Search results for: recycled aggregate concrete.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 923

Search results for: recycled aggregate concrete.

773 Soil Resistivity Cut off Value and Concrete Pole Deployments in HV Transmission Mains

Authors: M. Nassereddine, J. Rizk, A. Hellany, M. Nagrial

Abstract:

The prologue of new High Voltage (HV) transmission mains into the community necessitates earthing design to ensure safety compliance of the system. Concrete poles are widely used within HV transmission mains; many retired transmission mains with timber poles are being replaced with concrete ones, green transmission mains are deploying concrete poles. The earthing arrangement of the concrete poles could have an impact on the earth grid impedance also on the input impedance of the system from the fault point of view. This paper endeavors to provide information on the soil resistivity of the area and the deployments of concrete poles. It introduce the cut off soil resistivity value ρSC, this value aid in determine the impact of deploying the concrete poles on the earthing system. Multiple cases were discussed in this paper.

Keywords: Soil Resistivity, HV Transmission Mains, Earthing, Safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2485
772 Experimental Investigation on Cold-Formed Steel Foamed Concrete Composite Wall under Compression

Authors: Zhifeng Xu, Zhongfan Chen

Abstract:

A series of tests on cold-formed steel foamed concrete (CSFC) composite walls subjected to axial load were proposed. The primary purpose of the experiments was to study the mechanical behavior and identify the failure modes of CSFC composite walls. Two main factors were considered in this study: 1) specimen with pouring foamed concrete or without and 2) different foamed concrete density ranks (corresponding to different foamed concrete strength). The interior space between two pieces of straw board of the specimen W-2 and W-3 were poured foamed concrete, and the specimen W-1 does not have foamed concrete core. The foamed concrete density rank of the specimen W-2 was A05 grade, and that of the specimen W-3 was A07 grade. Results showed that the failure mode of CSFC composite wall without foamed concrete was distortional buckling of cold-formed steel (CFS) column, and that poured foamed concrete includes the local crushing of foamed concrete and local buckling of CFS column, but the former prior to the later. Compared with CSFC composite wall without foamed concrete, the ultimate bearing capacity of spec imens poured A05 grade and A07 grade foamed concrete increased 1.6 times and 2.2 times respectively, and specimen poured foamed concrete had a low vertical deformation. According to these results, the simplified calculation formula for the CSFC wall subjected to axial load was proposed, and the calculated results from this formula are in very good agreement with the test results.

Keywords: Cold-formed steel, composite wall, foamed concrete, axial behavior test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1292
771 Durability Properties of Foamed Concrete with Fiber Inclusion

Authors: Hanizam Awang, Muhammad Hafiz Ahmad

Abstract:

An experimental study was conducted on foamed concrete with synthetic and natural fibres consisting of AR-glas, polypropylene, steel, kenaf and oil palm fibre. The foamed concrete mixtures produced had a target density of 1000kg/m3 and a mix ratio of (1:1.5:0.45). The fibres were used as additives. The inclusion of fibre was maintained at a volumetric fraction of 0.25 and 0.4%. The water absorption, thermal and shrinkage were determined to study the effect of the fibre on the durability properties of foamed concrete. The results showed that AR-glass fibre has the lowest percentage value of drying shrinkage compared to others.

Keywords: Foamed concrete, Fibres, Durability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4685
770 Predictive Models for Compressive Strength of High Performance Fly Ash Cement Concrete for Pavements

Authors: S. M. Gupta, Vanita Aggarwal, Som Nath Sachdeva

Abstract:

The work reported through this paper is an experimental work conducted on High Performance Concrete (HPC) with super plasticizer with the aim to develop some models suitable for prediction of compressive strength of HPC mixes. In this study, the effect of varying proportions of fly ash (0% to 50% @ 10% increment) on compressive strength of high performance concrete has been evaluated. The mix designs studied were M30, M40 and M50 to compare the effect of fly ash addition on the properties of these concrete mixes. In all eighteen concrete mixes that have been designed, three were conventional concretes for three grades under discussion and fifteen were HPC with fly ash with varying percentages of fly ash. The concrete mix designing has been done in accordance with Indian standard recommended guidelines. All the concrete mixes have been studied in terms of compressive strength at 7 days, 28 days, 90 days, and 365 days. All the materials used have been kept same throughout the study to get a perfect comparison of values of results. The models for compressive strength prediction have been developed using Linear Regression method (LR), Artificial Neural Network (ANN) and Leave-One-Out Validation (LOOV) methods.

