Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30077
Frequency Estimation Using Analytic Signal via Wavelet Transform

Authors: Sudipta Majumdar, Akansha Singh

Abstract:

Frequency estimation of a sinusoid in white noise using maximum entropy power spectral estimation has been shown to be very sensitive to initial sinusoidal phase. This paper presents use of wavelet transform to find an analytic signal for frequency estimation using maximum entropy method (MEM) and compared the results with frequency estimation using analytic signal by Hilbert transform method and frequency estimation using real data together with MEM. The presented method shows the improved estimation precision and antinoise performance.

Keywords: Frequency estimation, analytic signal, maximum entropy method, wavelet transform.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1126357

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1128

References:


[1] W. Y. Chen and G. R. Stegen, ”Experiments with maximum entropy power spectra of sinusoids, ”J. Geophys. Res., VOL. 79, jULY 10, 1974.
[2] P. L. Jackson ”Truncation and phase relationship of sinusoids”, J. Geophys. Res., vol. 72,1967.
[3] S. M. Kay, ”Maximum entropy spectral estmation using the analytical signal”, IEEE Trans. on Acoustics, Speech and Signal Processing, vol. ASSP -26, no.5, October 1978, pp. 467-469.
[4] L. B. Jackson, D. W. Tufts, F. K. Soong and R. M. Rao, ”Frequency estimation by linear prediction”, IEEE Int. Conf. Acoustics, Speech Signal Processing, Tulsa, OK, April, 1978.
[5] D. W. Tufts and R. M. Rao, ”Frequency tracking by MAP demodulation and by linear prediction techniques”, Proc. IEEE, vol. 65, August, 1977.
[6] Jinghuai Gao, XiaolonG Dong, Wen Bing Wang, Youming Li and Cunhan Pan, ” Instantaneous parameter extraction via wavelet transform”, IEEE Trans. on Geoscience and Remote Sensings, vol. 37, no.2 March 1999, pp.867-870.
[7] J. P. Burg, ”Maximum entropy spectral analysis”, Ph.d dissertation, Standford University, Standford, CA, 1975.
[8] Monson H. Hayes, ”Statistical Digital Signal Processing and Modeling”, John Wiley and Sons, 1996.