Search results for: precast concrete element
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2035

Search results for: precast concrete element

1765 Simulation of Non-Linear Behavior of Shear Wall under Seismic Loading

Authors: M. A. Ghorbani, M. Pasbani Khiavi

Abstract:

The seismic response of steel shear wall system considering nonlinearity effects using finite element method is investigated in this paper. The non-linear finite element analysis has potential as usable and reliable means for analyzing of civil structures with the availability of computer technology. In this research the large displacements and materially nonlinear behavior of shear wall is presented with developing of finite element code. A numerical model based on the finite element method for the seismic analysis of shear wall is presented with developing of finite element code in this research. To develop the finite element code, the standard Galerkin weighted residual formulation is used. Two-dimensional plane stress model and total Lagrangian formulation was carried out to present the shear wall response and the Newton-Raphson method is applied for the solution of nonlinear transient equations. The presented model in this paper can be developed for analysis of civil engineering structures with different material behavior and complicated geometry.

Keywords: Finite element, steel shear wall, nonlinear, earthquake

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791
1764 Evaluation of Corrosion by Impedance Spectroscopy of Embedded Steel in an Alternative Concrete Exposed to the Chloride Ion

Authors: Erika J. Ruíz, Jairo R. Cortes, Willian A. Aperador

Abstract:

In this article was evaluated the protective effect of the alternative concrete obtained from the binary mixture of fly ash, and iron and steel slag. After mixing the cement with aggregates, structural steel was inserted in the matrix cementitious. The study was conducted comparatively with specimens exposed to natural conditions free of chloride ion. The chloride ion effect on the specimens accelerated under controlled conditions (3.5% NaCl and 25°C temperature). The impedance data were acquired in a range of 1 mHz to 100 kHz.

Keywords: Alternative concrete, corrosion, alkaline activation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380
1763 Modeling and Analysis of Concrete Slump Using Hybrid Artificial Neural Networks

Authors: Vinay Chandwani, Vinay Agrawal, Ravindra Nagar

Abstract:

Artificial Neural Networks (ANN) trained using backpropagation (BP) algorithm are commonly used for modeling material behavior associated with non-linear, complex or unknown interactions among the material constituents. Despite multidisciplinary applications of back-propagation neural networks (BPNN), the BP algorithm possesses the inherent drawback of getting trapped in local minima and slowly converging to a global optimum. The paper present a hybrid artificial neural networks and genetic algorithm approach for modeling slump of ready mix concrete based on its design mix constituents. Genetic algorithms (GA) global search is employed for evolving the initial weights and biases for training of neural networks, which are further fine tuned using the BP algorithm. The study showed that, hybrid ANN-GA model provided consistent predictions in comparison to commonly used BPNN model. In comparison to BPNN model, the hybrid ANNGA model was able to reach the desired performance goal quickly. Apart from the modeling slump of ready mix concrete, the synaptic weights of neural networks were harnessed for analyzing the relative importance of concrete design mix constituents on the slump value. The sand and water constituents of the concrete design mix were found to exhibit maximum importance on the concrete slump value.

Keywords: Artificial neural networks, Genetic algorithms, Back-propagation algorithm, Ready Mix Concrete, Slump value.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2848
1762 Comparison of Physical and Chemical Properties of Micro-Silica and Locally Produced Metakaolin and Effect on the Properties of Concrete

Authors: S. U. Khan, T. Ayub, N. Shafiq

Abstract:

The properties of locally produced metakaolin (MK) as cement replacing material and the comparison of reactivity with commercially available micro-silica have been investigated. Compressive strength, splitting tensile strength, and load-deflection behaviour under bending are the properties that have been studied. The amorphous phase of MK with micro-silica was compared through X-ray diffraction (XRD) pattern. Further, interfacial transition zone of concrete with micro-silica and MK was observed through Field Emission Scanning Electron Microscopy (FESEM). Three mixes of concrete were prepared. One of the mix is without cement replacement as control mix, and the remaining two mixes are 10% cement replacement with micro-silica and MK. It has been found that MK, due to its irregular structure and amorphous phase, has high reactivity with portlandite in concrete. The compressive strength at early age is higher with MK as compared to micro-silica. MK concrete showed higher splitting tensile strength and higher load carrying capacity as compared to control and micro-silica concrete at all ages respectively.