Keywords: ANN, concrete mixes, compressive strength, fly ash, high performance concrete, linear regression, strength prediction models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031
769 Flexural Strength Design of RC Beams with Consideration of Strain Gradient Effect

Authors: Mantai Chen, Johnny Ching Ming Ho

Abstract:

The stress-strain relationship of concrete under flexure is one of the essential parameters in assessing ultimate flexural strength capacity of RC beams. Currently, the concrete stress-strain curve in flexure is obtained by incorporating a constant scale-down factor of 0.85 in the uniaxial stress-strain curve. However, it was revealed that strain gradient would improve the maximum concrete stress under flexure and concrete stress-strain curve is strain gradient dependent. Based on the strain-gradient-dependent concrete stress-strain curve, the investigation of the combined effects of strain gradient and concrete strength on flexural strength of RC beams was extended to high strength concrete up to 100 MPa by theoretical analysis. As an extension and application of the authors’ previous study, a new flexural strength design method incorporating the combined effects of strain gradient and concrete strength is developed. A set of equivalent rectangular concrete stress block parameters is proposed and applied to produce a series of design charts showing that the flexural strength of RC beams are improved with strain gradient effect considered.

Keywords: Beams, Equivalent concrete stress block, Flexural strength, Strain gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4061
768 Modified Plastic-Damage Model for Fiber Reinforced Polymer-Confined Repaired Concrete Columns

Authors: I. A Tijani, Y. F Wu, C.W. Lim

Abstract:

Concrete Damaged Plasticity Model (CDPM) is capable of modeling the stress-strain behavior of confined concrete. Nevertheless, the accuracy of the model largely depends on its parameters. To date, most research works mainly focus on the identification and modification of the parameters for fiber reinforced polymer (FRP) confined concrete prior to damage. And, it has been established that the FRP-strengthened concrete behaves differently to FRP-repaired concrete. This paper presents a modified plastic damage model within the context of the CDPM in ABAQUS for modelling of a uniformly FRP-confined repaired concrete under monotonic loading. The proposed model includes infliction damage, elastic stiffness, yield criterion and strain hardening rule. The distinct feature of damaged concrete is elastic stiffness reduction; this is included in the model. Meanwhile, the test results were obtained from a physical testing of repaired concrete. The dilation model is expressed as a function of the lateral stiffness of the FRP-jacket. The finite element predictions are shown to be in close agreement with the obtained test results of the repaired concrete. It was observed from the study that with necessary modifications, finite element method is capable of modeling FRP-repaired concrete structures.

Keywords: Concrete, FRP, damage, repairing, plasticity, and finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 869
767 Evaluation of Corrosion Caused by Biogenic Sulfuric Acid (BSA) on the Concrete Structures of Sewerage Systems (Chemical Tests)

Authors: M. Cortés, E. Vera, O. Rojas

Abstract:

The research studies of the kinetics of the corrosion process that attacks concrete and occurs within sewerage systems agree on the amount of variables that interfere in the process. This study aims to check the impact of the pH levels of the corrosive environment and the concrete surface, the concentrations of chemical sulfuric acid, and in turn, measure the resistance of concrete to this attack under controlled laboratory conditions; it also aims to contribute to the development of further research related to the topic, in order to compare the impact of biogenic sulfuric acid and chemical sulfuric acid involvement on concrete structures, especially in scenarios such as sewerage systems.

