Search results for: setup period estimation.
2435 Artificial Neural Network Model Based Setup Period Estimation for Polymer Cutting
Authors: Zsolt János Viharos, Krisztián Balázs Kis, Imre Paniti, Gábor Belső, Péter Németh, János Farkas
Abstract:
The paper presents the results and industrial applications in the production setup period estimation based on industrial data inherited from the field of polymer cutting. The literature of polymer cutting is very limited considering the number of publications. The first polymer cutting machine is known since the second half of the 20th century; however, the production of polymer parts with this kind of technology is still a challenging research topic. The products of the applying industrial partner must met high technical requirements, as they are used in medical, measurement instrumentation and painting industry branches. Typically, 20% of these parts are new work, which means every five years almost the entire product portfolio is replaced in their low series manufacturing environment. Consequently, it requires a flexible production system, where the estimation of the frequent setup periods' lengths is one of the key success factors. In the investigation, several (input) parameters have been studied and grouped to create an adequate training information set for an artificial neural network as a base for the estimation of the individual setup periods. In the first group, product information is collected such as the product name and number of items. The second group contains material data like material type and colour. In the third group, surface quality and tolerance information are collected including the finest surface and tightest (or narrowest) tolerance. The fourth group contains the setup data like machine type and work shift. One source of these parameters is the Manufacturing Execution System (MES) but some data were also collected from Computer Aided Design (CAD) drawings. The number of the applied tools is one of the key factors on which the industrial partners’ estimations were based previously. The artificial neural network model was trained on several thousands of real industrial data. The mean estimation accuracy of the setup periods' lengths was improved by 30%, and in the same time the deviation of the prognosis was also improved by 50%. Furthermore, an investigation on the mentioned parameter groups considering the manufacturing order was also researched. The paper also highlights the manufacturing introduction experiences and further improvements of the proposed methods, both on the shop floor and on the quotation preparation fields. Every week more than 100 real industrial setup events are given and the related data are collected.Keywords: Artificial neural network, low series manufacturing, polymer cutting, setup period estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9752434 The Use of Minor Setups in an EPQ Model with Constrained Production Period Length
Authors: Behrouz Afshar Nadjafi
Abstract:
Extensive research has been devoted to economic production quantity (EPQ) problem. However, no attention has been paid to problems where production period length is constrained. In this paper, we address the problem of deciding the optimal production quantity and the number of minor setups within each cycle, in which, production period length is constrained but a minor setup is possible for pass the constraint. A mathematical model is developed and Iterated Local Search (ILS) is proposed to solve this problem. Finally, solution procedure illustrated with a numerical example and results are analyzed.Keywords: EPQ, Inventory control, minor setup, ILS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13462433 Performance Evaluation of Complex Electrical Bio-impedance from V/I Four-electrode Measurements
Authors: Towfeeq Fairooz, Salim Istyaq
Abstract:
The passive electrical properties of a tissue depends on the intrinsic constituents and its structure, therefore by measuring the complex electrical impedance of the tissue it might be possible to obtain indicators of the tissue state or physiological activity [1]. Complete bio-impedance information relative to physiology and pathology of a human body and functional states of the body tissue or organs can be extracted by using a technique containing a fourelectrode measurement setup. This work presents the estimation measurement setup based on the four-electrode technique. First, the complex impedance is estimated by three different estimation techniques: Fourier, Sine Correlation and Digital De-convolution and then estimation errors for the magnitude, phase, reactance and resistance are calculated and analyzed for different levels of disturbances in the observations. The absolute values of relative errors are plotted and the graphical performance of each technique is compared.Keywords: Electrical Impedance, Fast Fourier Transform, Additive White Gaussian Noise, Total Least Square, Digital De-Convolution, Sine-Correlation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27322432 Benefits from a SMED Application in a Punching Machine
Authors: Eric Costa, Sara Bragança, Rui Sousa, Anabela Alves
Abstract:
This paper presents an application of the Single-Minute Exchange of Die (SMED) methodology to a turret punching machine in an elevators company, in Portugal. The work was developed during five months, in the ambit of a master thesis in Industrial Engineering and Management. The Lean Production tool SMED was applied to reduce setup times in order to improve the production flexibility of the machine. The main results obtained were a reduction of 64% in setup time (from 15.1 to 5.4min), 50% in work-in-process amount (from 12.8 to 6.4 days) and 99% in the distance traveled by the operator during the internal period (from 136.7 to 1.7m). These improvements correspond to gains of about €7,315.38 per year.