Keywords: Metakaolin, compressive strength, splitting tensile strength, load deflection, interfacial transition zone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
1761 Application Research on Large Profiled Statues of Steel-Concrete Composite Shear Wall

Authors: Zhao Cai-qi, Ma Jun

Abstract:

Twin steel plates-concrete composite shear walls are composed of a pair of steel plate layers and a concrete layer sandwiched between them, which have the characteristics of both reinforced concrete shear walls and steel plate shear walls. Twin steel plates-composite shear walls contain very high ultimsate bearing capacity and ductility, which have great potential to be applied in the super high-rise buildings and special structures. In this paper, we analyzed the basic characteristics and stress mechanism of the twin steel plates-composite shear walls. Specifically, we analyzed the effects of the steel plate thickness, wall thickness and concrete strength on the bearing capacity of the twin steel plates-composite shear walls. The analysis results indicate that: (1) the initial shear stiffness and ultimate shear-carrying capacity is not significantly affected by the thickness of concrete wall but by the class of concrete, (2) both factors significantly impact the shear distribution of the shear walls in ultimate shear-carrying capacity. The technique of twin steel plates-composite shear walls has been successfully applied in the construction of an 88-meter Huge Statue of Buddha located in Hunan Province, China. The analysis results and engineering experiences showed that the twin steel plates-composite shear walls have great potential for future research and applications.

Keywords: Twin steel plates-concrete composite shear wall, huge statue of Buddha, shear capacity, initial lateral stiffness, overturning moment bearing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073
1760 Mechanical Behavior of Recycled Pet Fiber Reinforced Concrete Matrix

Authors: Comingstarful Marthong, Deba Kumar Sarma

Abstract:

Concrete is strong in compression however weak in tension. The tensile strength as well as ductile property of concrete could be improved by addition of short dispersed fibers. Polyethylene terephthalate (PET) fiber obtained from hand cutting or mechanical slitting of plastic sheets generally used as discrete reinforcement in substitution of steel fiber. PET fiber obtained from the former process is in the form of straight slit sheet pattern that impart weaker mechanical bonding behavior in the concrete matrix. To improve the limitation of straight slit sheet fiber the present study considered two additional geometry of fiber namely (a) flattened end slit sheet and (b) deformed slit sheet. The mix for plain concrete was design for a compressive strength of 25 MPa at 28 days curing time with a watercement ratio of 0.5. Cylindrical and beam specimens with 0.5% fibers volume fraction and without fibers were cast to investigate the influence of geometry on the mechanical properties of concrete. The performance parameters mainly studied include flexural strength, splitting tensile strength, compressive strength and ultrasonic pulse velocity (UPV). Test results show that geometry of fiber has a marginal effect on the workability of concrete. However, it plays a significant role in achieving a good compressive and tensile strength of concrete. Further, significant improvement in term of flexural and energy dissipation capacity were observed from other fibers as compared to the straight slit sheet pattern. Also, the inclusion of PET fiber improved the ability in absorbing energy in the post-cracking state of the specimen as well as no significant porous structures.

Keywords: Concrete matrix, polyethylene terephthalate (PET) fibers, mechanical bonding, mechanical properties, UPV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005
1759 Dynamic Soil-Structure Interaction Analysis of Reinforced Concrete Buildings

Authors: Abdelhacine Gouasmia, Abdelhamid Belkhiri, Allaeddine Athmani

Abstract:

The objective of this paper is to evaluate the effects of soil-structure interaction (SSI) on the modal characteristics and on the dynamic response of current structures. The objective is on the overall behaviour of a real structure of five storeys reinforced concrete (R/C) building typically encountered in Algeria. Sensitivity studies are undertaken in order to study the effects of frequency content of the input motion, frequency of the soil-structure system, rigidity and depth of the soil layer on the dynamic response of such structures. This investigation indicated that the rigidity of the soil layer is the predominant factor in soil-structure interaction and its increases would definitely reduce the deformation in the R/C structure. On the other hand, increasing the period of the underlying soil will cause an increase in the lateral displacements at story levels and create irregularity in the distribution of story shears. Possible resonance between the frequency content of the input motion and soil could also play an important role in increasing the structural response.

