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Abstract—Depth estimation using stereo images is a challenging
problem in computer vision. Many different studies have been carried
out to solve this problem. With advancing machine learning, tackling
this problem is often done with neural network-based solutions. The
images used in these studies are mostly in the visible spectrum.
However, the need to use the Infrared (IR) spectrum for depth
estimation has emerged because it gives better results than visible
spectra in some conditions. At this point, we recommend using
thermal-thermal (IR) image pairs for depth estimation. In this study,
we used two well-known networks (PSMNet, FADNet) with minor
modifications to demonstrate the viability of this idea.

Keywords—Thermal stereo matching, depth estimation, deep neu-
ral networks, CNN

I. INTRODUCTION

DEPTH estimation is an important problem in computer
vision applications. One way to obtain depth maps is to

use stereo images. Stereo images are taken from two identical
cameras that are calibrated the same way and horizontally
aligned. Thus, it is determined how many pixels are shifted by
inspecting a pixel taken from the first camera with respect to
its corresponding position in the second camera. If shifting is
larger, then the corresponding pixel is closer and vice versa.
This process can be done using Deep Neural Networks (DNN)
as well as traditional methods such as SGM [1].

Semi-global Matching (SGM) algorithms are done by tra-
ditional methods. Besides it is fast and applicable in real sce-
narios, its accuracy is not enough in many scenes. Textureless
regions and repetitive pixels lie behind this accuracy problem.
Therefore, a learnable structure was needed. This need was
met with DNN.

DNN usage is a popular approach for depth map estimation.
In recent studies, it has been observed that convolutional neural
networks (CNNs) are very successful in applications such as
feature extraction and similarity computation besides being
more useful in terms of speed and consistency than traditional
methods [2], [3]. There are many studies to estimate depth map
using stereo matching networks such as PSMNet [4], FADNet
[5], etc. These networks are based on supervised learning
approaches where input and output relation is very important.
The dataset should be given to the network correctly.

There are three dataset types used in stereo matching
algorithms; synthetic, laboratory, and real, which are shown
in Fig. 1. Synthetic datasets, such as scene flow dataset [6],
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are created using computers. However, such datasets cannot
reflect the real-world data distribution, so they are not suitable
for real scenarios. Lab datasets such as Middlebury [7] are
created with real-world images but do not use a range sensor.
Although they are closer to reality than synthetic ones, they
are also not sufficient for real scenarios. Real datasets such as
driving stereo dataset [8], KITTI [9] are originated from real
cameras and scenarios with a range sensor. Therefore, such a
dataset is suitable for real applications.

Real datasets should have some important features such as
calibration, rectification, and registration to get good results
and accuracy [9]. Calibrating the cameras among themselves
is the first step. In this step, camera parameters are optimized
to minimize the average reprojection error [10]. Secondly,
since the origin of the range sensor and reference camera is
different in the 3D coordinate system, the center location of
the range sensor and reference camera is required to be in the
same position to obtain the same view. Finally, point clouds
taken from the range sensor should be registered according
to the camera exposure. When these steps are ignored or
not considered in supervised learning, it causes an erroneous
samples and this leads for the neural network not learning or
even learning incorrectly.

With the developing technology, the idea of using thermal-
thermal image pairs for depth estimation comes from the
invisibility problems in some conditions. Thermal cameras
are known to offer a better view than visible cameras when
the scene is foggy, misty, rainy, etc. [11]. For example, in
autonomous driving or even in human-based driving, visibility
range and texture quality decrease considerably, especially
for night conditions. For this reason, thermal cameras are
frequently used both for warning the driver and for automatic
driving. Therefore, estimating depth map using thermal image
pairs has an advantage compared to the visible spectrum.

There are some studies related to the usage of thermal-
thermal stereo pairs for depth estimation. Arnab Dhua et
al. proposed a method to calculate depth map with given
uncalibrated thermal stereo pairs. They first compute a sparse
disparity map using corner matching methods, then the com-
puted map is improved with triangular constraints and epipolar
geometrical constraints as the proposed method [12]. Massimo
Bertozzi et al. proposed an algorithm to detect pedestrians us-
ing two identical thermal cameras. The algorithm first locates
and estimates warm areas in the scene, then considers specific
sizes and aspect ratios in areas with a similar positions, and
finally, it uses the morphological and thermal features of a
human head to list possible pedestrians [13]. Geoffroy et al.
proposed a method of sub-pixel matching in low-resolution
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(d) Scene Flow Dataset (e) Middlebury Dataset (f) KITTI dataset

Fig. 1: Dataset types. (d) Synthetic Dataset (e) Laboratory Dataset (f) Real Dataset

stereo thermal images. Firstly, they extract robust features
based on phase congruency, then they match these features in
pixel precision, and finally, they refine matching in sub-pixel
accuracy based on local phase coherence [14]. None of these
studies use neural network solutions. In this work, we show
that depth estimation can be done by using thermal stereo
pairs in existing neural network solutions such as FADNet,
PSMNet.

