Search results for: waste water treatment works.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4501

Search results for: waste water treatment works.

4231 Independent Component Analysis to Mass Spectra of Aluminium Sulphate

Authors: M. Heikkinen, A. Sarpola, H. Hellman, J. Rämö, Y. Hiltunen

Abstract:

Independent component analysis (ICA) is a computational method for finding underlying signals or components from multivariate statistical data. The ICA method has been successfully applied in many fields, e.g. in vision research, brain imaging, geological signals and telecommunications. In this paper, we apply the ICA method to an analysis of mass spectra of oligomeric species emerged from aluminium sulphate. Mass spectra are typically complex, because they are linear combinations of spectra from different types of oligomeric species. The results show that ICA can decomposite the spectral components for useful information. This information is essential in developing coagulation phases of water treatment processes.

Keywords: Independent component analysis, massspectroscopy, water treatment, aluminium sulphate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2332
4230 Integrated Water Management for Lafarge Cement-Jordan

Authors: Azzam Hamaideh, Abbas Al-Omari, Michael Sturm

Abstract:

This study aims at implementing integrated water resources management principles to the Lafarge Cement Jordan at Al-Fuhais plant. This was accomplished by conducting water audits at all water consuming units in the plant. Based on the findings of the water audit, an action plan to improve water use efficiency in the plant was proposed. The main elements of which are installing water saving devices, re-use of the treated wastewater, water harvesting, raising the awareness of the employees, and linking the plant to the water demand management unit at the Ministry of Water and Irrigation.

The analysis showed that by implementing the proposed action plan, it is expected that the industrial water demand can be satisfied from non-conventional resources including treated wastewater and harvested water. As a consequence, fresh water can be used to increase the supply to Al-Fuhais city which is expected to reflect positively on the relationship between the factory and the city. 

Keywords: Integrated water resources management, non-conventional water resources, water awareness, water demand management, water harvesting, water saving devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2569
4229 The Optimum Operating Conditions for the Synthesis of Zeolite from Waste Incineration Fly Ash by Alkali Fusion and Hydrothermal Methods

Authors: Yi-Jie Lin, Jyh-Cherng Chen

Abstract:

The fly ash of waste incineration processes is usually hazardous and the disposal or reuse of waste incineration fly ash is difficult. In this study, the waste incineration fly ash was converted to useful zeolites by the alkali fusion and hydrothermal synthesis method. The influence of different operating conditions (the ratio of Si/Al, the ratio of hydrolysis liquid to solid, and hydrothermal time) was investigated to seek the optimum operating conditions for the synthesis of zeolite from waste incineration fly ash. The results showed that concentrations of heavy metals in the leachate of Toxicity Characteristic Leaching Procedure (TCLP) were all lower than the regulatory limits except lead. The optimum operating conditions for the synthesis of zeolite from waste incineration fly ash by the alkali fusion and hydrothermal synthesis method were Si/Al=40, NaOH/ash=1.5, alkali fusion at 400 oC for 40 min, hydrolysis with Liquid to Solid ratio (L/S)= 200 at 105 oC for 24 h, and hydrothermal synthesis at 105 oC for 24 h. The specific surface area of fly ash could be significantly increased from 8.59 m2/g to 651.51 m2/g (synthesized zeolite). The influence of different operating conditions on the synthesis of zeolite from waste incineration fly ash followed the sequence of Si/Al ratio > hydrothermal time > hydrolysis L/S ratio. The synthesized zeolites can be reused as good adsorbents to control the air or wastewater pollutants. The purpose of fly ash detoxification, reduction and waste recycling/reuse is achieved successfully.

Keywords: Alkali fusion, hydrothermal, fly ash, zeolite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 820
4228 Using Waste Marbles in Self Compacting Lightweight Concrete

Authors: Z. Funda Türkmenoğlu, Mehmet Türkmenoglu, Demet Yavuz,

Abstract:

In this study, the effects of waste marbles as aggregate material on workability and hardened concrete characteristics of self compacting lightweight concrete are investigated. For this purpose, self compacting light weight concrete are produced by waste marble aggregates are replaced with fine aggregate at 5%, 7.5%, and 10% ratios. Fresh concrete properties, slump flow, T50 time, V funnel, compressive strength and ultrasonic pulse velocity of self compacting lightweight concrete are determined. It is concluded from the test results that using waste marbles as aggregate material by replacement with fine aggregate slightly affects fresh and hardened concrete characteristics of self compacting lightweight concretes.