Keywords: Acid Sulfuric, concrete, corrosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518
766 FRP Bars Spacing Effect on Numerical Thermal Deformations in Concrete Beams under High Temperatures

Authors: A. Zaidi, F. Khelifi, R. Masmoudi, M. Bouhicha

Abstract:

5

In order to eradicate the degradation of reinforced concrete structures due to the steel corrosion, professionals in constructions suggest using fiber reinforced polymers (FRP) for their excellent properties. Nevertheless, high temperatures may affect the bond between FRP bar and concrete, and consequently the serviceability of FRP-reinforced concrete structures. This paper presents a nonlinear numerical investigation using ADINA software to investigate the effect of the spacing between glass FRP (GFRP) bars embedded in concrete on circumferential thermal deformations and the distribution of radial thermal cracks in reinforced concrete beams submitted to high temperature variations up to 60 °C for asymmetrical problems. The thermal deformations predicted from nonlinear finite elements model, at the FRP bar/concrete interface and at the external surface of concrete cover, were established as a function of the ratio of concrete cover thickness to FRP bar diameter (c/db) and the ratio of spacing between FRP bars in concrete to FRP bar diameter (e/db). Numerical results show that the circumferential thermal deformations at the external surface of concrete cover are linear until cracking thermal load varied from 32 to 55 °C corresponding to the ratio of e/db varied from 1.3 to 2.3, respectively. However, for ratios e/db >2.3 and c/db >1.6, the thermal deformations at the external surface of concrete cover exhibit linear behavior without any cracks observed on the specified surface. The numerical results are compared to those obtained from analytical models validated by experimental tests.

Keywords: Concrete beam, FRP bars, spacing effect, thermal deformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 579
765 Flexural Strength of Alkali Resistant Glass Textile Reinforced Concrete Beam with Prestressing

Authors: Jongho Park, Taekyun Kim, Jungbhin You, Sungnam Hong, Sun-Kyu Park

Abstract:

Due to the aging of bridges, increasing of maintenance costs and decreasing of structural safety is occurred. The steel corrosion of reinforced concrete bridge is the most common problem and this phenomenon is accelerating due to abnormal weather and increasing CO2 concentration due to climate change. To solve these problems, composite members using textile have been studied. A textile reinforced concrete can reduce carbon emissions by reduced concrete and without steel bars, so a lot of structural behavior studies are needed. Therefore, in this study, textile reinforced concrete beam was made and flexural test was performed. Also, the change of flexural strength according to the prestressing was conducted. As a result, flexural strength of TRC with prestressing was increased compared and flexural behavior was shown as reinforced concrete.

Keywords: AR-glass, flexural strength, prestressing, textile reinforced concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1124
764 Effects of Aggressive Ammonium Nitrate on Durability Properties of Concrete Using Sandstone and Granite Aggregates

Authors: L. Wong, H. Asrah, M.E. Rahman, M.A. Mannan

Abstract:

The storage of chemical fertilizers in concrete building often leads to durability problems due to chemical attack. The damage of concrete is mostly caused by certain ammonium salts. The main purpose of the research is to investigate the durability properties of concrete being exposed to ammonium nitrate solution. In this investigation, experiments are conducted on concrete type G50 and G60. The leaching process is achieved by the use of 20% concentration solution of ammonium nitrate. The durability properties investigated are water absorption, volume of permeable voids, and sorptivity. Compressive strength, pH value, and degradation depth are measured after a certain period of leaching. A decrease in compressive strength and an increase in porosity are found through the conducted experiments. Apart from that, the experimental data shows that pH value decreases with increased leaching time while the degradation depth of concrete increases with leaching time. By comparing concrete type G50 and G60, concrete type G60 is more resistant to ammonium nitrate attack.

Keywords: Normal weight concrete durability, Aggressive Ammonium Nitrate Solution, G50 & G60 concretes, Chemical attack.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6608
763 Structural Performance of a Timber-Concrete Bridge Prototype

Authors: Pedro Gutemberg de Alcântara Segundinho, José Antonio Matthiesen, Marcelo Rodrigo Carreira

Abstract:

Timber-concrete structures were recently introduced in Brazil as a viable option for bridge construction on side roads. Binding between timber and concrete is fundamentally important to assure the rigidity and performance of this structural system. The objective of this study was to assess the structural performance of a timber-concrete bridge prototype with width of 170cm and span of 400cm, whose binding among timber beams and concrete slabs was made with metal pins, obtained from CA 50 construction steel bars of 12.5mm diameter. It was possible to conclude, from the results obtained experimentally in laboratory, that the timber-concrete bridge prototype showed a good structural performance. This structural system provides an economical, rapid implementation solution, which may be used on side roads, favoring regional integration and agricultural production flow.