Keywords: Lean production, setup process, SMED.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40832431 On Best Estimation for Parameter Weibull Distribution
Authors: Hadeel Salim Alkutubi
Abstract:
The objective of this study is to introduce estimators to the parameters and survival function for Weibull distribution using three different methods, Maximum Likelihood estimation, Standard Bayes estimation and Modified Bayes estimation. We will then compared the three methods using simulation study to find the best one base on MPE and MSE.
Keywords: Maximum Likelihood estimation , Bayes estimation, Jeffery prior information, Simulation study
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12642430 Frequency Estimation Using Analytic Signal via Wavelet Transform
Authors: Sudipta Majumdar, Akansha Singh
Abstract:
Frequency estimation of a sinusoid in white noise using maximum entropy power spectral estimation has been shown to be very sensitive to initial sinusoidal phase. This paper presents use of wavelet transform to find an analytic signal for frequency estimation using maximum entropy method (MEM) and compared the results with frequency estimation using analytic signal by Hilbert transform method and frequency estimation using real data together with MEM. The presented method shows the improved estimation precision and antinoise performance.Keywords: Frequency estimation, analytic signal, maximum entropy method, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17372429 Performance Comparison between Conventional and Flexible Box Erecting Machines Using Dispatching Rules
Authors: Min Kyu Kim, Eun Young Lee, Dong Woo Son, Yoon Seok Chang
Abstract:
In this paper, we introduce a flexible box erecting machine (BEM) that swiftly and automatically transforms cardboard into a three dimensional box. Recently, the parcel service and home-shopping industries have grown rapidly, and there is an increasing need for various box types to ship various products. However, workers cannot fold thousands of boxes manually in a day. As such, automatic BEMs are garnering greater attention. This study takes equipment operation into consideration as well as mechanical improvements in order to design a BEM that is able to outperform its conventional counterparts. We analyzed six dispatching rules – First In First Out (FIFO), Shortest Processing Time (SPT), Earliest Due Date (EDD), Setup Avoidance, EDD + SPT, and EDD + Setup Avoidance – to determine which one was most suitable for BEM operation. Consequently, SPT and Setup Avoidance were found to be the most critical rules, followed by EDD + Setup Avoidance, EDD + SPT, EDD, and FIFO. This hierarchy was valid for both our conventional BEM and our new flexible BEM from the viewpoint of processing time. We believe that this research can contribute to flexible BEM management, which has the potential to increase productivity and convenience.Keywords: Automation, box erecting machine, dispatching rule, setup time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14962428 A Methodology of Testing Beam to Column Connection under Lateral Impact Load
Authors: A. Al-Rifaie, Z. W. Guan, S. W. Jones
Abstract:
Beam to column connection can be considered as the most important structural part that affects the response of buildings to progressive collapse. However, many studies were conducted to investigate the beam to column connection under accidental loads such as fire, blast and impact load to investigate the connection response. The study is a part of a PhD plan to investigate different types of connections under lateral impact load. The conventional test setups, such as cruciform setup, were designed to apply shear forces and bending moment on the connection, whilst, in the lateral impact case, the connection is subjected to combined tension and moment. Hence, a review is presented to introduce the previous test setup that is used to investigate the connection behaviour. Then, the design and fabrication of the novel test setup is presented. Finally, some trial test results to investigate the efficiency of the proposed setup are discussed. The final results indicate that the setup was efficient in terms of the simplicity and strength.
Keywords: Connections, impact load, drop hammer, testing methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11972427 Optimization of Distributed Processors for Power System: Kalman Filters using Petri Net
Authors: Anant Oonsivilai, Kenedy A. Greyson
Abstract:
The growth and interconnection of power networks in many regions has invited complicated techniques for energy management services (EMS). State estimation techniques become a powerful tool in power system control centers, and that more information is required to achieve the objective of EMS. For the online state estimator, assuming the continuous time is equidistantly sampled with period Δt, processing events must be finished within this period. Advantage of Kalman Filtering (KF) algorithm in using system information to improve the estimation precision is utilized. Computational power is a major issue responsible for the achievement of the objective, i.e. estimators- solution at a small sampled period. This paper presents the optimum utilization of processors in a state estimator based on KF. The model used is presented using Petri net (PN) theory.