Keywords: Hardened concrete characteristics, self compacting lightweight concrete, waste marble, workability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1270
4227 Monitoring of Water Pollution and Its Consequences: An Overview

Authors: N. Singh, N. Sharma, J. K. Katnoria

Abstract:

Water a vital component for all living forms is derived from variety of sources, including surface water (rivers, lakes, reservoirs and ponds) and ground water (aquifers). Over the years of time, water bodies are subjected to human interference regularly resulting in deterioration of water quality. Therefore, pollution of water bodies has become matter of global concern. As the water quality closely relate to human health, water analysis before usage is of immense importance. Improper management of water bodies can cause serious problems in availability and quality of water. The quality of water may be described according to their physico-chemical and microbiological characteristics. For effective maintenance of water quality through appropriate control measures, continuous monitoring of metals, physico-chemical and biological parameter is essential for the establishment of baseline data for the water quality in any study area. The present study has focused on to explore the status of water pollution in various areas and to estimate the magnitude of its toxicity using different bioassay.

Keywords: Genotoxicity, Heavy metals, Mutagenicity, Physico-chemical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3509
4226 Groundwater Quality Improvement by Using Aeration and Filtration Methods

Authors: Nik N. Nik Daud, Nur H. Izehar, B. Yusuf, Thamer A. Mohamed, A. Ahsan

Abstract:

An experiment was conducted using two aeration methods (water-into-air and air-into-water) and followed by filtration processes using manganese greensand material. The properties of groundwater such as pH, dissolved oxygen, turbidity and heavy metal concentration (iron and manganese) will be assessed. The objectives of this study are i) to determine the effective aeration method and ii) to assess the effectiveness of manganese greensand as filter media in removing iron and manganese concentration in groundwater. Results showed that final pH for all samples after treatment are in range from 7.40 and 8.40. Both aeration methods increased the dissolved oxygen content. Final turbidity for groundwater samples are between 3 NTU to 29 NTU. Only three out of eight samples achieved iron concentration of 0.3mg/L and less and all samples reach manganese concentration of 0.1mg/L and less. Air-into-water aeration method gives higher percentage of iron and manganese removal compare to water-into-air method.

Keywords: Aeration, filtration, groundwater, water quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4050
4225 Blending Processing of Industrial Residues: A Specific Case of an Enterprise Located in the Municipality of Belo Horizonte, MG, Brazil

Authors: S. R. De Oliveira, A. De Almeida, I. M. Dal Fabbro

Abstract:

Residues are produced in all stages of human activities in terms of composition and volume which vary according to consumption practices and to production methods. Forms of significant harm to the environment are associated to volume of generated material as well as to improper disposal of solid wastes, whose negative effects are noticed more frequently in the long term. The solution to this problem constitutes a challenge to the government, industry and society, because they involve economic, social, environmental and, especially, awareness of the population in general. The main concerns are focused on the impact it can have on human health and on the environment (soil, water, air and sights). The hazardous waste produced mainly by industry, are particularly worrisome because, when improperly managed, they become a serious threat to the environment. In view of this issue, this study aimed to evaluate the management system of solid waste of a coprocessing industrial waste company, to propose improvements to the rejects generation management in a specific step of the Blending production process.

Keywords: Blending, environment, industrial residues.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
4224 Multi-Criteria Decision Analysis in Planning of Asbestos-Containing Waste Management

Authors: E. Bruno, F. Lacarbonara, M. C. Placentino, D. Gramegna

Abstract:

Environmental decision making, particularly about hazardous waste management, is inherently exposed to a high potential conflict, principally because of the trade-off between sociopolitical, environmental, health and economic factors. The need to plan complex contexts has led to an increasing request for decision analytic techniques as support for the decision process. In this work, alternative systems of asbestos-containing waste management (ACW) in Puglia (Southern Italy) were explored by a multi-criteria decision analysis. In particular, through Analytic Hierarchy Process five alternatives management have been compared and ranked according to their performance and efficiency, taking into account environmental, health and socio-economic aspects. A separated valuation has been performed for different temporal scale. For short period results showed a narrow deviation between the disposal alternatives “mono-material landfill in public quarry" and “dedicate cells in existing landfill", with the best performance of the first one. While for long period “treatment plant to eliminate hazard from asbestos-containing waste" was prevalent, although high energy demand required to achieve the change of crystalline structure. A comparison with results from a participative approach in valuation process might be considered as future development of method application to ACW management.