Keywords: Binding, bridge prototype, timber and concrete

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2107
762 Replacing Fibre Reinforced Concrete with Bitumen Asphalt in Airports

Authors: Y. Mohammadi, H. M. Ghasemzadeh, T. B. Talari, M. A. Ghorbani

Abstract:

Concrete pavement has superior durability and longer structural life than asphalt pavement. Concrete pavement requires less maintenance compared to asphalt pavement which requires maintenance and major rehabilitation. Use of the concrete pavement has been grown over the past decade in developing countries. Fibre reinforced concrete (FRC) has been successfully used in design of concrete pavement in past decade. In this research, the effect of fibre volume fraction in modulus of rupture, load-deflection, equivalent flexural strength (fe,3) and the equivalent flexural strength ratio (Re,3) has been used in different fibre volume fraction. Crimped-type flat steel fibre of size 50 x 2.0 x 0.6 mm was used with 1.0%, 1.5% and 2.0% volume fraction. Beam specimens of size 500 x 100 x 100 mm were used for flexural as well as with JCI method for analysis flexural toughness, equivalent flexural strength. It was obtained as the 2% fibre volume fractions; reduce 45% of the concrete pavement thickness.

Keywords: Concrete pavement, Equivalent flexural strength, Fibre, Load-deflection curves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2409
761 Numerical Investigation on Load Bearing Capacity of Pervious Concrete Piles as an Alternative to Granular Columns

Authors: Ashkan Shafee, Masoud Ghodrati, Ahmad Fahimifar

Abstract:

Pervious concrete combines considerable permeability with adequate strength, which makes it very beneficial in pavement construction and also in ground improvement projects. In this paper, a single pervious concrete pile subjected to vertical and lateral loading is analysed using a verified three dimensional finite element code. A parametric study was carried out in order to investigate load bearing capacity of a single unreinforced pervious concrete pile in saturated soft soil and also gain insight into the failure mechanism of this rather new soil improvement technique. The results show that concrete damaged plasticity constitutive model can perfectly simulate the highly brittle nature of the pervious concrete material and considering the computed vertical and horizontal load bearing capacities, some suggestions have been made for ground improvement projects.

Keywords: Concrete damaged plasticity, ground improvement, load bearing capacity, pervious concrete pile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 973
760 Analysis of Resistance Characteristics of Conductive Concrete Using Press-Electrode Method

Authors: Chun-Yao Lee, Siang-Ren Wang

Abstract:

This paper aims to discuss the influence of resistance characteristic on the high conductive concrete considering the changes of voltage and environment. The high conductive concrete with appropriate proportion is produced to the press-electrode method. The curve of resistivity with the changes of voltage and environment is plotted and the changes of resistivity are explored.

Keywords: conductive concrete, resistivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
759 Mix Design Curves for High Volume Fly Ash Concrete

Authors: S. S. Awanti, Aravindakumar B. Harwalkar

Abstract:

Concrete construction in future has to be environmental friendly apart from being safe so that society at large is benefited by the huge investments made in the infrastructure projects. To achieve this, component materials of the concrete system have to be optimized with reference to sustainability. This paper presents a study on development of mix proportions of high volume fly ash concrete (HFC). A series of HFC mixtures with cement replacement levels varying between 50% and 65% were prepared with water/binder ratios of 0.3 and 0.35. Compressive strength values were obtained at different ages. From the experimental results, pozzolanic efficiency ratios and mix design curves for HFC were established.

