern regions due to geological disparities (alluvium vs basalt). The findings emphasize meteoric precipitation as the primary groundwater source in the watershed. However, spatial variations in isotope values and chemical constituents indicate other contributing factors, including evaporation, groundwater source type, and natural or anthropogenic (specifically agricultural and industrial) contaminants. Therefore, the study recommends focused hydro geochemistry and isotope analysis in areas with strong agricultural and industrial influence for the development of holistic groundwater management plans for protecting the groundwater aquifers' quantity and quality.

Keywords: groundwater quality, stable isotopes, salinity, groundwater management, hard-rock aquifer

Procedia PDF Downloads 23
3512 Diversity of Culturable Forms of Microorganisms in Soils with Long-term Exposure to Petroleum Hydrocarbons and Prospects for Bioremediation

Authors: Yessentayeva K. Y., Berzhanova R. Z., Mukasheva T. D.

Abstract:

The purpose of this study was to study the microbial diversity of soils with long-standing hydrocarbon pollution in the S. Balgimbayev field (Kazakhstan), where the transformation of meadow coastal soils technogenic solonchak soils, as well as the assessment of the degradation potential of microorganisms perspective for the use for bioremediation. In the present work autochthonous microorganisms of the surface horizon of soils were investigated. In samples with a low degree of pollution the number of microorganisms, was comparable to the number in the uncontaminated soil and was 103 - 104 CFU/g. and one and two orders of magnitude lower in samples with high oil content. A collection of microorganisms was created using different culture media, which made it possible to isolate isolates that play a key role in different successional stages of biodegradation of petroleum hydrocarbons. The collection included the main bacterial filiiments, Protobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Mycelial fungi andyeast-like fungwere assigned to the Ascomycota division. Studies showed that the percentage of isolates capable of growth in hydrocarbons varied. More than 50 % of the isolates grew on crude oil, a low percentage of less than 10 % of the isolates grew on an anthracene, phenanthrene and naphthalene, more than 20 % of the isolates belonging to different genera Pseudomonas, Bacillus, Rhodococcus, Achromobacter, Gordonia, Microbacterium, and Trichosporon, characterized the growth on two or three different hydrocarbons. The ability to grow using all hydrocarbons, associated with the synthesis of biosurfactants, was detected only in a few isolates.

Keywords: oil, soil, number of bioremediation, biodegradation, microorganisms, hydrocarbons – oxidizing microorganisms

Procedia PDF Downloads 17
3511 Aerosol Radiative Forcing Over Indian Subcontinent for 2000-2021 Using Satellite Observations

Authors: Shreya Srivastava, Sushovan Ghosh, Sagnik Dey

Abstract:

Aerosols directly affect Earth’s radiation budget by scattering and absorbing incoming solar radiation and outgoing terrestrial radiation. While the uncertainty in aerosol radiative forcing (ARF) has decreased over the years, it is still higher than that of greenhouse gas forcing, particularly in the South Asian region, due to high heterogeneity in their chemical properties. Understanding the Spatio-temporal heterogeneity of aerosol composition is critical in improving climate prediction. Studies using satellite data, in-situ and aircraft measurements, and models have investigated the Spatio-temporal variability of aerosol characteristics. In this study, we have taken aerosol data from Multi-angle Imaging Spectro-Radiometer (MISR) level-2 version 23 aerosol products retrieved at 4.4 km and radiation data from Clouds and the Earth’s Radiant Energy System (CERES, spatial resolution=1ox1o) for 21 years (2000-2021) over the Indian subcontinent. MISR aerosol product includes size and shapes segregated aerosol optical depth (AOD), Angstrom exponent (AE), and single scattering albedo (SSA). Additionally, 74 aerosol mixtures are included in version 23 data that is used for aerosol speciation. We have seasonally mapped aerosol optical and microphysical properties from MISR for India at quarter degrees resolution. Results show strong Spatio-temporal variability, with a constant higher value of AOD for the Indo-Gangetic Plain (IGP). The contribution of small-size particles is higher throughout the year, spatially during winter months. SSA is found to be overestimated where absorbing particles are present. The climatological map of short wave (SW) ARF at the top of the atmosphere (TOA) shows a strong cooling except in only a few places (values ranging from +2.5o to -22.5o). Cooling due to aerosols is higher in the absence of clouds. Higher negative values of ARF are found over the IGP region, given the high aerosol concentration above the region. Surface ARF values are everywhere negative for our study domain, with higher values in clear conditions. The results strongly correlate with AOD from MISR and ARF from CERES.