Keywords: Multi-criteria decision analysis, Hazardous wastemanagement, Asbestos.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
4223 Landfill Failure Mobility Analysis: A Probabilistic Approach

Authors: Ali Jahanfar, Brajesh Dubey, Bahram Gharabaghi, Saber Bayat Movahed

Abstract:

Ever increasing population growth of major urban centers and environmental challenges in siting new landfills have resulted in a growing trend in design of mega-landfills some with extraordinary heights and dangerously steep slopes. Landfill failure mobility risk analysis is one of the most uncertain types of dynamic rheology models due to very large inherent variabilities in the heterogeneous solid waste material shear strength properties. The waste flow of three historic dumpsite and two landfill failures were back-analyzed using run-out modeling with DAN-W model. The travel distances of the waste flow during landfill failures were calculated approach by taking into account variability in material shear strength properties. The probability distribution function for shear strength properties of the waste material were grouped into four major classed based on waste material compaction (landfills versus dumpsites) and composition (high versus low quantity) of high shear strength waste materials such as wood, metal, plastic, paper and cardboard in the waste. This paper presents a probabilistic method for estimation of the spatial extent of waste avalanches, after a potential landfill failure, to create maps of vulnerability scores to inform property owners and residents of the level of the risk.

Keywords: Landfill failure, waste flow, Voellmy rheology, friction coefficient, waste compaction and type.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222
4222 The Coupling of Photocatalytic Oxidation Processes with Activated Carbon Technologies and the Comparison of the Treatment Methods for Organic Removal from Surface Water

Authors: N. Areerachakul

Abstract:

The surface water used in this study was collected from the Chao Praya River at the lower part at the Nonthaburi bridge. It was collected and used throughout the experiment. TOC (also known as DOC) in the range between 2.5 to 5.6 mg/l were investigated in this experiment. The use of conventional treatment methods such as FeCl3 and PAC showed that TOC removal was 65% using FeCl3 and 78% using PAC (powder activated carbon). The advanced oxidation process alone showed only 35% removal of TOC. Coupling advanced oxidation with a small amount of PAC (0.05g/L) increased efficiency by upto 55%. The combined BAC with advanced oxidation process and small amount of PAC demonstrated the highest efficiency of up to 95% of TOC removal and lower sludge production compared with other methods.

Keywords: Advanced oxidation process, TOC, PAC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
4221 Influence of Milled Waste Glass to Clay Ceramic Foam Properties Made by Direct Foaming Route

Authors: A. Shishkin, V. Mironovs, D. Goljandin, A. Korjakins

Abstract:

The goal of this work is to develop sustainable and durable ceramic cellular structures using widely available natural resources- clay and milled waste glass. Present paper describes method of obtaining clay ceramic foam (CCF) with addition of milled waste glass in 5, 7 and 10 wt% by direct foaming with high speed mixer-disperser (HSMD). For more efficient clay and waste glass milling and mixing, the high velocity disintegrator was used. The CCF with 5, 7, and 10 wt% were obtained at 900, 950, 1000 and 1050 °C firing temperature and they have demonstrated mechanical compressive strength for all 12 samples ranging from 3.8 to 14.3 MPa and porosity 76-65%. Obtained CCF has compressive strength 14.3 MPa and porosity 65.3%.

Keywords: Ceramic foam, waste glass, clay foam, glass foam, open cell, direct foaming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
4220 Treatment of Biowaste (Generated in Biodiesel Process) - A New Strategy for Green Environment and Horticulture Crop

Authors: Shivani Chaturvedi, Santosh Satya, S. K. Tiwari

Abstract:

Recent research on seeds of bio-diesel plants like Jatropha curcas, constituting 40-50% bio-crude oil indicates its potential as one of the most promising alternatives to conventional sources of energy. Also, limited studies on utilization of de-oiled cake have revealed that Jatropha bio-waste has good potential to be used as organic fertilizers produced via aerobic and anaerobic treatment. However, their commercial exploitation has not yet been possible. The present study aims at developing appropriate bio-processes and formulations utilizing Jatropha seed cake as organic fertilizer, for improving the growth of Polianthes tuberose L. (Tuberose). Pot experiments were carried out by growing tuberose plants on soil treated with composted formulations of Jatropha de-oiled cake, Farm Yard Manure (FYM) and inorganic fertilizers were also blended in soil. The treatment was carried out through soil amendment as well as foliar spray. The growth and morphological parameters were monitored for entire crop cycle. The growth Length and number of leaves, spike length, rachis length, number of bulb per plant and earliness of sprouting of bulb and yield enhancement were comparable to that achieved under inorganic fertilizer. Furthermore, performance of inorganic fertilizer also showed an improvement when blended with composted bio-waste. These findings would open new avenues for Jatropha based bio-wastes to be composted and used as organic fertilizers for commercial floriculture.