Keywords: Age factor, compressive strength, high volume fly ash concrete, pozzolanic efficiency ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
758 Effect of Water- Cement Ratio (w/c) on Mechanical Properties of Self-Compacting Concrete (Case Study)

Authors: Hamed Ahmadi Moghadam, Omolbanin Arasteh Khoshbin

Abstract:

Nowadays, the performance required for concrete structures is more complicated and diversified. Self-compacting concrete is a fluid mixture suitable for placing in structures with congested reinforcement without vibration. Self-compacting concrete development must ensure a good balance between deformability and stability. Also, compatibility is affected by the characteristics of materials and the mix proportions; it becomes necessary to evolve a procedure for mix design of SCC. This paper presents an experimental procedure for the design of self-compacting concrete mixes with different water-cement ratios (w/c) and other constant ratios by local materials. The test results for acceptance characteristics of self-compacting concrete such as slump flow, V-funnel and L-Box are presented. Further, compressive strength, tensile strength and modulus of elasticity of specimens were also determined and results are included here

Keywords: Self-Compacting Concrete, Mix Design, Compressive Strength, Tensile Strength, Modulus of Elasticity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5535
757 Sustainability of Carbon Nanotube-Reinforced Concrete

Authors: Rashad Al Araj, Adil K. Tamimi

Abstract:

Concrete, despite being one of the most produced materials in the world, still has weaknesses and drawbacks. Significant concern of the cementitious materials in structural applications is their quasi-brittle behavior, which causes the material to crack and lose its durability. One of the very recently proposed mitigations for this problem is the implementation of nanotechnology in the concrete mix by adding carbon nanotubes (CNTs) to it. CNTs can enhance the critical mechanical properties of concrete as a structural material. Thus, this paper demonstrates a state-of-the-art review of reinforcing concrete with CNTs, emphasizing on the structural performance. It also goes over the properties of CNTs alone, the present methods and costs associated with producing them, the possible special applications of concretes reinforced with CNTs, the key challenges and drawbacks that this new technology still encounters, and the most reliable practices and methodologies to produce CNT-reinforced concrete in the lab. This work has shown that the addition of CNTs to the concrete mix in percentages as low as 0.25% weight of cement could increase the flexural strength and toughness of concrete by more than 45% and 25%, respectively, and enhance other durability-related properties, given that an effective dispersion of CNTs in the cementitious mix is achieved. Since nano reinforcement for cementitious materials is a new technology, many challenges have to be tackled before it becomes practiced at the mass level.

Keywords: Sustainability, carbon nanotube, microsilica, concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1432
756 High Volume Fly Ash Concrete for Paver Blocks

Authors: Som Nath Sachdeva, Vanita Aggarwal, S. M. Gupta

Abstract:

Use of concrete paver blocks is becoming increasingly popular. They are used for paving of approaches, paths and parking areas including their application in pre-engineered buildings and pavements. This paper discusses the results of an experimental study conducted on Fly Ash Concrete with the aim to report its suitability for concrete paver blocks. In this study, the effect of varying proportions of fly ash, 20% to 40%, on compressive strength and flexural strength of concrete has been evaluated. The mix designs studied are M-30, M-35, M-40 and M-50. It is observed that all the fly ash based mixes are able to achieve the required compressive and flexural strengths. In comparison to control mixes, the compressive and flexural strengths of the fly ash based mixes are found to be slightly less at 7-days and 28 days and a little more at 90 days.

Keywords: Compressive strength, flexural strength, high volume fly ash concrete, paver blocks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4823
755 Dynamic Shear Energy Absorption of Ultra-High Performance Concrete

Authors: Robert J. Thomas, Colton Bedke, Andrew Sorensen

Abstract:

The exemplary mechanical performance and durability of ultra-high performance concrete (UHPC) has led to its rapid emergence as an advanced cementitious material. The uncharacteristically high mechanical strength and ductility of UHPC makes it a promising potential material for defense structures which may be subject to highly dynamic loads like impact or blast. However, the mechanical response of UHPC under dynamic loading has not been fully characterized. In particular, there is a need to characterize the energy absorption of UHPC under high-frequency shear loading. This paper presents preliminary results from a parametric study of the dynamic shear energy absorption of UHPC using the Charpy impact test. UHPC mixtures with compressive strengths in the range of 100-150 MPa exhibited dynamic shear energy absorption in the range of 0.9-1.5 kJ/m. Energy absorption is shown to be sensitive to the water/cement ratio, silica fume content, and aggregate gradation. Energy absorption was weakly correlated to compressive strength. Results are highly sensitive to specimen preparation methods, and there is a demonstrated need for a standardized test method for high frequency shear in cementitious composites.