Keywords: Kalman filters, model, Petri Net, power system, sequential State estimator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13562426 Effect of Soil Corrosion in Failures of Buried Gas Pipelines
Authors: Saima Ali, Pathamanathan Rajeev, Imteaz A. Monzur
Abstract:
In this paper, a brief review of the corrosion mechanism in buried pipe and modes of failure is provided together with the available corrosion models. Moreover, the sensitivity analysis is performed to understand the influence of corrosion model parameters on the remaining life estimation. Further, the probabilistic analysis is performed to propagate the uncertainty in the corrosion model on the estimation of the renaming life of the pipe. Finally, the comparison among the corrosion models on the basis of the remaining life estimation will be provided to improve the renewal plan.
Keywords: Corrosion, pit depth, sensitivity analysis, exposure period.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17292425 Distance Estimation for Radar Systems Using DS-UWB Signals
Authors: Youngpo Lee, Seokho Yoon
Abstract:
In this paper, we propose a distance estimation scheme for radar systems using direct sequence ultra wideband (DS-UWB) signals. The proposed distance estimation scheme averages out the noise by accumulating the correlator outputs of the radar, and thus, helps the radar to employ a short-length DS-UWB signal reducing the correlation processing time. Numerical results confirm that the proposed distance estimation scheme provides a better estimation performance and a reduced correlation processing time compared with those of the conventional DS-UWB radars.
Keywords: Radar, DS-UWB, distance estimation, correlation accumulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20212424 A Novel Frequency Offset Estimation Scheme for OFDM Systems
Authors: Youngpo Lee, Seokho Yoon
Abstract:
In this paper, we propose a novel frequency offset estimation scheme for orthogonal frequency division multiplexing (OFDM) systems. By correlating the OFDM signals within the coherence phase bandwidth and employing a threshold in the frequency offset estimation process, the proposed scheme is not only robust to the timing offset but also has a reduced complexity compared with that of the conventional scheme. Moreover, a timing offset estimation scheme is also proposed as the next stage of the proposed frequency offset estimation. Numerical results show that the proposed scheme can estimate frequency offset with lower computational complexity and does not require additional memory while maintaining the same level of estimation performance.
Keywords: OFDM, frequency offset estimation, threshold.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22122423 An Estimation of Variance Components in Linear Mixed Model
Authors: Shuimiao Wan, Chao Yuan, Baoguang Tian
Abstract:
In this paper, a linear mixed model which has two random effects is broken up into two models. This thesis gets the parameter estimation of the original model and an estimation’s statistical qualities based on these two models. Then many important properties are given by comparing this estimation with other general estimations. At the same time, this paper proves the analysis of variance estimate (ANOVAE) about σ2 of the original model is equal to the least-squares estimation (LSE) about σ2 of these two models. Finally, it also proves that this estimation is better than ANOVAE under Stein function and special condition in some degree.Keywords: Linear mixed model, Random effects, Parameter estimation, Stein function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18142422 Design of an Experimental Setup to Study the Drives of Battery Electric Vehicles
Authors: Valery Vodovozov, Zoja Raud, Tõnu Lehtla
Abstract:
This paper describes the design considerations of an experimental setup for research and exploring the drives of batteryfed electric vehicles. Effective setup composition and its components are discussed. With experimental setup described in this paper, durability and functional tests can be procured to the customers. Multiple experiments are performed in the form of steady-state system exploring, acceleration programs, multi-step tests (speed control, torque control), load collectives or close-to-reality driving tests (driving simulation). Main focus of the functional testing is on the measurements of power and energy efficiency and investigations in driving simulation mode, which are used for application purposes. In order to enable the examination of the drive trains beyond standard modes of operation, different other parameters can be studied also.Keywords: Electric drive, electric vehicle, propulsion, test bench.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29242421 Estimating Regression Effects in Com Poisson Generalized Linear Model
Authors: Vandna Jowaheer, Naushad A. Mamode Khan
Abstract:
Com Poisson distribution is capable of modeling the count responses irrespective of their mean variance relation and the parameters of this distribution when fitted to a simple cross sectional data can be efficiently estimated using maximum likelihood (ML) method. In the regression setup, however, ML estimation of the parameters of the Com Poisson based generalized linear model is computationally intensive. In this paper, we propose to use quasilikelihood (QL) approach to estimate the effect of the covariates on the Com Poisson counts and investigate the performance of this method with respect to the ML method. QL estimates are consistent and almost as efficient as ML estimates. The simulation studies show that the efficiency loss in the estimation of all the parameters using QL approach as compared to ML approach is quite negligible, whereas QL approach is lesser involving than ML approach.