Keywords: Organic fertilizer, Jaropha cake, Tuberose (Polianthes tuberosa L.).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
4219 Studies on the Blended Concrete Prepared with Tannery Effluent

Authors: K. Nirmalkumar

Abstract:

There is a acute water problem especially in the dry season in and around Perundurai (Erode district, Tamil Nadu, India) where there are more number of tannery units. Hence an attempt was made to use the waste water from tannery industry for construction purpose. The mechanical properties such as compressive strength, tensile strength, flexural strength etc were studied by casting various concrete specimens in form of cube, cylinders and beams etc and were found to be satisfactory. Hence some special properties such as chloride attack, sulphate attack and chemical attack are considered and comparatively studied with the conventional potable water. In this experimental study the results of specimens prepared by using treated and untreated tannery effluent were compared with the concrete specimens prepared by using potable water. It was observed that the concrete had some reduction in strength while subjected to chloride attack, sulphate attack and chemical attack. So admixtures were selected and optimized in suitable proportion to counter act the adverse effects and the results were found to be satisfactory.

Keywords: Calcium nitrite, concrete, fly ash.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953
4218 A Practical Construction Technique to Enhance the Performance of Rock Bolts in Tunnels

Authors: O. Chaudhari, A. N. Ghafar, G. Zirgulis, M. Mousavi, T. Ellison, S. Pousette, P. Fontana

Abstract:

In Swedish tunnel construction, a critical issue that has been repeatedly acknowledged is corrosion and, consequently, failure of the rock bolts in rock support systems. The defective installation of rock bolts results in the formation of cavities in the cement mortar that is regularly used to fill the area under the dome plates. These voids allow for water-ingress to the rock bolt assembly, which results in corrosion of rock bolt components and eventually failure. In addition, the current installation technique consists of several manual steps with intense labor works that are usually done in uncomfortable and exhausting conditions, e.g., under the roof of the tunnels. Such intense tasks also lead to a considerable waste of materials and execution errors. Moreover, adequate quality control of the execution is hardly possible with the current technique. To overcome these issues, a non-shrinking/expansive cement-based mortar filled in the paper packaging has been developed in this study which properly fills the area under the dome plates without or with the least remaining cavities, ultimately that diminishes the potential of corrosion. This article summarizes the development process and the experimental evaluation of this technique for the installation of rock bolts. In the development process, the cementitious mortar was first developed using specific cement and shrinkage reducing/expansive additives. The mechanical and flow properties of the mortar were then evaluated using compressive strength, density, and slump flow measurement methods. In addition, isothermal calorimetry and shrinkage/expansion measurements were used to elucidate the hydration and durability attributes of the mortar. After obtaining the desired properties in both fresh and hardened conditions, the developed dry mortar was filled in specific permeable paper packaging and then submerged in water bath for specific intervals before the installation. The tests were enhanced progressively by optimizing different parameters such as shape and size of the packaging, characteristics of the paper used, immersion time in water and even some minor characteristics of the mortar. Finally, the developed prototype was tested in a lab-scale rock bolt assembly with various angles to analyze the efficiency of the method in real life scenario. The results showed that the new technique improves the performance of the rock bolts by reducing the material wastage, improving environmental performance, facilitating and accelerating the labor works, and finally enhancing the durability of the whole system. Accordingly, this approach provides an efficient alternative for the traditional way of tunnel bolt installation with considerable advantages for the Swedish tunneling industry.

Keywords: corrosion, durability, mortar, rock bolt

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 356
4217 A Fuzzy MCDM Approach for Health-Care Waste Management

Authors: Mehtap Dursun, E. Ertugrul Karsak, Melis Almula Karadayi

Abstract:

The management of the health-care wastes is one of the most important problems in Istanbul, a city with more than 12 million inhabitants, as it is in most of the developing countries. Negligence in appropriate treatment and final disposal of the healthcare wastes can lead to adverse impacts to public health and to the environment. This paper employs a fuzzy multi-criteria group decision making approach, which is based on the principles of fusion of fuzzy information, 2-tuple linguistic representation model, and technique for order preference by similarity to ideal solution (TOPSIS), to evaluate health-care waste (HCW) treatment alternatives for Istanbul. The evaluation criteria are determined employing nominal group technique (NGT), which is a method of systematically developing a consensus of group opinion. The employed method is apt to manage information assessed using multigranularity linguistic information in a decision making problem with multiple information sources. The decision making framework employs ordered weighted averaging (OWA) operator that encompasses several operators as the aggregation operator since it can implement different aggregation rules by changing the order weights. The aggregation process is based on the unification of information by means of fuzzy sets on a basic linguistic term set (BLTS). Then, the unified information is transformed into linguistic 2-tuples in a way to rectify the problem of loss information of other fuzzy linguistic approaches.