Keywords: aerosol Radiative forcing (ARF), aerosol composition, single scattering albedo (SSA), CERES

Procedia PDF Downloads 16
3510 Aerosol Direct Radiative Forcing Over the Indian Subcontinent: A Comparative Analysis from the Satellite Observation and Radiative Transfer Model

Authors: Shreya Srivastava, Sagnik Dey

Abstract:

Aerosol direct radiative forcing (ADRF) refers to the alteration of the Earth's energy balance from the scattering and absorption of solar radiation by aerosol particles. India experiences substantial ADRF due to high aerosol loading from various sources. These aerosols' radiative impact depends on their physical characteristics (such as size, shape, and composition) and atmospheric distribution. Quantifying ADRF is crucial for understanding aerosols’ impact on the regional climate and the Earth's radiative budget. In this study, we have taken radiation data from Clouds and the Earth’s Radiant Energy System (CERES, spatial resolution=1ox1o) for 22 years (2000-2021) over the Indian subcontinent. Except for a few locations, the short-wave DARF exhibits aerosol cooling at the TOA (values ranging from +2.5 W/m2 to -22.5W/m2). Cooling due to aerosols is more pronounced in the absence of clouds. Being an aerosol hotspot, higher negative ADRF is observed over the Indo-Gangetic Plain (IGP). Aerosol Forcing Efficiency (AFE) shows a decreasing seasonal trend in winter (DJF) over the entire study region while an increasing trend over IGP and western south India during the post-monsoon season (SON) in clear-sky conditions. Analysing atmospheric heating and AOD trends, we found that only the aerosol loading is not governing the change in atmospheric heating but also the aerosol composition and/or their vertical profile. We used a Multi-angle Imaging Spectro-Radiometer (MISR) Level-2 Version 23 aerosol products to look into aerosol composition. MISR incorporates 74 aerosol mixtures in its retrieval algorithm based on size, shape, and absorbing properties. This aerosol mixture information was used for analysing long-term changes in aerosol composition and dominating aerosol species corresponding to the aerosol forcing value. Further, ADRF derived from this method is compared with around 35 studies across India, where a plane parallel Radiative transfer model was used, and the model inputs were taken from the OPAC (Optical Properties of Aerosols and Clouds) utilizing only limited aerosol parameter measurements. The result shows a large overestimation of TOA warming by the latter (i.e., Model-based method).

Keywords: aerosol radiative forcing (ARF), aerosol composition, MISR, CERES, SBDART

Procedia PDF Downloads 22
3509 “Ethiopian Approach” to Combating Desertification: The Case of Semi-Arid Savanna Grasslands in Southern Ethiopia

Authors: Wang Yongdong, Yeneayehu Fenetahun, You Yuan, Ogbue Chukwuka, Yahaya Ibrahim, Xu Xinwen

Abstract:

This paper explores an innovative Ethiopian approach to combatting desertification, focusing on the semi-arid savanna grasslands in Southern Ethiopia. The study investigates the multifaceted strategies employed by Ethiopian communities, governmental bodies, and non-governmental organizations to address desertification challenges in the region. Through an analysis of legislative frameworks, community engagement, afforestation programs, and sustainable land management techniques, this research highlights the efficacy of Ethiopia's strategy in reducing the effects of desertification. The results emphasize how crucial it is to build effective measures for halting desertification in fragile ecosystems by utilizing local knowledge, community involvement, and adaptive governance. In addition, this study also addresses how the Ethiopian approach may be applied to other areas with comparable environmental problems. In summary, this research adds significant perspectives to the worldwide conversation about desertification and provides useful guidance for sustainable land use.