Keywords: Direct method, finite element method, foundation, R/C frame, soil-structure interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2640
1758 Influence of Metakaolin on the Performance of Mortars and Concretes

Authors: M. Si-Ahmed, A. Belakrouf, S. Kenai

Abstract:

The use of additions in cement in manufacturing, mortar and concrete offers economic and ecological advantages. Cements with additions such as limestone, slag and natural pouzzolana are produced in cement factories in Algeria. Several studies analyzed the effect of these additions on the physical and mechanical properties as well as the durability of concrete. However, few studies were conducted on the effect of local metakaolin on mechanical properties and durability of concrete. The main purpose of this paper is to analyze the performance of mortar and concrete with local metakaolin. The preparation of the metakaolin was carried out by calcination of kaolin at a temperature of 850 °C for a period of 3 hours. The experimental results have shown that the rates of substitutions of 10 and 15% metakaolin increases the compressive strength and flexural strength at both early age and long term. The durability and the permeability were also improved by reducing the coefficient of sorptivity.

Keywords: Metakaolin, calcination, compressive strength, durability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2804
1757 Investigation of Compressive Strength of Slag-Based Geopolymer Concrete Incorporated with Rice Husk Ash Using 12M Alkaline Activator

Authors: Festus A. Olutoge, Ahmed A. Akintunde, Anuoluwapo S. Kolade, Aaron A. Chadee, Jovanca Smith

Abstract:

Geopolymer concrete's (GPC) compressive strength was investigated. The GPC was incorporated with rice husk ash (RHA) and ground granulated blast furnace slag (GGBFS), which may have potential in the construction industry to replace Portland limestone cement (PLC) concrete. The sustainable construction binders used were GGBFS and RHA, and a solution of sodium hydroxide (NaOH) and sodium silicate gel (Na2SiO3) was used as the 12-molar alkaline activator. Five GPC mixes comprising fine aggregates, coarse aggregates, GGBS, and RHA, and the alkaline solution in the ratio 2: 2.5: 1: 0.5, respectively, were prepared to achieve grade 40 concrete, and PLC was substituted with GGBFS and RHA in the ratios of 0:100, 25:75, 50:50, 75:25, and 100:0. A control mix was also prepared which comprised of 100% water and 100% PLC as the cementitious material. The GPC mixes were thermally cured at 60-80 ºC in an oven for approximately 24 h. After curing for 7 and 28 days, the compressive strength test results of the hardened GPC samples showed that GPC-Mix #3, comprising 50% GGBFS and 50% RHA, was the most efficient geopolymer mix. The mix had compressive strengths of 35.71 MPa and 47.26 MPa, 19.87% and 8.69% higher than the PLC concrete samples, which had 29.79 MPa and 43.48 MPa after 7 and 28 days, respectively. Therefore, GPC containing GGBFS incorporated with RHA is an efficient method of decreasing the use of PLC in conventional concrete production and reducing the high amounts of CO2 emitted into the atmosphere in the construction industry.

Keywords: Alkaline solution, cementitious material, geopolymer concrete, ground granulated blast furnace slag, rice husk ash.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 121
1756 Boundary-Element-Based Finite Element Methods for Helmholtz and Maxwell Equations on General Polyhedral Meshes

Authors: Dylan M. Copeland

Abstract:

We present new finite element methods for Helmholtz and Maxwell equations on general three-dimensional polyhedral meshes, based on domain decomposition with boundary elements on the surfaces of the polyhedral volume elements. The methods use the lowest-order polynomial spaces and produce sparse, symmetric linear systems despite the use of boundary elements. Moreover, piecewise constant coefficients are admissible. The resulting approximation on the element surfaces can be extended throughout the domain via representation formulas. Numerical experiments confirm that the convergence behavior on tetrahedral meshes is comparable to that of standard finite element methods, and equally good performance is attained on more general meshes.

Keywords: Boundary elements, finite elements, Helmholtz equation, Maxwell equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
1755 Heating and Cooling Scenario of Blended Concrete Subjected to 780 Degrees Celsius

Authors: J. E. Oti, J. M. Kinuthia, R. Robinson, P. Davies

Abstract:

In this study, the Compressive strength of concretes made with Ground Granulated Blast furnace Slag (GGBS), Pulverised Fuel Ash (PFA), Rice Husk Ash (RHA) and Waste Glass Powder (WGP) after they were exposed 7800C (exposure duration of around 60 minutes) and then allowed to cool down gradually in the furnace for about 280 minutes at water binder ratio of 0.50 was investigated. GGBS, PFA, RHA and WGP were used to replace up to 20% Portland cement in the control concrete. Test for the determination of workability, compressive strength and tensile splitting strength of the concretes were carried out and the results were compared with control concrete. The test results showed that the compressive strength decreased by an average of around 30% after the concretes were exposed to the heating and cooling scenario.