Keywords: Group decision making, health care waste management, multi-criteria decision making, OWA, TOPSIS, 2-tuple linguistic representation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2357
4216 The Influence of Zeolitic Spent Refinery Admixture on the Rheological and Technological Properties of Steel Fiber Reinforced Self-Compacting Concrete

Authors: Ž. Rudžionis, P. Grigaliūnas, D. Vaičiukynienė

Abstract:

By planning this experimental work to investigate the effect of zeolitic waste on rheological and technological properties of self-compacting fiber reinforced concrete, we had an intention to draw attention to the environmental factor. Large amount of zeolitic waste, as secondary raw materials are not in use properly and large amount of it is collected without a clear view of its usage in future. The principal aim of this work is to assure, that zeolitic waste admixture takes positive effect to the self-compacting fiber reinforced concrete mixes stability, flowability and other properties by using the experimental research methods. In addition to that a research on cement and zeolitic waste mortars were implemented to clarify the effect of zeolitic waste on properties of cement paste and stone. Primary studies indicates that zeolitic waste characterizes clear pozzolanic behavior, do not deteriorate and in some cases ensure positive rheological and mechanical characteristics of self-compacting concrete mixes.

Keywords: Self compacting concrete, steel fiber reinforced concrete, zeolitic waste, rheological properties of concrete, slump flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
4215 Methane Production from Biomedical Waste (Blood)

Authors: Fatima M. Kabbashi, Abdalla M. Abdalla, Hussam K. Hamad, Elias S. Hassan

Abstract:

This study investigates the production of renewable energy (biogas) from biomedical hazard waste (blood) and eco-friendly disposal. Biogas is produced by the bacterial anaerobic digestion of biomaterial (blood). During digestion process bacterial feeding result in breaking down chemical bonds of the biomaterial and changing its features, by the end of the digestion (biogas production) the remains become manure as known. That has led to the economic and eco-friendly disposal of hazard biomedical waste (blood). The samples (Whole blood, Red blood cells 'RBCs', Blood platelet and Fresh Frozen Plasma ‘FFP’) are collected and measured in terms of carbon to nitrogen C/N ratio and total solid, then filled in connected flasks (three flasks) using water displacement method. The results of trails showed that the platelet and FFP failed to produce flammable gas, but via a gas analyzer, it showed the presence of the following gases: CO, HC, CO₂, and NOX. Otherwise, the blood and RBCs produced flammable gases: Methane-nitrous CH₃NO (99.45%), which has a blue color flame and carbon dioxide CO₂ (0.55%), which has red/yellow color flame. Methane-nitrous is sometimes used as fuel for rockets, some aircraft and racing cars.

Keywords: Renewable energy, biogas, biomedical waste, blood, anaerobic digestion, eco-friendly disposal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1152
4214 Preliminary Evaluation of Decommissioning Wastes for the First Commercial Nuclear Power Reactor in South Korea

Authors: Kyomin Lee, Joohee Kim, Sangho Kang

Abstract:

The commercial nuclear power reactor in South Korea, Kori Unit 1, which was a 587 MWe pressurized water reactor that started operation since 1978, was permanently shut down in June 2017 without an additional operating license extension. The Kori 1 Unit is scheduled to become the nuclear power unit to enter the decommissioning phase. In this study, the preliminary evaluation of the decommissioning wastes for the Kori Unit 1 was performed based on the following series of process: firstly, the plant inventory is investigated based on various documents (i.e., equipment/ component list, construction records, general arrangement drawings). Secondly, the radiological conditions of systems, structures and components (SSCs) are established to estimate the amount of radioactive waste by waste classification. Third, the waste management strategies for Kori Unit 1 including waste packaging are established. Forth, selection of the proper decontamination and dismantling (D&D) technologies is made considering the various factors. Finally, the amount of decommissioning waste by classification for Kori 1 is estimated using the DeCAT program, which was developed by KEPCO-E&C for a decommissioning cost estimation. The preliminary evaluation results have shown that the expected amounts of decommissioning wastes were less than about 2% and 8% of the total wastes generated (i.e., sum of clean wastes and radwastes) before/after waste processing, respectively, and it was found that the majority of contaminated material was carbon or alloy steel and stainless steel. In addition, within the range of availability of information, the results of the evaluation were compared with the results from the various decommissioning experiences data or international/national decommissioning study. The comparison results have shown that the radioactive waste amount from Kori Unit 1 decommissioning were much less than those from the plants decommissioned in U.S. and were comparable to those from the plants in Europe. This result comes from the difference of disposal cost and clearance criteria (i.e., free release level) between U.S. and non-U.S. The preliminary evaluation performed using the methodology established in this study will be useful as a important information in establishing the decommissioning planning for the decommissioning schedule and waste management strategy establishment including the transportation, packaging, handling, and disposal of radioactive wastes.