Keywords: adaptive governance, community engagement, desertification, policy frameworks

Procedia PDF Downloads 12
3508 Building Up a Sustainable, Future-Proof, Export-Orientated Chili Value Chain in Bugesera District, Rwanda

Authors: Akingeneye Liliane

Abstract:

The value chain concept in recent times is being used by businesses and organizations to develop and implement their businesses. Chili farming has been identified as a significant contributor to the economic growth of Bugesera district. However, numerous challenges have led to a decrease in production. The primary objective of this research was to assess the current Bugesera chili value chain, identify the bottlenecks in the value chain, and come up with interventions that can help increase the output of the Bugesera chili value chain, in a climate-smart way and enhance Long-term sustainability of the value chain. The research used a case study approach to fulfill its objectives, utilizing primary and secondary data sources. Qualitative and quantitative data were gathered through semi-structured interviews with 22 individual farmers, five exporters, and five supporters within the Bugesera district. A focus group discussion (FGD) with seven stakeholders was also conducted to validate the research findings. The study's results underscore the challenges faced by chili farmers and other actors in the chain, the perceptions of different stakeholders to contribute to chili production, and the importance of promoting strong collaboration among stakeholders in the chili value chain to establish a sustainable framework. Based on these findings, the study puts forward recommendations to address the identified challenges and improve the chili farming sector in Bugesera. The business canvas model, as a proposed recommendation, once implemented, is believed to represent the most effective approach to enhancing chili productivity in Bugesera and securing the long-term sustainability of an export-oriented chili value chain in the district.

Keywords: build, sustainability, chili value chain, export-oriented

Procedia PDF Downloads 14
3507 Ecosystem Carbon Stocks Vary in Reference to the Models Used, Socioecological Factors and Agroforestry Practices in Central Ethiopia

Authors: Gadisa Demie, Mesele Negash, Zerihun Asrat, Lojka Bohdan

Abstract:

Deforestation and forest degradation in the tropics have led to significant carbon (C) emissions. Agroforestry (AF) is a suitable land-use option for tackling such declines in ecosystem services, including climate change mitigation. However, it is unclear how biomass models, AF practices, and socio-ecological factors determine these roles, which hinders the implementation of climate change mitigation initiatives. This study aimed to estimate the ecosystem C stocks of the studied AF practices in relation to socio-ecological variables in central Ethiopia. Out of 243 AF farms inventoried, 108 were chosen at random from three AF practices to estimate their biomass and soil organic carbon. A total of 432 soil samples were collected from 0–30 and 30–60 cm soil depths; 216 samples were taken for each soil organic carbon fraction (%C) and bulk density computation. The study found that the currently developed allometric equations were the most accurate to estimate biomass C for trees growing in the landscape when compared to previous models. The study found higher overall biomass C in woodlots (165.62 Mg ha-¹) than in homegardens (134.07 Mg ha-¹) and parklands (19.98 Mg ha-¹). Conversely, overall, SOC was higher for homegardens (143.88 Mg ha-¹), but lower for parklands (53.42 Mg ha-¹). The ecosystem C stock was comparable between homegardens (277.95 Mg ha-¹) and woodlots (275.44 Mg ha-¹). The study found that elevation, wealthy levels, AF farm age, and size have a positive and significant (P < 0.05) effect on overall biomass and ecosystem C stocks but non-significant with slope (P > 0.05). Similarly, SOC increased with increasing elevation, AF farm age, and wealthy status but decreased with slope and non-significant with AF farm size. The study also showed that species diversity had a positive (P <0.05) effect on overall biomass C stocks in homegardens. The overall study highlights that AF practices have a great potential to lock up more carbon in biomass and soils; however, these potentials were determined by socioecological variables. Thus, these factors should be considered in management strategies that preserve trees in agricultural landscapes in order to mitigate climate change and support the livelihoods of farmers.