Keywords: Pulverised Fuel Ash, Rice Husk Ash, heating and cooling, concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
1754 CPT Pore Water Pressure Correlations with PDA to Identify Pile Drivability Problem

Authors: Fauzi Jarushi, Paul Cosentino, Edward Kalajian, Hadeel Dekhn

Abstract:

At certain depths during large diameter displacement pile driving, rebound well over 0.25 inches was experienced, followed by a small permanent-set during each hammer blow. High pile rebound (HPR) soils may stop the pile driving and results in a limited pile capacity. In some cases, rebound leads to pile damage, delaying the construction project, and the requiring foundations redesign. HPR was evaluated at seven Florida sites, during driving of square precast, prestressed concrete piles driven into saturated, fine silty to clayey sands and sandy clays. Pile Driving Analyzer (PDA) deflection versus time data recorded during installation, was used to develop correlations between cone penetrometer (CPT) pore-water pressures, pile displacements and rebound. At five sites where piles experienced excessive HPR with minimal set, the pore pressure yielded very high positive values of greater than 20 tsf. However, at the site where the pile rebounded, followed by an acceptable permanent-set, the measured pore pressure ranged between 5 and 20 tsf. The pore pressure exhibited values of less than 5 tsf at the site where no rebound was noticed. In summary, direct correlations between CPTu pore pressure and rebound were produced, allowing identification of soils that produce HPR.

Keywords: CPTu, pore water pressure, pile rebound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2637
1753 FRC – A New Sustainable Option for Construction to Mitigate Earthquakes

Authors: P. J. Sa sturkar

Abstract:

Ten simply supported grossly underreinforced tapered concrete beams of full size were tested upto complete collapse under flexural effect .Out of 10 beams, 5 beams were nonfibrous and the remaining beams contained fibres. The beams had a variation in the tapered angle as 2°, 4°, 6°, 8° and 10°. The concrete mix, conventional steel and the type of fibre used were held constant. Flat corrugated steel fibres were utilized as secondary reinforcement. The strength and stability parameters were measured. It is established that the fibrous tapered beams can be used economically in earthquake prone areas.

Keywords: Earthquake, Grossly underreinforced sections, Fibre reinforced concrete, Tapered beams.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1372
1752 Use of Waste Tire Rubber Alkali-Activated-Based Mortars in Repair of Concrete Structures

Authors: Mohammad Ebrahim Kianifar, Ehsan Ahmadi

Abstract:

Reinforced concrete structures experience local defects such as cracks over their lifetime under various environmental loadings. Consequently, they are repaired by mortars to avoid detrimental effects such as corrosion of reinforcement, which in long-term may lead to strength loss of a member or collapse of structures. However, repaired structures may need multiple repairs due to changes in load distribution, and thus, lack of compatibility between mortar and substrate concrete. On the other hand, waste tire rubber alkali-activated (WTRAA)-based materials have very high potential to be used as repair mortars because of their ductility and flexibility, which may delay failure of repair mortar, and thus, provide sufficient compatibility. Hence, this work presents a study on suitability of WTRAA-based materials as mortars for repair of concrete structures through an experimental program. To this end, WTRAA mortars with 15% aggregate replacement, alkali-activated (AA) mortars, and ordinary mortars are made to repair a number of concrete beams. The WTRAA mortars are composed of slag as base material, sodium hydroxide as alkaline activator, and different gradation of waste tire rubber (fine and coarse gradations). Flexural tests are conducted on the concrete beams repaired by the ordinary, AA, and WTRAA mortars. It is found that, despite having lower compressive strength and modulus of elasticity, the WTRAA and AA mortars increase flexural strength of the repaired beams, give compatible failures, and provide sufficient mortar-concrete interface bondings. The ordinary mortars, however, show incompatible failure modes. This study demonstrates promising application of WTRAA mortars in practical repairs of concrete structures.