Keywords: Charpy impact test, dynamic shear, impact loading, ultra-high performance concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1128
754 Ingenious Use of Hypo Sludge in M25 Concrete

Authors: Abhinandan Singh Gill

Abstract:

Paper mill sludge is one of the major economic and environmental problems for paper and board industry, million tonnes quantity of sludge is produced in the world. It is essential to dispose these wastes safely without affecting health of human being, environment, fertile land; sources of water bodies, economy as it adversely affect the strength, durability and other properties of building materials based on them. Moreover, in developing countries like India where there is low availability of non-renewable resources and large need of building material like cement therefore it is essential to develop eco-efficient utilization of paper sludge. Primarily in functional terms paper sludge comprises of cellulose fibers, calcium carbonate, china clay, low silica, residual chemical bonds with water. The material is sticky and full of moisture content which is hard to dry. The manufacturing of paper usually produce loads of solid waste. These paper fibers are recycled in paper mills to limited number of times till they become weak to produce high quality paper. Thereafter, these left out small and weak pieces called as low quality paper fibers are detached out to become paper sludge. The material is by-product of de-inking and re-pulping of paper. This hypo sludge includes all kinds of inks, dyes, coating etc inscribed on the paper. This paper presents an overview of the published work on the use of hypo sludge in M25 concrete formulations as a supplementary cementitious material exploring its properties such as compressive strength, splitting and parameters like modulus of elasticity, density, applications and most importantly investigation of low cost concrete by using hypo sludge are presented.

Keywords: Concrete, sludge waste, hypo sludge, supplementary cementitious material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1213
753 Mechanical Properties and Released Gas Analysis of High Strength Concrete with Polypropylene and Raw Rice Husk under High Temperature Effect

Authors: B. Akturk, N. Yuzer, N. Kabay

Abstract:

When concrete is exposed to high temperatures, some changes may occur in its physical and mechanical properties. Especially, high strength concrete (HSC), may exhibit damages such as cracks and spallings. To overcome this problem, incorporating polymer fibers such as polypropylene (PP) in concrete is a well-known method. In high temperatures, PP decomposes and releases harmful gases such as CO and CO2. This study researches the use of raw rice husk (RRH) as a sustainable material, instead of PP fibers considering its several favorable properties, and its usability in HSC. RRH and PP fibers were incorporated in concrete at 0.5-3% and 0.2-0.5% by weight of cement, respectively. Concrete specimens were exposed to 20 (control), 300, 600 and 900°C. Under these temperatures, residual compressive and splitting tensile strength was determined. During the high temperature effect, the amount of released harmful gases was measured by a gas detector.

Keywords: Gas analysis, high temperature, high strength concrete, polypropylene fibers, raw rice husk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126
752 The Effect of Confinement Shapes on Over-Reinforced HSC Beams

Authors: Ross Jeffry, Muhammad N. S. Hadi

Abstract:

High strength concrete (HSC) provides high strength but lower ductility than normal strength concrete. This low ductility limits the benefit of using HSC in building safe structures. On the other hand, when designing reinforced concrete beams, designers have to limit the amount of tensile reinforcement to prevent the brittle failure of concrete. Therefore the full potential of the use of steel reinforcement can not be achieved. This paper presents the idea of confining concrete in the compression zone so that the HSC will be in a state of triaxial compression, which leads to improvements in strength and ductility. Five beams made of HSC were cast and tested. The cross section of the beams was 200×300 mm, with a length of 4 m and a clear span of 3.6 m subjected to four-point loading, with emphasis placed on the midspan deflection. The first beam served as a reference beam. The remaining beams had different tensile reinforcement and the confinement shapes were changed to gauge their effectiveness in improving the strength and ductility of the beams. The compressive strength of the concrete was 85 MPa and the tensile strength of the steel was 500 MPa and for the stirrups and helixes was 250 MPa. Results of testing the five beams proved that placing helixes with different diameters as a variable parameter in the compression zone of reinforced concrete beams improve their strength and ductility.