Keywords: Characterization, classification, decommissioning, decontamination and dismantling, Kori 1, radioactive waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
4213 Comparison Mechanical and Chemical Treatments on Properties of Low Yield Bagasse Pulp During Recycling

Authors: Parizad Sheikhi, Mohammad Talaeipour

Abstract:

the effects of refining and alkaline chemicals on potential of recycling bleached chemical pulp of bagasse were investigated in this study. Recycling was done until three times. Handsheet properties such as, apparent density, light scattering coefficient, tear index, burst index, breaking length, and fold number according to TAPPI standard were measured. Water retention value also was used to considering the treatments during recycling. Refining enhanced the strength of recycled pulp by increasing fiber flexibility and swelling ability, whereas by applying chemical treatment didn't observe any improvement. The morphology of recycled fiber was considered with scanning electron microscopy (SEM).

Keywords: Bagasse pulp, chemical treatment, recycling, refining, scanning electron microscopy, water retention value.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2627
4212 Effect of Oyster Mushroom on Biodegradation of Oil Palm Mesocarp Fibre

Authors: Mohammed Saidu, Afiz Busari, Ali Yuzir, Mohd Razman Salim

Abstract:

The problem of degradation of agricultural residues from palm oil industry is increasing due to its expansion. Lignocelloulosic waste from these industry represent large amount of unutilized resources, this is due to their high lignin content. Since white rot fungi are capable of degrading lignin, its potential for the degradation of lignocelloulosic waste from palm oil industry was accessed. The lignocellluloses content was measured before and after biodegradation and the rate of reduction was determined. From the results of the biodegradation, it was observed that hemicellulose reduces by 22.62%, cellulose by 20.97% and lignin by 10.65% from the initials lignocelluloses contents. Thus, to improve the digestibility of palm oil mesocarp fibre, treatment by white rot-fungi is recommended.

Keywords: Biological, lignocelluses, oil palm, white rot fungi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2940
4211 The Effect of Discontinued Water Spray Cooling on the Heat Transfer Coefficient

Authors: J. Hrabovský, M. Chabičovský, J. Horský

Abstract:

Water spray cooling is a technique typically used in heat treatment and other metallurgical processes where controlled temperature regimes are required. Water spray cooling is used in static (without movement) or dynamic (with movement of the steel plate) regimes. The static regime is notable for the fixed position of the hot steel plate and fixed spray nozzle. This regime is typical for quenching systems focused on heat treatment of the steel plate. The second application of spray cooling is the dynamic regime. The dynamic regime is notable for its static section cooling system and moving steel plate. This regime is used in rolling and finishing mills. The fixed position of cooling sections with nozzles and the movement of the steel plate produce nonhomogeneous water distribution on the steel plate. The length of cooling sections and placement of water nozzles in combination with the nonhomogeneity of water distribution lead to discontinued or interrupted cooling conditions. The impact of static and dynamic regimes on cooling intensity and the heat transfer coefficient during the cooling process of steel plates is an important issue. Heat treatment of steel is accompanied by oxide scale growth. The oxide scale layers can significantly modify the cooling properties and intensity during the cooling. The combination of static and dynamic (section) regimes with the variable thickness of the oxide scale layer on the steel surface impact the final cooling intensity. The study of the influence of the oxide scale layers with different cooling regimes was carried out using experimental measurements and numerical analysis. The experimental measurements compared both types of cooling regimes and the cooling of scale-free surfaces and oxidized surfaces. A numerical analysis was prepared to simulate the cooling process with different conditions of the section and samples with different oxide scale layers.

Keywords: Heat transfer coefficient, numerical analysis, oxide layer, spray cooling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2918
4210 Hydrogen Sulphide Removal Using a Novel Biofilter Media

Authors: Z. M. Shareefdeen, A. Aidan, W.Ahmed, M. B. Khatri, M. Islam, R. Lecheheb, F. Shams

Abstract:

Air emissions from waste treatment plants often consist of a combination of Volatile Organic Compounds (VOCs) and odors. Hydrogen sulfide is one of the major odorous gases present in the waste emissions coming from municipal wastewater treatment facilities. Hydrogen sulfide (H2S) is odorous, highly toxic and flammable. Exposure to lower concentrations can result in eye irritation, a sore throat and cough, shortness of breath, and fluid in the lungs. Biofiltration has become a widely accepted technology for treating air streams containing H2S. When compared with other nonbiological technologies, biofilter is more cost-effective for treating large volumes of air containing low concentrations of biodegradable compounds. Optimization of biofilter media is essential for many reasons such as: providing a higher surface area for biofilm growth, low pressure drop, physical stability, and good moisture retention. In this work, a novel biofilter media is developed and tested at a pumping station of a municipality located in the United Arab Emirates (UAE). The media is found to be very effective (>99%) in removing H2S concentrations that are expected in pumping stations under steady state and shock loading conditions.