The rest of the paper is organized as follows. We introduce
network structures that we have examined in Section II. Sec-
tion III shows preliminary work in both network structures and
datasets. We demonstrate our experimental results in Section
IV. Finally, we conclude the paper in Section V.

II. NETWORK STRUCTURES

PSMNet benefits from different scales of receptive fields
to extend pixel-level features to region-level features. This
leads global and local feature clues forming the cost volume
to get reliable disparity estimation. PSMNet also using a
stacked hourglass that was applied repeatedly 3D CNN layers
to regularize the cost volume.

On the other hand, FADNet effectuated 2D-based cor-
relation layers with stacked blocks instead of 3D CNN’s.
This helps to preserve fast computation. In that way, it gets
closer to be used in real applications. FADNet uses multi-
scale predictions so that multi-scale weight scheduling training
techniques can be applied to improve accuracy. The network
structure of FADNet consists of two hands as DispNetC and
DispNetS.

III. PRELIMINARY WORK

Before we train networks with a thermal-thermal stereo
dataset, some preliminary work is required on both the struc-
ture of the network and the dataset. This preprocessing can be
a subject for another study in order to be a difficult subject,
but we have done this very simple way to show even though
these preprocesses are not perfect, they are still quite good
and bright for further studies.

The first thing we did as preliminary work is to fit the
network structure according to proper dataset feeding. Namely,

current studies use stereo images as 3-channel because of
taken in the visible spectrum (RGB images). In the infrared
spectrum, images are gray-scale. Therefore, we should have
changed the layers of both networks where RGB images were
used to one channel. In this context, we made the following
changes:

In FADNet, there are three modifications. First, in DispNetC
hand, the first convolutional layer was changed from three
filter sizes to one filter size. Secondly, on the same hand, the
last convolutional layer was changed from 20 filter sizes to
18 filter sizes. The third modification is in DispNetS hand.
We decreased input filter size from 11 to 5. In PSMNet, on
the other hand, there is only one modification. In the feature
extraction part, we decreased the first layer filter size from
three to one. With these changes, the networks became ready
to be fed single-channel images.

Due to the lack of datasets containing stereo thermal images
with depth information, we were able to find only one useful
dataset called CATS dataset [15]. This dataset provides stereo
visible image, stereo thermal image, and depth information
taken from range sensor (LiDAR) with 343 total samples. It
has 100 indoor and 80 outdoor samples from various scenes in
different environmental conditions including daytime, night-
time and foggy scenes. Since the scene of outdoor images
is more obvious compared to indoor images in the thermal
spectrum, we only dealt with outdoor images in this work.
We divided outdoor images into 70 for training and 10 for
validating.

Although CATS is a real dataset, the features of this dataset
mentioned in the introduction section are not suitable for
stereo algorithms, especially in neural network applications.
Therefore, we need to perform rectification of images and
registration between ground truth and the reference image for
this dataset.

CATS has rectified image pairs themselves. However, these
pairs are not proper for stereo algorithms because of rectifica-
tion logic. Therefore, we decided to use original raw images
to do the rectification process as shown in Fig. 2. We applied
John Mallon and Paul F. Whelan’s rectification method called
”Projective Rectification from the fundamental matrix” [16].
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(a) Original left raw image (b) Original right raw image

(c) Original left raw image (d) Result of shifted right
image

Fig. 2: Image rectification process

We performed the following steps:
• detect the image which has a particular pixel at the

deepest point since there should not be any shift of the
deepest point

• match this pixel in horizontal and vertical axes to be in the
same pixel location by shifting the right original image
concerning original left image

• apply the same shifting amount for each image in both
directions

We chose to use left images as the references, therefore we
shifted only the right images in all samples. There should be
a relation between input and output in the case of supervised
learning as we mentioned before. With this purpose, we should
project 3D point clouds (plid) acquired from the range sensor
with respect to the left camera that we chose as reference. To
do so, we transformed (translation and rotation) the 3D point
clouds according to the left camera’s coordinate (pcam) since
the center positions of the range sensor and left thermal camera
are different. Transformation formula of 3D coordinates to
camera coordinates as given as:

pcam = R(plid − t) (1)

where R is the 3D rotation matrix and t is the shift vector.
After this transformation process, 3D coordinates is pro-

jected to the 2D image plane. We have used pinhole camera
model with perspective projection [17]. Corresponding pixel
positions of the 3D point pcam, ux and uy , are given as:

ux = pxcam
W

2pzcamtan(
θx
2
)

(2)

uy = pycam
H

2pzcamtan(
θy
2
)

(3)

where pxcam, pycam and pzcam are the coordinates in x, y and
z directions respectively. W is the width of the image and H

(a) Original left image (b) Result image of 2D pro-
jection without translation and
rotation

(c) Result image of 2D projec-
tion with translation and rota-
tion

(d) Result image of removing
conflict points

Fig. 3: An example of projection from 3D point cloud to 2D
image plane

is the height of the image. θx and θy are the horizontal and
vertical angles of field of view, respectively.