Keywords: Alkali-activated mortars, concrete repair, mortar compatibility flexural strength, waste tire rubber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 365
1751 Mechanical and Hydric Properties of High- Performance Concrete Containing Natural Zeolites

Authors: E. Vejmelková, M. Ondráček, R. Černý

Abstract:

Mechanical and water transport properties of high performance concrete (HPC) containing natural zeolite as partial replacement of Portland cement are studied. Experimental results show that in the investigated mixes the use of natural zeolite leads to an increase of porosity, decrease of compressive strength and increase of moisture diffusivity and water vapor diffusion coefficient, as compared with the reference HPC. However, for the replacement level up to 20% of the mass of Portland cement the concretes still maintain their high performance character and exhibit acceptable water transport properties. Therefore, natural zeolite can be considered an environmental friendly binder with a potential to replace a part of Portland cement in concrete in building industry.

Keywords: Natural zeolites, high-performance concrete; hydric properties, mechanical properties

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876
1750 Effect of Shear Wall Openings on the Fundamental Period of Shear Wall Structures

Authors: Anas M. Fares, A. Touqan

Abstract:

A common approach in resisting lateral forces is the use of reinforced concrete shear walls in buildings. These walls represent the main elements to resist the lateral forces due to their large strength and stiffness. However, such walls may contain many openings due to functional requirements, and this may largely affect the overall lateral stiffness of them. It is thus of prime importance to quantify the effect of openings on the dynamic performance of the shear walls. SAP2000 structural analysis program is used as a main source after verifying the results. This study is made by using linear elastic analysis. The results are compared to ASCE7-16 code empirical equations for estimating the fundamental period of shear wall structures. Finally, statistical regression is used to fit an equation for estimating the increase in the fundamental period of shear-walled regular structures due to windows openings in the walls.

Keywords: Concrete, earthquake-resistant design, finite element, fundamental period, lateral stiffness, linear analysis, modal analysis, rayleigh, SAP2000, shear wall, ASCE7-16.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
1749 Roof Material Detection Based on Object-Based Approach Using WorldView-2 Satellite Imagery

Authors: Ebrahim Taherzadeh, Helmi Z. M. Shafri, Kaveh Shahi

Abstract:

One of the most important tasks in urban remote sensing is the detection of impervious surfaces (IS), such as roofs and roads. However, detection of IS in heterogeneous areas still remains one of the most challenging tasks. In this study, detection of concrete roof using an object-based approach was proposed. A new rule-based classification was developed to detect concrete roof tile. This proposed rule-based classification was applied to WorldView-2 image and results showed that the proposed rule has good potential to predict concrete roof material from WorldView-2 images, with 85% accuracy.

Keywords: Urban remote sensing, impervious surface, Object- Based, Roof Material, Concrete tile, WorldView-2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3754
1748 The Effect of Urmia-Lake Water on Tensional Strength Concrete with Various Admixtures

Authors: Hadi Barghlame, M. A. Lotfollahi-Yaghin, Mehdi Mohammad Rezaei

Abstract:

In this paper, the effect of admixtures on the tensional strength of concrete in Urmia-lake water have been investigated. We made different types of concretes with the ratio of w/c and replaced different percentages of micro-silica, air-entraining, super plasticizer, corrosion-inhibiting, and caulk with two types of cement I and II as well as investigating in both ordinary water and Urmia-lake water. The tensional strength was investigated on these samples.

Keywords: Urmia-lake water, Tensional strength, Concrete, Admixtures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1416
1747 Forced Vibration of a Planar Curved Beam on Pasternak Foundation

Authors: Akif Kutlu, Merve Ermis, Nihal Eratlı, Mehmet H. Omurtag

Abstract:

The objective of this study is to investigate the forced vibration analysis of a planar curved beam lying on elastic foundation by using the mixed finite element method. The finite element formulation is based on the Timoshenko beam theory. In order to solve the problems in frequency domain, the element matrices of two nodded curvilinear elements are transformed into Laplace space. The results are transformed back to the time domain by the well-known numerical Modified Durbin’s transformation algorithm. First, the presented finite element formulation is verified through the forced vibration analysis of a planar curved Timoshenko beam resting on Winkler foundation and the finite element results are compared with the results available in the literature. Then, the forced vibration analysis of a planar curved beam resting on Winkler-Pasternak foundation is conducted.