Keywords: biofilter media, hydrogen sulphide, pumping station, biofiltration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
4209 Assessment of Nickel Concentration in Surface and Ground Water of the Kowsar Dam Basin

Authors: Fardin Boustani, M Hojati , S Ebrahimzadeh

Abstract:

The Kowsar dam supply water for different usages such as drinking, industrial, agricultural and aquaculture farms usages and located next to the city of Dehdashat in Kohgiluye and Boyerahmad province in southern Iran. There are some towns and villages on the Kowsar dam watersheds, which Dehdasht and Choram are the most important and populated cities in this area. The study was undertaken to assess the status of water quality in the urban areas of the Kowsar dam. A total of 28 water samples were collected from 6 stations on surface water and 1 station from groundwater on the watershed of the Kowsar dam. All the samples were analyzed for Ni concentration using standard procedures. The results were compared with other national and international standards. Among the analyzed samples, as the maximum value of Nickel (0.01 mg/L) was observed on the station 2 at the autumn 2010, all the samples analyzed were within the maximum admissible limits by the United States Environmental Protection Agency, EU, WHO and the Iranian. In general results of the present study have shown that a Ni mean value of station No. 2 with 0.006 mg/L is higher than the other stations. Ni level of all samples and stations have had normal values and this is an indication of pollution potential and hazards because of human activity and waste water of towns in the areas, which can effect on human health implications in future. This research, therefore, recommends the government and other responsible authorities to take suitable improving measures in the Kowsar dam watersheds.

Keywords: Kowsar dam, Drinking water quality, Nickel, Maximum admissible limit, World health organization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
4208 Rheological Behaviors of Crude Oil in the Presence of Water

Authors: Madjid Meriem-Benziane, Hamou Zahloul

Abstract:

The rheological properties of light crude oil and its mixture with water were investigated experimentally. These rheological properties include steady flow behavior, yield stress, transient flow behavior, and viscoelastic behavior. A RheoStress RS600 rheometer was employed in all of the rheological examination tests. The light crude oil exhibits a Newtonian and for emulsion exhibits a non-Newtonian shear thinning behavior over the examined shear rate range of 0.1–120 s-1. In first time, a series of samples of crude oil from the Algerian Sahara has been tested and the results expressed in terms of τ=f(γ) have demonstrated their Newtonian character for the temperature included in [20°C, 70°C]. In second time and at T=20°C, the oil-water emulsions (30%, 50% and 70%) by volume of water), thermodynamically stable, have demonstrated a non-Newtonian rheological behavior that is to say, Herschel-Bulkley and Bingham types. For each type of crude oil-water emulsion, the rheological parameters are calculated by numerical treatment of results.

Keywords: Crude oil Algerian, Emulsion, Newtonian, Non- Newtonian, viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3367
4207 Heavy Metal Contamination of the Landscape at the ─¢ubietová Deposit (Slovakia)

Authors: Peter Andráš, Adam Lichý, Jana Rusková, Lenka Matúšková

Abstract:

The heavy metal contamination of the technogenous sediments and soils at the investigated dump-field show irregular planar distribution. Also the heavy metal content in the surface water, drainage water and in the groundwater was studied both in the dry as well as during the rainy periods. The cementation process causes substitution of iron by copper. Natural installation and development of plant species was observed at the old mine waste dumps, specific to the local chemical conditions such as low content of essential nutrients and high content of heavy metals. The individual parts of the plant tissues (roots, branches/stems, leaves/needles, flowers/ fruits) are contaminated by heavy metals and tissues are damaged differently, respectively.

Keywords: Contamination, dump-field, heavy metals, plants, sediment, water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3030
4206 Bioconversion of Oranges Wastes for Pectinase Production Using Aspergillus niger under Solid State Fermentation

Authors: N. Hachemi, A. Nouani, A. Benchabane

Abstract:

The influence of cultivation factors such as content of ammonium sulfate, glucose and water in the culture medium and particle size of dry orange waste, on their bioconversion for pectinase production was studied using complete factorial design. A polygalacturonase (PG) was isolated using ion exchange chromatography under gradient elution 0-0,5 m/l NaCl (column equilibrate with acetate buffer pH 4,5), subsequently by sephadex G75 column chromatography was applied and the molecular weight was obtained about 51,28 KDa. Purified PG enzyme exhibits a pH and temperature optima of activity at 5 and 35°C respectively. Treatment of apple juice by purified enzyme extract yielded a clear juice, which was competitive with juice yielded by pure Sigma Aldrich Aspergillus niger enzyme.

Keywords: Bioconversion, orange wastes, optimization, pectinase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3002
4205 Underwater Interaction of 1064 nm Laser Radiation with Metal Target

Authors: G. Toker, V. Bulatov, T. Kovalchuk, I. Schechter

Abstract:

Dynamics of laser radiation – metal target interaction in water at 1064 nm by applying Mach-Zehnder interference technique was studied. The mechanism of generating the well developed regime of evaporation of a metal surface and a spherical shock wave in water is proposed. Critical intensities of the NIR for the well developed evaporation of silver and gold targets were determined. Dynamics of shock waves was investigated for earlier (dozens) and later (hundreds) nanoseconds of time. Transparent expanding plasma-vapor-compressed water object was visualized and measured. The thickness of compressed layer of water and pressures behind the front of a shock wave for later time delays were obtained from the optical treatment of interferograms.