Keywords: agricultural landscape, biomass, climate change, soil organic carbon

Procedia PDF Downloads 18
3506 Exploration of Classic Models of Precipitation in Iran: A Case Study of Sistan and Baluchestan Province

Authors: Mohammad Borhani, Ahmad Jamshidzaei, Mehdi Koohsari

Abstract:

The study of climate has captivated human interest throughout history. In response to this fascination, individuals historically organized their daily activities in alignment with prevailing climatic conditions and seasonal variations. Understanding the elements and specific climatic parameters of each region, such as precipitation, which directly impacts human life, is essential because, in recent years, there has been a significant increase in heavy rainfall in various parts of the world attributed to the effects of climate change. Climate prediction models suggest a future scenario characterized by an increase in severe precipitation events and related floods on a global scale. This is a result of human-induced greenhouse gas emissions causing changes in the natural precipitation patterns. The Intergovernmental Panel on Climate Change reported global warming in 2001. The average global temperature has shown an increasing trend since 1861. In the 20th century, this increase has been between (0/2 ± 0/6) °C. The present study focused on examining the trend of monthly, seasonal, and annual precipitation in Sistan and Baluchestan provinces. The study employed data obtained from 13 precipitation measurement stations managed by the Iran Water Resources Management Company, encompassing daily precipitation records spanning the period from 1997 to 2016. The results indicated that the total monthly precipitation at the studied stations in Sistan and Baluchestan province follows a sinusoidal trend. The highest intense precipitation was observed in January, February, and March, while the lowest occurred in September, October, and then November. The investigation of the trend of seasonal precipitation in this province showed that precipitation follows an upward trend in the autumn season, reaching its peak in winter, and then shows a decreasing trend in spring and summer. Also, the examination of average precipitation indicated that the highest yearly precipitation occurred in 1997 and then in 2004, while the lowest annual precipitation took place between 1999 and 2001. The analysis of the annual precipitation trend demonstrates a decrease in precipitation from 1997 to 2016 in Sistan and Baluchestan province.

Keywords: climate change, extreme precipitation, greenhouse gas, trend analysis

Procedia PDF Downloads 31
3505 Risk Assessment and Haloacetic Acids Exposure in Drinking Water in Tunja, Colombia

Authors: Bibiana Matilde Bernal Gómez, Manuel Salvador Rodríguez Susa, Mildred Fernanda Lemus Perez

Abstract:

In chlorinated drinking water, Haloacetic acids have been identified and are classified as disinfection byproducts originating from reaction between natural organic matter and/or bromide ions in water sources. These byproducts can be generated through a variety of chemical and pharmaceutical processes. The term ‘Total Haloacetic Acids’ (THAAs) is used to describe the cumulative concentration of dichloroacetic acid, trichloroacetic acid, monochloroacetic acid, monobromoacetic acid, and dibromoacetic acid in water samples, which are usually measured to evaluate water quality. Chronic presence of these acids in drinking water has a risk of cancer in humans. The detection of THAAs for the first time in 15 municipalities of Boyacá was accomplished in 2023. Aim is to describe the correlation between the levels of THAAs and digestive cancer in Tunja, a city in Colombia with higher rates of digestive cancer and to compare the risk across 15 towns, taking into account factors such as water quality. A research project was conducted with the aim of comparing water sources based on the geographical features of the town, describing the disinfection process in 15 municipalities, and exploring physical properties such as water temperature and pH level. The project also involved a study of contact time based on habits documented through a survey, and a comparison of socioeconomic factors and lifestyle, in order to assess the personal risk of exposure. Data on the levels of THAAs were obtained after characterizing the water quality in urban sectors in eight months of 2022. This, based on the protocol described in the Stage 2 DBP of the United States Environmental Protection Agency (USEPA) from 2006, which takes into account the size of the population being supplied. A cancer risk assessment was conducted to evaluate the likelihood of an individual developing cancer due to exposure to pollutants THAAs. The assessment considered exposure methods like oral ingestion, skin absorption, and inhalation. The chronic daily intake (CDI) for these exposure routes was calculated using specific equations. The lifetime cancer risk (LCR) was then determined by adding the cancer risks from the three exposure routes for each HAA. The risk assessment process involved four phases: exposure assessment, toxicity evaluation, data gathering and analysis, and risk definition and management. The results conclude that there is a cumulative higher risk of digestive cancer due to THAAs exposure in drinking water.

Keywords: haloacetic acids, drinking water, water quality, cancer risk assessment

Procedia PDF Downloads 23