Effect of Oyster Mushroom on Biodegradation of Oil Palm Mesocarp Fibre
Authors: Mohammed Saidu, Afiz Busari, Ali Yuzir, Mohd Razman Salim
Abstract:
The problem of degradation of agricultural residues from palm oil industry is increasing due to its expansion. Lignocelloulosic waste from these industry represent large amount of unutilized resources, this is due to their high lignin content. Since white rot fungi are capable of degrading lignin, its potential for the degradation of lignocelloulosic waste from palm oil industry was accessed. The lignocellluloses content was measured before and after biodegradation and the rate of reduction was determined. From the results of the biodegradation, it was observed that hemicellulose reduces by 22.62%, cellulose by 20.97% and lignin by 10.65% from the initials lignocelluloses contents. Thus, to improve the digestibility of palm oil mesocarp fibre, treatment by white rot-fungi is recommended.
Keywords: Biological, lignocelluses, oil palm, white rot fungi.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1109319
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2989References:
[1] Anwar, Z, Muhammad, G, Muhammad I. “Agro-indusrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review”. 2014. J. Rad. Appl. Sci. 7 163-173.
[2] Palacios-Orueta, A., Chuvieco, E., Parra, A. and Carmona-Moreno, C. Biomass Burning Emissions: “A Review of Models Using Remote- Sensing Data”. Environ. Model. Assess.. Environ. 2005. 104(1), 189- 209.
[3] Pe’rez J. Mun “oz-Dorado de la Rubia T, Marti’nez J. “Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview”. 2002. Int. Microbiol. 5: 53-63.
[4] Adebayo E. A, Martinez-Carrera D. “Oyster mushroom (Pleurotus) are useful for utilizing lignocellulosic biomass”. Afr. J. Biotechnol. 2015. 14 (1), 52-65.
[5] Fengel, D., Wegener, G. Wood: Chemistry, Ultrastructure, Reactions. De Gruyter, Berlin. 1984.
[6] Pandey, R. K. “A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy”. J Appl Polym Sci.1999 71, 1969–1975.
[7] Agbor, V. B., Cicek, N., Sparling, R., Berlin, A. and Levin, D. B. (2011). “Biomass pretreatment: Fundamentals toward application”. Biotech Adv. 29(6), 675-685.
[8] Kumar, R., Singh, S. and Singh, O. “Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives”. J. Ind. Microbiol. Biotechnol. 2008. 35(5), 377-391.
[9] Zhang, Y.-H. P., Ding, S.-Y., Mielenz, J. R., Cui, J.-B., Elander, R. T., Laser, M., Himmel, M. E., McMillan, J. R. and Lynd, L. R. “Fractionating recalcitrant lignocellulose at modest reaction conditions”. Biotechnol. Bioeng. 2007. 97(2), 214-223.
[10] Sarkar, N., Ghosh, S. K., Bannerjee, S. and Aikat, K. “Bioethanol production from agricultural wastes: An overview”. Renew. Energy. 2012.37(1), 19-27.
[11] Saidu, M., Salim, M. R. and Yuzir., M. A. M. “Cultivation of oyster mushroom (Pleurotus spp.) on palm oil mesocarp fibre”. Afr. J. Biotechnol. 2011. 10(71), 15973-15976.
[12] Bayer, E. A., Chanzy, H., Lamed, R. and Shoham, Y. “Cellulose, cellulases and cellulosomes”. Curr. Opin. Struct. Biol. 1998. 8(5), 548- 557.
[13] Ljungdahl, L. G. “The Cellulase/Hemicellulase System of the Anaerobic FungusOrpinomycesPC-2 and Aspects of Its Applied Use”. Ann. Ny. Acad. Sci. 2008. 1125(1), 308-321.
[14] Sánchez, C. “Lignocellulosic residues: Biodegradation and bioconversion by fungi”. Biotechnol Adv. 2009. 27(2), 185-194.
[15] Weng, J.-K., Li, X., Bonawitz, N. D. and Chapple, C. “Emerging strategies of lignin engineering and degradation for cellulosic biofuel production”. Curr.Opin. Biotechnol. 2008. 19(2), 166-172.
[16] Isroi, Millati R, Syamsiah S, Niklasson C, Cahyanto M N, Lundquist K and Taherzadeh M J. Biological Pretreatment of lignocelluloses with white-rot fungi and its application: A review. BioResources. 2011. 6(4), 5224-5259
[17] Das, H. and Singh, S. K. “Useful Byproducts from Cellulosic Wastes of Agriculture and Food Industry—A Critical Appraisal”. Crit Rev. Food. Sci. 2004. 44(2), 77-89.
[18] Foyle, T., Jennings, L. and Mulcahy, P. “Compositional analysis of lignocellulosic materials: Evaluation of methods used for sugar analysis of waste paper and straw”. Bioresor. Technol. 2007. 98(16), 3026-3036.