We manually projected the 3D point clouds onto the 2D
image plane using Equation 2 and Equation 3 for each of
the outdoor images. However, this action causes overlap due
to discrete samples of the distance sensor. For example, a
sample point taken from the wall may be located inside the
sample points of the car object. It causes a conflict that leads
to erroneous samples for the neural network. To resolve this
issue, we manually eliminated the more distant points in the
areas where overlap or collision occurred. These processes are
illustrated through an example in Fig. 3.

IV. EXPERIMENTAL RESULTS

We used a single Nvidia Quadro RTX 5000 GPU which
has 16 GB of memory in this study. Both networks were
implemented in Pytorch and were trained separately with
Adam optimizer (β1 = 0.9, β2 = 0.999). Images were
randomly cropped to H = 256 and W = 512 during training
process. In PSMNet, we were able to set only two batch sizes
because of the limitations of GPU memory. We trained the
network up to 600 epochs to get enough good results. Learning
rates began at 0.001 for the first 250 epochs and 0.0001 for the
remaining 350 epochs. In FADNet, on the other hand, batch
size was set at four. We were able to set two more because
of FADNet uses less memory compared to PSMNet. We set
the learning rate of FADNet as 0.001 for the first 100 epochs,
then 0.0001 for the remaining 250 epochs.

As shown in Fig. 4, loss changes show that both networks
are learning and losses are gradually decrease as the epoch
goes. Since train loss and test loss curves are similar, i.e. no
situation such as test loss curve increases while train loss curve

33International Scholarly and Scientific Research & Innovation 16(2) 2022 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
2,

 2
02

2 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
41

2.
pd

f



World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

Vol:16, No:2, 2022

Fig. 4: Illustration of loss change in both networks

decreases, there is no over-fitting problem. As shown in Table
I, the loss value of FADNet is smaller than PSMNet in both
training and testing processes.

TABLE I: Average end point error (EPE) in both networks

FADNet PSMNet
Train Loss 4.16 5.7
Test Loss 3.8 4.17

We analyzed the results as quantitative and qualitative in
the following sections.

A. Quantitative Results

We used KITTI 2015 benchmark for the evaluation results.
We observed better quantitative results in both training set and
test set as shown in Table II. Since there is some mismatch be-
tween referenced image (left thermal image) and the projected
depth data in the dataset, these errors are big. This mismatch
consists of two main reasons. The first reason, since the range
sensor is used in the dataset, there might be some alignment
problems, such that one scene in the dataset is scanned in
about 8 minutes [15]. Therefore, some differences can exist
between thermal image and 3D LiDAR coordinates. The other
reason is that since we are manually projecting 3D points onto

2D image plane, we might have some matching errors. On the
other hand, even if we are referencing normalization according
to a particular point, this normalization may not be completely
accurate for all points.

TABLE II: Evaluation Results on KITTI 2015 Benchmark

>3 px >4 px >5 px
FADNet PSMNet FADNet PSMNet FADNet PSMNet

Train set 41.1 % 42.9 % 24.7 % 29.9 % 15.9 % 22.2 %
Test set 44.3 % 45.6 % 29.1 % 30.0 % 20.0 % 22.0 %

B. Qualitative Results

By looking at the results of the validation set as shown in
Fig. 5, FADNet is better resulted as in quantitative results.
FADNet gives better details of objects like wheel of a bicycle
or car, human shape etc. In most of the results, we can select
close objects when we look at the output in both networks.
As looking at distant objects, object detection in depth map
getting harder, however, if regular things exist like a wall or
road, still the results are good.

V. DISCUSSION & CONCLUSION

Thermal images suffering from textureless regions and
repetitive pixels, and this makes harder to refine depth map.
Even though the situation is like this, we have shown that
using thermal-thermal image pairs can be used for depth
estimation besides color or gray-scale image pairs. The results
are promising for further studies. We believe that the results
would be much more satisfactory if we could feed the network
with more examples during the training process. On the other
hand, minimizing the error in the preliminary study of the
dataset would not surprise us to get better results. If the
network can be trained with a dataset generated from a
particular scene, such as road images, as in KITTI, it will again
give better results. In our case, the CATS dataset uses many
different scenes consisting of many objects that complicate the
learning process.

As a conclusion, we shed light on obtaining depth map
estimation with the infrared spectrum as well as the visible
spectrum. Namely, there is a potential to take advantage of
using thermal stereo pairs. In this way, depth estimation can
be done much better by using a combination of stereo visible
images and stereo thermal images. On the other hand, it can
be used for depth estimation in cross spectra such as color-
thermal stereo pairs. In any case, a much more accurate depth
estimation can be made if the neural network structure is
configured using segmentation-based CNNs and/or detecting
the morphological features of the edges of two images taken
in different spectra.
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(a) Left Thermal image (b) PSMNet output (c) FADNet output (d) Ground Truth

Fig. 5: Results of depth estimation. (a) shows the left input image of stereo image pair. For each input image, the depth maps
obtained by (b) PSMNet and (c) FADNet as shown. (d) shows the ground truth
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