Keywords: Com Poisson, Cross-sectional, Maximum Likelihood, Quasi likelihood
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17612420 On SNR Estimation by the Likelihood of near Pitch for Speech Detection
Authors: Young-Hwan Song, Doo-Heon Kyun, Jong-Kuk Kim, Myung-Jin Bae
Abstract:
People have the habitual pitch level which is used when people say something generally. However this pitch should be changed irregularly in the presence of noise. So it is useful to estimate SNR of speech signal by pitch. In this paper, we obtain the energy of input speech signal and then we detect a stationary region on voiced speech. And we get the pitch period by NAMDF for the stationary region that is not varied pitch rapidly. After getting pitch, each frame is divided by pitch period and the likelihood of closed pitch is estimated. In this paper, we proposed new parameter, NLF, to estimate the SNR of received speech signal. The NLF is derived from the correlation of near pitch periods. The NLF is obtained for each stationary region in voiced speech. Finally we confirmed good performance of the estimation of the SNR of received input speech in the presence of noise.
Keywords: Likelihood, pitch, SNR, speech.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15742419 Performance Enhancement of Motion Estimation Using SSE2 Technology
Authors: Trung Hieu Tran, Hyo-Moon Cho, Sang-Bock Cho
Abstract:
Motion estimation is the most computationally intensive part in video processing. Many fast motion estimation algorithms have been proposed to decrease the computational complexity by reducing the number of candidate motion vectors. However, these studies are for fast search algorithms themselves while almost image and video compressions are operated with software based. Therefore, the timing constraints for running these motion estimation algorithms not only challenge for the video codec but also overwhelm for some of processors. In this paper, the performance of motion estimation is enhanced by using Intel's Streaming SIMD Extension 2 (SSE2) technology with Intel Pentium 4 processor.Keywords: Motion Estimation, Full Search, Three StepSearch, MMX/SSE/SSE2 Technologies, SIMD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20992418 Assessment of Collapse Potential of Degrading SDOF Systems
Authors: Muzaffer Borekci, Murat S. Kirçil
Abstract:
Predicting the collapse potential of a structure during earthquakes is an important issue in earthquake engineering. Many researchers proposed different methods to assess the collapse potential of structures under the effect of strong ground motions. However most of them did not consider degradation and softening effect in hysteretic behavior. In this study, collapse potential of SDOF systems caused by dynamic instability with stiffness and strength degradation has been investigated. An equation was proposed for the estimation of collapse period of SDOF system which is a limit value of period for dynamic instability. If period of the considered SDOF system is shorter than the collapse period then the relevant system exhibits dynamic instability and collapse occurs.
Keywords: Collapse, degradation, dynamic instability, seismic response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20972417 Efficient Block Matching Algorithm for Motion Estimation
Authors: Zong Chen
Abstract:
Motion estimation is a key problem in video processing and computer vision. Optical flow motion estimation can achieve high estimation accuracy when motion vector is small. Three-step search algorithm can handle large motion vector but not very accurate. A joint algorithm was proposed in this paper to achieve high estimation accuracy disregarding whether the motion vector is small or large, and keep the computation cost much lower than full search.Keywords: Motion estimation, Block Matching, Optical flow, Three step search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21642416 Lithium-Ion Battery State of Charge Estimation Using One State Hysteresis Model with Nonlinear Estimation Strategies
Authors: Mohammed Farag, Mina Attari, S. Andrew Gadsden, Saeid R. Habibi
Abstract:
Battery state of charge (SOC) estimation is an important parameter as it measures the total amount of electrical energy stored at a current time. The SOC percentage acts as a fuel gauge if it is compared with a conventional vehicle. Estimating the SOC is, therefore, essential for monitoring the amount of useful life remaining in the battery system. This paper looks at the implementation of three nonlinear estimation strategies for Li-Ion battery SOC estimation. One of the most common behavioral battery models is the one state hysteresis (OSH) model. The extended Kalman filter (EKF), the smooth variable structure filter (SVSF), and the time-varying smoothing boundary layer SVSF are applied on this model, and the results are compared.Keywords: State of charge estimation, battery modeling, one-state hysteresis, filtering and estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17022415 Frequency Offset Estimation Schemes Based On ML for OFDM Systems in Non-Gaussian Noise Environments
Authors: Keunhong Chae, Seokho Yoon
Abstract:
In this paper, frequency offset (FO) estimation schemes robust to the non-Gaussian noise environments are proposed for orthogonal frequency division multiplexing (OFDM) systems. First, a maximum-likelihood (ML) estimation scheme in non-Gaussian noise environments is proposed, and then, the complexity of the ML estimation scheme is reduced by employing a reduced set of candidate values. In numerical results, it is demonstrated that the proposed schemes provide a significant performance improvement over the conventional estimation scheme in non-Gaussian noise environments while maintaining the performance similar to the estimation performance in Gaussian noise environments.