Keywords: Confinement, ductility, high strength concrete, reinforced concrete beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2182
751 Evaluation of Static Modulus of Elasticity Depending on Concrete Compressive Strength

Authors: K. Krizova, R. Hela

Abstract:

The paper is focused on monitoring of dependencies of different composition concretes on elastic modulus values. To obtain a summary of elastic modulus development in dependence of concrete composition design variability was the objective of the experiment. Essential part of this work was initiated as a reaction to building practice when questions of elastic moduli arose at the same time and which mostly did not obtain the required and expected values from concrete constructions.

Keywords: Concrete, Compressive strength, Modulus of elasticity, EuroCode 2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2800
750 Airfield Pavements Made of Reinforced Concrete: Dimensioning According to the Theory of Limit States and Eurocode

Authors: M. Linek, P. Nita

Abstract:

In the previous airfield construction industry, pavements made of reinforced concrete have been used very rarely; however, the necessity to use this type of pavements in an emergency situations justifies the need reference to this issue. The paper concerns the problem of airfield pavement dimensioning made of reinforced concrete and the evaluation of selected dimensioning methods of reinforced concrete slabs intended for airfield pavements. Analysis of slabs dimensioning, according to classical method of limit states has been performed and it has been compared to results obtained in case of methods complying with Eurocode 2 guidelines. Basis of an analysis was a concrete slab of class C35/45 with reinforcement, located in tension zone. Steel bars of 16.0 mm have been used as slab reinforcement. According to comparative analysis of obtained results, conclusions were reached regarding application legitimacy of the discussed methods and their design advantages.

Keywords: Reinforced concrete, cement concrete, airport pavements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1226
749 Cost and Productivity Experiences of Pakistan with Aggregate Learning Curve

Authors: Jamshaid ur Rehman, Shahida Wizarat

Abstract:

The principal focus of this study is on the measurement and analysis of labor learnings in Pakistan. The study at the aggregate economy level focus on the labor productivity movements and at large-scale manufacturing level focus on the cost structure, with isolating the contribution of the learning curve. The analysis of S-shaped curve suggests that learnings are only below one half of aggregate learning curve and other half shows the retardation in learning, hence retardation in productivity movements. The study implies the existence of learning economies in term of cost reduction that is input cost per unit produced decreases by 0.51 percent every time the cumulative production output doubles.

Keywords: Cost, Inflection Point, Learning Curve, Minima, Maxima, and Productivity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
748 Structural Engineering Forensic Evaluation of Misdiagnosed Concrete Masonry Wall Cracking

Authors: W. C. Bracken

Abstract:

Given that concrete masonry walls are expected to experience shrinkage combined with thermal expansion and contraction, and in some cases even carbonation, throughout their service life, cracking is to be expected. However, after concrete masonry walls have been placed into service, originally anticipated and accounted for cracking is often misdiagnosed as a structural defect. Such misdiagnoses often result in or are used to support litigation. This paper begins by discussing the causes and types of anticipated cracking within concrete masonry walls followed by a discussion on the processes and analyses that exists for properly evaluating them and their significance. From here, the paper then presents a case of misdiagnosed concrete masonry cracking and the flawed logic employed to support litigation.

