Ferrites of the MeFe2O4 System (Me – Zn, Cu, Cd) and Their Two Faces
Authors: B. S. Boyanov, A. B. Peltekov, K. I. Ivanov
Abstract:
The ferrites ZnFe2O4, CdFe2O4 and CuFe2O4 are synthesized in laboratory conditions using ceramic technology. Their homogeneity and structure are proven by X-Ray diffraction analysis and Mössbauer spectroscopy. The synthesized ferrites are subjected to strong acid and high temperature leaching with solutions of H2SO4, HCl and HNO3. The results indicate that the highest degree of leaching of Zn, Cd and Cu from the ferrites is achieved by use of HCl. The charging of five zinc sulfide concentrates was optimized using the criterion of minimal amount of zinc ferrite produced when roasting the concentrates in a fluidized bed. The results obtained are interpreted in terms of the hydrometallurgical zinc production and maximum recovery of zinc, copper and cadmium from initial zinc concentrates after their roasting.
Keywords: Hydrometallurgy, inorganic acids, solubility, zinc ferrite.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1109521
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778References:
[1] B. Boyanov, A. Peltekov and V. Petkova, “Thermal behavior of zinc sulfide concentrates with different iron content at oxidative roasting”, Thermochim. Acta., vol. 586, June. 2014, pp. 9–16.
[2] T. Chen and J. E. Dutrizac, “Mineralogical changes occurring during the fluid bed roasting of zinc sulfide concentrates”, JOM, vol. 56, Dec. 2004, pp. 46–51.
[3] A. R. Queiroz, R. J. Carvalho and F. J. Moura, “Oxidation of zinc sulphide concentrate in a fluidized bed reactor – Part 2: The influence of experimental variables on the kinetics”, Braz. J. Chem. Eng., vol. 22, Jan./Mar. 2005, pp. 127–133.
[4] R. I. Dimitrov, N. I. Moldovanska, K. Bonev and Z. Zivkovic, “Oxidation of marmatite”, Thermochim. Acta, vol. 362, Nov. 2000, pp. 145–151.
[5] J. W. Graydon and D. W. Kirk, “The mechanism of ferrite formation from iron sulfides during zinc roasting”, Mett. Trans. B, vol. 19, Oct. 1988, pp. 777–785.
[6] A. C. Hee, M. Mehrali, H. S. C. Mtselaar, M. Mehrali and N. A. A. Osman, “Comparison of nanostructured nickel zinc ferrite and magnesium copper zinc ferrite prepared by water-in-oil microemulsion”, Electr. Mater. Lett., vol. 8, Dec. 2012, pp. 639–642.
[7] L. B. Tahar, H. Basti, F. Herbst, L. S. Smiri, J. P Quisefit, N. Yaacoub, J. M. Greneche and S. Ammar, “Co1-xZnxFe2O4 (0 ≤ x ≤ 1) nanocrystalline solid solution prepared by the polyol method: Characterization and magnetic properties”, Mater. Res. Bulletin, vol. 47, Apr. 2012, pp. 2590–2598.
[8] V. L. O. Brito, L. F. A. Almeida, A. K. Hirata and A. C. C. Migliano, “Evaluation of a Ni-Zn ferrite for use in temperature sensors”, PIER Letters, vol. 13, Sept. 2010, pp. 103–112.
[9] H. Irakoso, K. Einosuke; W. Atanabe, B. Aba, R. Iichi; N. Aagai and T. Adao, Fundamental studies of zinc ferrite, (Book). Hokkaido University Collection of Scholarly and Academic Papers (HUSCAP), Hokkaido, 1955, pp. 39–57.
[10] A. M. Gismelseed, K. A. Mohammed, N. M. Widatallah, A. D. Al- Rawas, M. E. Elzain and A. A. Yousif, “The structural and magnetic behavior of the MgFe2−xCrxO4 spinel ferrite”, Hyperfine Interact., vol. 217, Jan. 2012, pp. 33–37.
[11] K. N. Harish, H. S. B. Naik, P. N. P. Kumar and R. Viswanath, “Synthesis, enhanced optical and photocatalytic study of Cd-Zn ferrites under sun light”, Catal. Sci. Technol., vol. 2, Jan. 2012, pp. 1033–1039.
[12] K. Ali, A. Iqbal, M. R. Ahmad, Y. Jamil, S. A. Khan, N. Amin, M. A. Iqbal, and M. Z. M. Jafri, “Structural characterization of CuFe2O4 nanocomposites and synthesis by an economical method”, Sci. Int. (Lahore), vol. 23, Mar. 2011, pp. 21−25.
[13] M. Chakrabarti, D. Sanyal and A. Chakrabarti, Preparation of Zn(1−x)CdxFe2O4 (x = 0.0, 0.1, 0.3, 0.5, 0.7 and 1.0) ferrite samples and their characterization by Mössbauer and positron annihilation techniques”, J. Phys.: Condens. Matter, vol. 19, May 2007, pp. 236210– 236220.