Keywords: Frequency offset estimation, maximum-likelihood, non-Gaussian noise environment, OFDM, training symbol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19482414 Uncertainty Analysis of a Hardware in Loop Setup for Testing Products Related to Building Technology
Authors: Balasundaram Prasaant, Ploix Stephane, Delinchant Benoit, Muresan Cristian
Abstract:
Hardware in Loop (HIL) testing is done to test and validate a particular product especially in building technology. When it comes to building technology, it is more important to test the products for their efficiency. The test rig in the HIL simulator may contribute to some uncertainties on measured efficiency. The uncertainties include physical uncertainties and scenario-based uncertainties. In this paper, a simple uncertainty analysis framework for an HIL setup is shown considering only the physical uncertainties. The entire modeling of the HIL setup is done in Dymola. The uncertain sources are considered based on available knowledge of the components and also on expert knowledge. For the propagation of uncertainty, Monte Carlo Simulation is used since it is the most reliable and easy to use. In this article it is shown how an HIL setup can be modeled and how uncertainty propagation can be performed on it. Such an approach is not common in building energy analysis.
Keywords: Energy in Buildings, Hardware in Loop, Modelica (Dymola), Monte Carlo Simulation, Uncertainty Propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5752413 Parameters Estimation of Multidimensional Possibility Distributions
Authors: Sergey Sorokin, Irina Sorokina, Alexander Yazenin
Abstract:
We present a solution to the Maxmin u/E parameters estimation problem of possibility distributions in m-dimensional case. Our method is based on geometrical approach, where minimal area enclosing ellipsoid is constructed around the sample. Also we demonstrate that one can improve results of well-known algorithms in fuzzy model identification task using Maxmin u/E parameters estimation.
Keywords: Possibility distribution, parameters estimation, Maxmin u/E estimator, fuzzy model identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24262412 Robust Parameter and Scale Factor Estimation in Nonstationary and Impulsive Noise Environment
Authors: Zoran D. Banjac, Branko D. Kovacevic
Abstract:
The problem of FIR system parameter estimation has been considered in the paper. A new robust recursive algorithm for simultaneously estimation of parameters and scale factor of prediction residuals in non-stationary environment corrupted by impulsive noise has been proposed. The performance of derived algorithm has been tested by simulations.
Keywords: Adaptive filtering, Non-Gaussian filtering, Robustestimation, Scale factor estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17062411 Probability Density Estimation Using Advanced Support Vector Machines and the Expectation Maximization Algorithm
Authors: Refaat M Mohamed, Ayman El-Baz, Aly A. Farag
Abstract:
This paper presents a new approach for the prob-ability density function estimation using the Support Vector Ma-chines (SVM) and the Expectation Maximization (EM) algorithms.In the proposed approach, an advanced algorithm for the SVM den-sity estimation which incorporates the Mean Field theory in the learning process is used. Instead of using ad-hoc values for the para-meters of the kernel function which is used by the SVM algorithm,the proposed approach uses the EM algorithm for an automatic optimization of the kernel. Experimental evaluation using simulated data set shows encouraging results.
Keywords: Density Estimation, SVM, Learning Algorithms, Parameters Estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25052410 States Estimation and Fault Detection of a Doubly Fed Induction Machine by Moving Horizon Estimation
Authors: A. T. Boum, L. Bitjoka, N. N. Léandre, S. Bennet
Abstract:
This paper presents the estimation of the key parameters of a double fed induction machine (DFIM) by the use of the moving horizon estimator (MHE) for control and monitoring purpose. A study was conducted on the behavior of this observer in the presence of some faults which can occur during the operation of the machine. In the first case a stator phase has been suppressed. In the second case the rotor resistance has been multiplied by a factor. The results show a good estimation of different parameters such as rotor flux, rotor speed, stator current with a very small estimation error. The robustness of the observer was also tested in the practical case of DFIM by using another model different from the real one at a constant close. The very small estimation error makes the MHE a good software sensor candidate for monitoring purpose for the DFIM.