Keywords: Concrete masonry, masonry wall cracking, structural defect, structural damage, construction defect, forensic investigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1359
747 Effect of Steel Fibers on Flexural Behavior of Normal and High Strength Concrete

Authors: K. M. Aldossari, W. A. Elsaigh, M. J. Shannag

Abstract:

An experimental study was conducted to investigate the effect of hooked-end steel fibers on the flexural behavior of normal and high strength concrete matrices. The fibers content appropriate for the concrete matrices investigated was also determined based on flexural tests on standard prisms. Parameters investigated include: matrix compressive strength ranging from 45 MPa to 70 MPa, corresponding to normal and high strength concrete matrices respectively; fibers volume fraction including 0, 0.5%, 0.76% and 1%, equivalent to 0, 40, 60, and 80 kg/m3 of hooked-end steel fibers respectively. Test results indicated that flexural strength and toughness of normal and high strength concrete matrices were significantly improved with the increase in the fibers content added; whereas a slight improvement in compressive strength was observed for the same matrices. Furthermore, the test results indicated that the effect of increasing the fibers content was more pronounced on increasing the flexural strength of high strength concrete than that of normal concrete.

Keywords: Concrete, flexural strength, toughness, steel fibers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
746 Transmission Mains Earthing Design and Concrete Pole Deployments

Authors: M. Nassereddine, J. Rizk, A. Hellany, M. Nagrial

Abstract:

The High Voltage (HV) transmission mains into the community necessitate earthing design to ensure safety compliance of the system. Concrete poles are widely used within HV transmission mains; which could have an impact on the earth grid impedance and input impedance of the system from the fault point of view. This paper provides information on concrete pole earthing to enhance the split factor of the system; further, it discusses the deployment of concrete structures in high soil resistivity area to reduce the earth grid system of the plant. This paper introduces the cut off soil resistivity SC ρ when replacing timber poles with concrete ones.

Keywords: Concrete Poles, Earth Grid, EPR, High Voltage, Soil Resistivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3558
745 Improving Carbon Sequestration in Concrete: A Literature Review

Authors: Adedokun D. A., Ndambuki J. M., Salim R. W.

Abstract:

Due to urbanization, trees and plants which covered a great land mass of the earth and are an excellent carbon dioxide (CO2) absorber through photosynthesis are being replaced by several concrete based structures. It is therefore important to have these cement based structures absorb the large volume of carbon dioxide which the trees would have removed from the atmosphere during their useful lifespan. Hence the need for these cement based structures to be designed to serve other useful purposes in addition to shelter. This paper reviews the properties of Sodium carbonate and sugar as admixtures in concrete with respect to improving carbon sequestration in concrete.

Keywords: Carbon sequestration, Sodium carbonate, Sugar, concrete, Carbon dioxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2715
744 Investigation of the Acoustic Properties of Recycled Felt Panels and Their Application in Classrooms and Multi-Purpose Halls

Authors: Ivanova B. Natalia, Djambova Т. Svetlana, Hristev S. Ivailo

Abstract:

The acoustic properties of recycled felt panels have been investigated using various methods. Experimentally, the sound insulation of the panels has been evaluated for frequencies in the range of 600 Hz to 4000 Hz, utilizing a small-sized acoustic chamber. Additionally, the sound absorption coefficient for the frequency range of 63 Hz to 4000 Hz was measured according to the EN ISO 354 standard in a laboratory reverberation room. This research was deemed necessary after conducting reverberation time measurements of a university classroom following the EN ISO 3382-2 standard. The measurements indicated values of 2.86 s at 500 Hz, 3.23 s at 1000 Hz, and 2.53 s at 2000 Hz, which significantly exceeded the requirements set by the national regulatory framework (0.6 s) for such premises. For this reason, recycled felt panels have been investigated in the laboratory, showing very good acoustic properties at high frequencies. To enhance performance in the low frequencies, the influence of the distance of the panel spacing was examined. Furthermore, the sound insulation of the panels was studied to expand the possibilities of their application, both for the acoustic treatment of educational and multifunctional halls and for sound insulation purposes (e.g., a suspended ceiling with an air gap passing from room to room). As a conclusion, a theoretical acoustic design of the classroom has been carried out with suggestions for improvements to achieve the necessary acoustic and aesthetic parameters for such rooms.

Keywords: Acoustic panels, recycled felt, sound absorption, sound insulation, classroom acoustics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18