Keywords: laser, shock wave, metal target, underwater

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623
4204 A Multivariate Statistical Approach for Water Quality Assessment of River Hindon, India

Authors: Nida Rizvi, Deeksha Katyal, Varun Joshi

Abstract:

River Hindon is an important river catering the demand of highly populated rural and industrial cluster of western Uttar Pradesh, India. Water quality of river Hindon is deteriorating at an alarming rate due to various industrial, municipal and agricultural activities. The present study aimed at identifying the pollution sources and quantifying the degree to which these sources are responsible for the deteriorating water quality of the river. Various water quality parameters, like pH, temperature, electrical conductivity, total dissolved solids, total hardness, calcium, chloride, nitrate, sulphate, biological oxygen demand, chemical oxygen demand, and total alkalinity were assessed. Water quality data obtained from eight study sites for one year has been subjected to the two multivariate techniques, namely, principal component analysis and cluster analysis. Principal component analysis was applied with the aim to find out spatial variability and to identify the sources responsible for the water quality of the river. Three Varifactors were obtained after varimax rotation of initial principal components using principal component analysis. Cluster analysis was carried out to classify sampling stations of certain similarity, which grouped eight different sites into two clusters. The study reveals that the anthropogenic influence (municipal, industrial, waste water and agricultural runoff) was the major source of river water pollution. Thus, this study illustrates the utility of multivariate statistical techniques for analysis and elucidation of multifaceted data sets, recognition of pollution sources/factors and understanding temporal/spatial variations in water quality for effective river water quality management.

Keywords: Cluster analysis, multivariate statistical technique, river Hindon, water Quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3751
4203 Mechanical Behaviour Analysis of Polyester Polymer Mortars Modified with Recycled GFRP Waste Materials

Authors: M.C.S. Ribeiro, J.P. Meixedo, A. Fiúza, M.L. Dinis, Ana C. Meira Castro, F.J.G. Silva, C. Costa, F. Ferreira, M.R. Alvim

Abstract:

In this study the effect of incorporation of recycled glass-fibre reinforced polymer (GFRP) waste materials, obtained by means of milling processes, on mechanical behaviour of polyester polymer mortars was assessed. For this purpose, different contents of recycled GFRP waste powder and fibres, with distinct size gradings, were incorporated into polyester based mortars as sand aggregates and filler replacements. Flexural and compressive loading capacities were evaluated and found better than unmodified polymer mortars. GFRP modified polyester based mortars also show a less brittle behaviour, with retention of some loading capacity after peak load. Obtained results highlight the high potential of recycled GFRP waste materials as efficient and sustainable reinforcement and admixture for polymer concrete and mortars composites, constituting an emergent waste management solution.

Keywords: GFRP waste, Mechanical behaviour, Polymer mortars, Recyclability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2599
4202 A Conceptual Framework and a Mathematical Equation for Managing Construction-Material Waste and Cost Overruns

Authors: Saidu Ibrahim, Winston M. W. Shakantu

Abstract:

The problem of construction material waste remains unresolved, as a significant percentage of the materials delivered to some project sites end up as waste which might result in additional project cost. Cost overrun is a problem which affects 90% of the completed projects in the world. The argument on how to eliminate it has been on-going for the past 70 years, but there is neither substantial improvement nor significant solution for mitigating its detrimental effects. Research evidence has proposed various construction cost overruns and material-waste management approaches; nonetheless, these studies failed to give a clear indication on the framework and the equation for managing construction material waste and cost overruns. Hence, this research aims to develop a conceptual framework and a mathematical equation for managing material waste and cost overrun in the construction industry. The paper adopts the desktop methodological approach. This involves comparing the causes of material waste and those of cost overruns from the literature to determine the possible relationship. The review revealed a relationship between material waste and cost overrun that; increase in material waste would result to a corresponding increase in the amount of cost overrun at both the pre-contract and the post contract stages of a project. It was found from the equation that achieving an effective construction material waste management must ensure a “Good Quality-of-Planning, Estimating, and Design Management” and a “Good Quality- of-Construction, Procurement and Site Management”; a decrease in “Design Complexity” which would reduce “Material Waste” and subsequently reduce the amount of cost overrun by 86.74%. The conceptual framework and the mathematical equation developed in this study are recommended to the professionals of the construction industry.

Keywords: Conceptual framework, cost overrun, material waste, project stags.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2708