[19] Pandey, A., Soccol, C. R., Nigam, P. and Soccol, V. T. “Biotechnological potential of agro-industrial residues. I: sugarcane bagasse”. Bioresor. Technol. 2000. 74(1), 69-80.
[20] Galbe, M. and Zacchi, G. “Pretreatment of Lignocellulosic Materials for Efficient Bioethanol Production Biofuels”. In Olsson, L. (Ed.) 2007 (Vol. 108, pp. 41-65) Springer Berlin / Heidelberg.
[21] Mtui, G. Y. S. “Trends in industrial and environmental biotechnology research in Tanzania”. Afr. J. Biotechnol. 2007. 6 (25), 2860-2867.
[22] Mtui, G. Y. S. “Recent advances in pretreatment of lignocellulosic wastes and production of value added products”. Afr. J. Biotechnol. 2009. 8(8), 1398-1415.
[23] Maki, M., Leung, K. T. and Qin, W. “The prospects of cellulaseproducing bacteria for the bioconversion of lignocellulosic biomass”. Int. J. Biol Sci. 2009. 5(5), 500-516.
[24] Sinegani, A. A. S., Emtiazi, G., Hajrasuliha, S. and Shariatmadari, H. “Biodegradation of some agricultural residues by fungi in agitated submerged culture”. Afr. J. Biotechnol. 2005. 4(10), 1058-1061.
[25] Patil, S. S., Ahmed, S. A., Telang, S. M. and Baig, M. M. V. “The nutritional value of Pleurotus ostreatus (JACQ.:FR.) kumm cultivate on different lignocellulosic agrowaste”. Innov. Rom. Food. Biotechnol. 2010. 7, 66-76.
[26] Sánchez, C. “Cultivation of Pleurotus ostreatus and other edible mushrooms”. Appl. Microbiol. Biotechnol. 2010.85(5), 1321-1337.
[27] Datta, R. “Acidogenic Fermentation of Lignocellulose-Acid Yield and Conversion of Components”. Biorechnol. Bioeng. 1981. 23(9), 2167- 2170.
[28] Arora, D. S. and Sharma, R. K. “Comparative ligninolytic potential of Phlebia species and their role in improvement of in vitro digestibility of wheat straw”. J. Anim Feed Sci. 2009. 18, 151–161.
[29] Steel R. G. D, Torrie J. H. “Principles and procedures of statistics”. McGraw Hill Co, Inc. 1080. New York, USA.
[30] Hadar, Y., Kerem, Z., Gorodecki, B. and Ardon, O. “Utilization of lignocellulosic waste by the edible mushroom Pleurotus”. Biodegradation. 1992. 3(2), 189-205.
[31] Pani, B. K. “Evaluation of Some Substrates for Cultivation of White Summer Mushroom (Calocybe indica)”. J. Agric Sci. 2010. 1 (4), 357- 359.
[32] Müller, M. M., Sundman, V., Soininvaara, O. and Meriläinen, A. “Effect of chemical composition on the release of nitrogen from agricultural plant materials decomposing in soil under field conditions”. Biol. Fert Soil. 1988. 6(1), 78-83.
[33] Summerell, B. A. and Burgess, L. W. “Decomposition and chemical composition of cereal straw”. Soil Biol Biochem. 1989. 21(4), 551-559.
[34] Waldrop, M. P., Balser, T. C. and Firestone, M. K. (2000). “Linking microbial community composition to function in a tropical soil”. Soil Biol Biochem. 2000. 32, 1837–1846.
[35] Kumar, R., Singh, S. and Singh, O. “Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives”. J. Ind Microbiol Biotechnol. 2008. 35(5), 377-391.
[36] Leonowicz, A., Matuszewska, A., Luterek, J., Ziegenhagen, D., Wojtaś- Wasilewska, M., Cho, N.-S., Hofrichter, M. and Rogalski, J. “Biodegradation of Lignin by White Rot Fungi”. Fungal Genet Biol. 1999. 27(2–3), 175-185.
[37] Borneman, W. S., Hartley, R. D., Morrison, W. H., Akin, D. E. and Ljungdahl, L. G.” Feruyl and p-coumayrol esterase from anaerobic fungi in relation to plant cell wall degradation”. Appl. Microbial Biotechnol. 1990. 33, 345-351.
[38] Bisaria, R., Madan, M. and Mukhopadhyay, S. N. “Production of biogas from residues from mushroom cultivation”.Biotechnol Lett. 1993. 5(12), 811-812.
[39] Hossain, S., Khalil, M. I., Alam, M. K., Khan, M. A. and Alam, N. “Upgrading of Animal Feed by Solid State Fermentation by Pleurotus sajor-caju”. Euro. J App. Sci. 2009.1(4), 53-58.