Keywords: Curved beam, dynamic analysis, elastic foundation, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1043
1746 Influence of Gum Acacia Karroo on Some Mechanical Properties of Cement Mortars and Concrete

Authors: Rose Mbugua, Ramadhan Wanjala, Julius Ndambuki

Abstract:

Natural admixtures provide concrete with enhanced properties but their processing end up making them very expensive resulting in increase to cost of concrete. In this study the effect of Gum from Acacia Karroo (GAK) as set-retarding admixture in cement pastes was studied. The possibility of using GAK as water reducing admixture both in cement mortar concrete was also investigated. Cement pastes with different dosages of GAK were prepared to measure the setting time using different dosages. Compressive strength of cement mortars with 0.7, 0.8 and 0.9% weight of cement and w/c ratio of 0.5 were compared to those with water cement (w/c) ratio of 0.44 but same dosage of GAK. Concrete samples were prepared using higher dosages of GAK (1, 2 and 3% wt of cement) and a water bidder (w/b) of 0.61 were compared to those with the same GAK dosage but with reduced w/b ratio. There was increase in compressive strength of 9.3% at 28 days for cement mortar samples with 0.9% dosage of GAK and reduced w/c ratio.

Keywords: Compressive strength, Gum Acacia Karroo, retarding admixture, setting time, water-reducing admixture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048
1745 Numerical Analysis of Concrete Crash Barriers

Authors: J. Kala, P. Hradil, V. Salajka

Abstract:

Reinforced concrete crash barriers used in road traffic must meet a number of criteria. Crash barriers are laid lengthwise, one behind another, and joined using specially designed steel locks. While developing BSV reinforced concrete crash barriers (type ŽPSV), experiments and calculations aimed to optimize the shape of a newly designed lock and the reinforcement quantity and distribution in a crash barrier were carried out. The tension carrying capacity of two parallelly joined locks was solved experimentally. Based on the performed experiments, adjustments of nonlinear properties of steel were performed in the calculations. The obtained results served as a basis to optimize the lock design using a computational model that takes into account the plastic behaviour of steel and the influence of the surrounding concrete [6]. The response to the vehicle impact has been analyzed using a specially elaborated complex computational model, comprising both the nonlinear model of the damping wall or crash barrier and the detailed model of the vehicle [7].

Keywords: Crash Barrier, impact, static analysis, concrete nonlinear model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3201
1744 Anticipation of Bending Reinforcement Based on Iranian Concrete Code Using Meta-Heuristic Tools

Authors: Seyed Sadegh Naseralavi, Najmeh Bemani

Abstract:

In this paper, different concrete codes including America, New Zealand, Mexico, Italy, India, Canada, Hong Kong, Euro Code and Britain are compared with the Iranian concrete design code. First, by using Adaptive Neuro Fuzzy Inference System (ANFIS), the codes having the most correlation with the Iranian ninth issue of the national regulation are determined. Consequently, two anticipated methods are used for comparing the codes: Artificial Neural Network (ANN) and Multi-variable regression. The results show that ANN performs better. Predicting is done by using only tensile steel ratio and with ignoring the compression steel ratio.

Keywords: Concrete design code, anticipate method, artificial neural network, multi-variable regression, adaptive neuro fuzzy inference system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778
1743 Packing Theory for Natural and Crushed Aggregate to Obtain the Best Mix of Aggregate: Research and Development

Authors: Mohammed H. Mohammed, Mats Emborg, Roland Pusch, Sven Knutsson

Abstract:

Concrete performance is strongly affected by the particle packing degree since it determines the distribution of the cementitious component and the interaction of mineral particles. By using packing theory designers will be able to select optimal aggregate materials for preparing concrete with low cement content, which is beneficial from the point of cost. Optimum particle packing implies minimizing porosity and thereby reducing the amount of cement paste needed to fill the voids between the aggregate particles, taking also the rheology of the concrete into consideration. For reaching good fluidity superplasticizers are required. The results from pilot tests at Luleå University of Technology (LTU) show various forms of the proposed theoretical models, and the empirical approach taken in the study seems to provide a safer basis for developing new, improved packing models.