[14] M. M. Rashad , R. M. Mohamed, M. A. Ibrahim, L. F. M. Ismail and E. A. Abdel-Aal, “Magnetic and catalytic properties of cubic copper ferrite nanopowders synthesized from secondary resources”, Adv. Powder Technol., vol. 23, May 2012, pp. 315–323.
[15] M. G. Naseri, E. B. Saion, H. A. Ahangar and A. H. Shaari, “Fabrication, characterization, and magnetic properties of copper ferrite nanoparticles prepared by a simple, thermal-treatment method”, Mater. Res. Bull., vol. 48, Apr. 2013, pp. 1439–1446.
[16] I. V. K. Viswanath, Y. L. N. Murthy, K. R. Tata and R. Singh, “Synthesis and characterization of nano ferrites by citrate gel method”, Int. J. Chem. Sci., vol. 11, Dec. 2013, pp. 64–72.
[17] H. Ehrhardt, S. J. Campbell and M. Hofmann, “Structural evolution of ball-milled ZnFe2O4”, J. Alloys Compd., vol. 339, June 2002, pp. 255– 260.
[18] S. M. Ismail, Sh. Labib and S. S. Attallah1, Preparation and Characterization of Nano-Cadmium Ferrite, J. Ceram., vol. 2013, Jan. 2013, pp. 1–8.
[19] W. Kim, S. W. Hyun, T. Kouh and C. S. Kim, “Local Magnetic Properties of Spinel Cd0.9M0.1Fe2O4 (M=Zn, Ni) Investigated by Using External Magnetic Field Mӧssbauer Spectrometry”, J. Korean Chem. Soc., vol. 59, Dec. 2011, pp. 3380−3384.
[20] A. Sutka, G. Mezinskis1, D. Jakovlevs and V. Korsaks, “Sol-gel combustion synthesis of CdFe2O4 ferrite by using various reducing agents”, J. Aust. Ceram. Soc., vol. 49, Jan. 2013, pp. 136–140.
[21] B. Boyanov, “Solid state interactions in the systems CaO(CaCO3)-Fe2O3 and CuFe2O4-CaO”, J. Min. Met., vol. 41 B, Jan. 2005, pp. 67–77.
[22] N. Leclerc, E. Meux and J. M. Lecuire, “Hydrometallurgical extraction of zinc from zinc ferrites”, Hydrometallurgy, vol. 70, Mar. 2003, pp. 175–183.
[23] J. E. Dutrizac, “The Physical Chemistry of Iron Precipitation in the Zinc Industry”, (Published Conference Proceedings style)”, in Proc. Lead- Zinc-Tin '80, New York, 1980, pp. 532–564.
[24] S. Tsunoda, I. Maeshiro, M. Ewi, K. Sekine, The Construction and Operation of the Iijima Electrolytic Zinc Plant, (Published Conference Proceedings style)”, in Proc. AIME TMS, Chicago, 1973, pp. A73–65.
[25] Y. A. Naik, T. V. Venkatesha and P. V. Nayak, “Electrodeposition of Zinc from Chloride Solution”, Turk. J. Chem., vol. 26, May 2002, pp. 725−733.
[26] D. S. Baik and D. J. Fray, “Electrodeposition of zinc from high acid zinc chloride solutions”, J. Appl. Electrochem., vol. 31, Oct. 2001, pp. 1141−1147.
[27] B. S. Boyanov and A. B. Peltekov, “X-Ray, DTA and TGA analysis of zinc sulfide concentrates and study of their charging for roasting in fluidized bed furnace”, Bul. Chem. Communic., vol. 44, Oct. 2012, pp. 17–23.
[28] B. S. Boyanov and A. B. Peltekov, “Two-Face Zinc Ferrite (Published Conference Proceedings style)”, in Proc. of ICCE-21, Tenerife, Canary Islands, Spain, 2013, pp. 105–106.
[29] S. Nikolov, B. Boyanov, N. Moldovanska and R. Dimitrov, “Mössbauer Spectroscopy Study on the Oxidation of Sulfide Zinc Concentrate Rich in Marmatite”, Thermochim. Acta., vol. 380, Nov. 2001, pp. 37–41.
[30] C. N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, H. Guerault and J. M. Greneche, “Magnetic properties of nanostructured ferrimagnetic zinc ferrite”, J. Phys. Condens. Matter., vol. 12, July 2000, pp. 7795−7505.
[31] N. M. Deraz and A. Alarifi, “Synthesis and Physicochemical Properties of Nanomagnetic Zinc Ferrite System”, Int. J. Electrochem. Sci., vol. 7, May 2012, pp. 3798−3808.
[32] M. P. Sandalski, B. S. Boyanov, P. G. Georgiev, and A. K. Sotirov, “Web based expert system optimization for processes in chemical technology (Published Conference Proceedings style)”, in Proc. of 42nd IOC of Mining and Metallurgy, Bor, Serbia, 2010, pp. 569–572.