Keywords: Doubly fed induction machine, moving horizon estimator parameters’ estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7682409 A Rule-based Approach for Anomaly Detection in Subscriber Usage Pattern
Authors: Rupesh K. Gopal, Saroj K. Meher
Abstract:
In this report we present a rule-based approach to detect anomalous telephone calls. The method described here uses subscriber usage CDR (call detail record) data sampled over two observation periods: study period and test period. The study period contains call records of customers- non-anomalous behaviour. Customers are first grouped according to their similar usage behaviour (like, average number of local calls per week, etc). For customers in each group, we develop a probabilistic model to describe their usage. Next, we use maximum likelihood estimation (MLE) to estimate the parameters of the calling behaviour. Then we determine thresholds by calculating acceptable change within a group. MLE is used on the data in the test period to estimate the parameters of the calling behaviour. These parameters are compared against thresholds. Any deviation beyond the threshold is used to raise an alarm. This method has the advantage of identifying local anomalies as compared to techniques which identify global anomalies. The method is tested for 90 days of study data and 10 days of test data of telecom customers. For medium to large deviations in the data in test window, the method is able to identify 90% of anomalous usage with less than 1% false alarm rate.Keywords: Subscription fraud, fraud detection, anomalydetection, maximum likelihood estimation, rule based systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28122408 Time and Cost Efficiency Analysis of Quick Die Change System on Metal Stamping Industry
Authors: Rudi Kurniawan Arief
Abstract:
Manufacturing cost and setup time are the hot topics to improve in Metal Stamping industry because material and components price are always rising up while costumer requires to cut down the component price year by year. The Single Minute Exchange of Die (SMED) is one of many methods to reduce waste in stamping industry. The Japanese Quick Die Change (QDC) dies system is one of SMED systems that could reduce both of setup time and manufacturing cost. However, this system is rarely used in stamping industries. This paper will analyze how deep the QDC dies system could reduce setup time and the manufacturing cost. The research is conducted by direct observation, simulating and comparing of QDC dies system with conventional dies system. In this research, we found that the QDC dies system could save up to 35% of manufacturing cost and reduce 70% of setup times. This simulation proved that the QDC die system is effective for cost reduction but must be applied in several parallel production processes.
Keywords: Press die, metal stamping, quick die change, QDC system, single minute exchange die, manufacturing cost saving, SMED.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11922407 Depth Estimation in DNN Using Stereo Thermal Image Pairs
Authors: Ahmet Faruk Akyuz, Hasan Sakir Bilge
Abstract:
Depth estimation using stereo images is a challenging problem in computer vision. Many different studies have been carried out to solve this problem. With advancing machine learning, tackling this problem is often done with neural network-based solutions. The images used in these studies are mostly in the visible spectrum. However, the need to use the Infrared (IR) spectrum for depth estimation has emerged because it gives better results than visible spectra in some conditions. At this point, we recommend using thermal-thermal (IR) image pairs for depth estimation. In this study, we used two well-known networks (PSMNet, FADNet) with minor modifications to demonstrate the viability of this idea.
Keywords: thermal stereo matching, depth estimation, deep neural networks, CNN
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6942406 Online Pose Estimation and Tracking Approach with Siamese Region Proposal Network
Authors: Cheng Fang, Lingwei Quan, Cunyue Lu
Abstract:
Human pose estimation and tracking are to accurately identify and locate the positions of human joints in the video. It is a computer vision task which is of great significance for human motion recognition, behavior understanding and scene analysis. There has been remarkable progress on human pose estimation in recent years. However, more researches are needed for human pose tracking especially for online tracking. In this paper, a framework, called PoseSRPN, is proposed for online single-person pose estimation and tracking. We use Siamese network attaching a pose estimation branch to incorporate Single-person Pose Tracking (SPT) and Visual Object Tracking (VOT) into one framework. The pose estimation branch has a simple network structure that replaces the complex upsampling and convolution network structure with deconvolution. By augmenting the loss of fully convolutional Siamese network with the pose estimation task, pose estimation and tracking can be trained in one stage. Once trained, PoseSRPN only relies on a single bounding box initialization and producing human joints location. The experimental results show that while maintaining the good accuracy of pose estimation on COCO and PoseTrack datasets, the proposed method achieves a speed of 59 frame/s, which is superior to other pose tracking frameworks.Keywords: Computer vision, Siamese network, pose estimation, pose tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1165