Keywords: Aggregate mix, Computer program, Concrete mix design, Models of packing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3225
1742 Finite Element Analysis of Composite Frames in Wheelchair under Upward Loading

Authors: Thomas Jin-Chee Liu, Jin-Wei Liang, Wei-Long Chen, Teng-Hui Chen

Abstract:

The finite element analysis is adopted in this primary study. Using the Tsai-Wu criterion and delamination criterion, the stacking sequence [45/04/-454/904]s is the final optimal design for the wheelchair frame. On the contrary, the uni-directional laminates, i.e. [9013]s, [4513]s and [-4513]s, are bad designs due to the higher failure indexes.

Keywords: Wheelchair frame, stacking sequence, failure index, finite element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3716
1741 Concrete Recycling in Egypt for Construction Applications: A technical and Financial Feasibility Model

Authors: Omar Farahat Hassanein, A. Samer Ezeldin

Abstract:

The construction industry is a very dynamic field. Every day new technologies and methods are developed to fasten the process and increase its efficiency. Hence, if a project uses fewer resources it will be more efficient.

This paper examines the recycling of concrete construction and demolition (C&D) waste to reuse it as aggregates in on-site applications for construction projects in Egypt and possibly in the Middle East. The study focuses on a stationary plant setting. The machinery set-up used in the plant is analyzed technically and financially.

The findings are gathered and grouped to obtain a comprehensive cost-benefit financial model to demonstrate the feasibility of establishing and operating a concrete recycling plant. Furthermore, a detailed business plan including the time and hierarchy is proposed. 

Keywords: Construction wastes, recycling, sustainability, financial model, concrete recycling, concrete life cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3265
1740 Selected Technological Factors Influencing the Modulus of Elasticity of Concrete

Authors: Klara Krizova, Rudolf Hela

Abstract:

The topic of the article focuses on the evaluation of selected technological factors and their influence on resulting elasticity modulus of concrete. A series of various factors enter into the manufacturing process which, more or less, influences the elasticity modulus. This paper presents the results of concrete in which the influence of water coefficient and the size of maximum fraction of the aggregate on the static elasticity modulus were monitored. Part of selected results of the long-term programme was discussed in which a wide scope of various variants of proposals for the composition of concretes was evaluated.

Keywords: Mix design, water-cement ratio, aggregate, modulus of elasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2901
1739 Estimation Model for Concrete Slump Recovery by Using Superplasticizer

Authors: Chaiyakrit Raoupatham, Ram Hari Dhakal, Chalermchai Wanichlamlert

Abstract:

This paper aimed to introduce the solution of concrete slump recovery using chemical admixture type-F (superplasticizer, naphthalene base) to the practice in order to solve unusable concrete problem due to concrete loss its slump, especially for those tropical countries that have faster slump loss rate. In the other hand, randomly adding superplasticizer into concrete can cause concrete to segregate. Therefore, this paper also develops the estimation model used to calculate amount of second dose of superplasticizer need for concrete slump recovery. Fresh properties of ordinary Portland cement concrete with volumetric ratio of paste to void between aggregate (paste content) of 1.1-1.3 with water-cement ratio zone of 0.30 to 0.67 and initial superplasticizer (naphthalene base) of 0.25%-1.6% were tested for initial slump and slump loss for every 30 minutes for one and half hour by slump cone test. Those concretes with slump loss range from 10% to 90% were re-dosed and successfully recovered back to its initial slump. Slump after re-dosed was tested by slump cone test. From the result, it has been concluded that, slump loss was slower for those mix with high initial dose of superplasticizer due to addition of superplasticizer will disturb cement hydration. The required second dose of superplasticizer was affected by two major parameters, which were water-cement ratio and paste content, where lower water-cement ratio and paste content cause an increase in require second dose of superplasticizer. The amount of second dose of superplasticizer is higher as the solid content within the system is increase, solid can be either from cement particles or aggregate. The data was analyzed to form an equation use to estimate the amount of second dosage requirement of superplasticizer to recovery slump to its original.

Keywords: Estimation model, second superplasticizer dosage, slump loss, slump recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865
1738 Marble Powder’s Effect on Permeability and Mechanical Properties of Concrete

Authors: Shams Ul Khaliq, Khan Shahzada, Bashir Alam, Fawad Bilal, Mushtaq Zeb, Faizan Akbar

Abstract:

Marble industry contributes its fair share in environmental deterioration, producing voluminous amounts of mud and other excess residues obtained from marble and granite processing, polluting soil, water and air. Reusing these products in other products will not just prevent our environment from polluting but also help with economy. In this research, an attempt has been made to study the expediency of waste Marble Powder (MP) in concrete production. Various laboratory tests were performed to investigate permeability, physical and mechanical properties, such as slump, compressive strength, split tensile test, etc. Concrete test samples were fabricated with varying MP content (replacing 5-30% cement), furnished from two different sources. 5% replacement of marble dust caused 6% and 12% decrease in compressive and tensile strength respectively. These parameters gradually decreased with increasing MP content up to 30%. Most optimum results were obtained with 10% replacement. Improvement in consistency and permeability were noticed. The permeability was improved with increasing MP proportion up to 10% without substantial decrease in compressive strength. Obtained results revealed that MP as an alternative to cement in concrete production is a viable option considering its economic and environment friendly implications.

Keywords: Waste marble dust, concrete strength, environment, concrete, permeability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2457
1737 Incessant Collapse of Buildings in Nigeria: The Possible Role of the Use of Inappropriate Cement Grade/Strength Class

Authors: Kazeem K. Adewole, Joy-Felicia O. Oladejo, Wasiu O. Ajagbe

Abstract:

The use of low quality concrete has been identified as one of the main causes of the incessant collapse of buildings in Nigeria. Emphasis has been on the use of poor quality aggregates, poor workmanship and the use of lean concrete mix with low cement quantity as the reasons for the low quality of concrete used for building construction in Nigeria. Surveys conducted revealed that in the construction of most privately owned buildings where concrete trial mixes and concrete compressive strength quality assurance tests are not conducted, concretes used for building constructions are produced using the 1:2:4 mix ratio irrespective of the cement grade/strength class. In this paper, the possible role of the use of inappropriate cement grade/strength class as a cause of the incessant collapse of building in Nigeria is investigated. Investigation revealed that the compressive strengths of concrete cubes produced with Portland-limestone cement grade 32.5 using 1:2:4 and 1:1.5:3 mix ratios are less than the 25MPa and 30MPa cube strengths generally recommended for building superstructures and foundations respectively. Conversely, the compressive strengths of concrete cubes produced with Portland-limestone cement grade 42.5 using 1:2:4 and 1:1.5:3 mix ratios exceed the 25MPa and 30MPa generally recommended for building superstructures and foundations respectively. Thus, it can be concluded that the use of inappropriate cement grade (Portland-limestone cement grade 32.5), particularly for the construction of building foundations is a potential cause of the incessant collapse of buildings in Nigeria. It is recommended that the Standards Organisation of Nigeria should embark on creating awareness for Nigerians, particularly, the home owners and the roadside craftsmen that Portland-limestone cement grade 32.5 should not be used for the construction of building load-carrying members, particularly, building foundations in order to reduce the incessant incidence of collapsed building.

Keywords: Cement grades, Concrete strength class, Collapsed building, Concrete mix ratio, Portland-limestone cement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3646
1736 Three Dimensional Dynamic Analysis of Water Storage Tanks Considering FSI Using FEM

Authors: S. Mahdi S. Kolbadi, Ramezan Ali Alvand, Afrasiab Mirzaei

Abstract:

In this study, to investigate and analyze the seismic behavior of concrete in open rectangular water storage tanks in two-dimensional and three-dimensional spaces, the Finite Element Method has been used. Through this method, dynamic responses can be investigated together in fluid storages system. Soil behavior has been simulated using tanks boundary conditions in linear form. In this research, in addition to flexibility of wall, the effects of fluid-structure interaction on seismic response of tanks have been investigated to account for the effects of flexible foundation in linear boundary conditions form, and a dynamic response of rectangular tanks in two-dimensional and three-dimensional spaces using finite element method has been provided. The boundary conditions of both rigid and flexible walls in two-dimensional finite element method have been considered to investigate the effect of wall flexibility on seismic response of fluid and storage system. Furthermore, three-dimensional model of fluid-structure interaction issue together with wall flexibility has been analyzed under the three components of earthquake. The obtained results show that two-dimensional model is also accurately near to the results of three-dimension as well as flexibility of foundation leads to absorb received energy and relative reduction of responses.

Keywords: Dynamic behavior, water storage tank, fluid-structure interaction, flexible wall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 912