Search results for: practical problem.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4252

Search results for: practical problem.

4192 On Optimum Stratification

Authors: M. G. M. Khan, V. D. Prasad, D. K. Rao

Abstract:

In this manuscript, we discuss the problem of determining the optimum stratification of a study (or main) variable based on the auxiliary variable that follows a uniform distribution. If the stratification of survey variable is made using the auxiliary variable it may lead to substantial gains in precision of the estimates. This problem is formulated as a Nonlinear Programming Problem (NLPP), which turn out to multistage decision problem and is solved using dynamic programming technique.

Keywords: Auxiliary variable, Dynamic programming technique, Nonlinear programming problem, Optimum stratification, Uniform distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
4191 Enhanced Traveling Salesman Problem Solving by Genetic Algorithm Technique (TSPGA)

Authors: Buthainah Fahran Al-Dulaimi, Hamza A. Ali

Abstract:

The well known NP-complete problem of the Traveling Salesman Problem (TSP) is coded in genetic form. A software system is proposed to determine the optimum route for a Traveling Salesman Problem using Genetic Algorithm technique. The system starts from a matrix of the calculated Euclidean distances between the cities to be visited by the traveling salesman and a randomly chosen city order as the initial population. Then new generations are then created repeatedly until the proper path is reached upon reaching a stopping criterion. This search is guided by a solution evaluation function.

Keywords: Genetic algorithms, traveling salesman problem solving, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2499
4190 Two-Stage Approach for Solving the Multi-Objective Optimization Problem on Combinatorial Configurations

Authors: Liudmyla Koliechkina, Olena Dvirna

Abstract:

The statement of the multi-objective optimization problem on combinatorial configurations is formulated, and the approach to its solution is proposed. The problem is of interest as a combinatorial optimization one with many criteria, which is a model of many applied tasks. The approach to solving the multi-objective optimization problem on combinatorial configurations consists of two stages; the first is the reduction of the multi-objective problem to the single criterion based on existing multi-objective optimization methods, the second stage solves the directly replaced single criterion combinatorial optimization problem by the horizontal combinatorial method. This approach provides the optimal solution to the multi-objective optimization problem on combinatorial configurations, taking into account additional restrictions for a finite number of steps.

Keywords: Discrete set, linear combinatorial optimization, multi-objective optimization, multipermutation, Pareto solutions, partial permutation set, permutation, structural graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 609
4189 P-ACO Approach to Assignment Problem in FMSs

Authors: I. Mahdavi, A. Jazayeri, M. Jahromi, R. Jafari, H. Iranmanesh

Abstract:

One of the most important problems in production planning of flexible manufacturing system (FMS) is machine tool selection and operation allocation problem that directly influences the production costs and times .In this paper minimizing machining cost, set-up cost and material handling cost as a multi-objective problem in flexible manufacturing systems environment are considered. We present a 0-1 integer linear programming model for the multiobjective machine tool selection and operation allocation problem and due to the large scale nature of the problem, solving the problem to obtain optimal solution in a reasonable time is infeasible, Paretoant colony optimization (P-ACO) approach for solving the multiobjective problem in reasonable time is developed. Experimental results indicate effectiveness of the proposed algorithm for solving the problem.

Keywords: Flexible manufacturing system, Production planning, Machine tool selection, Operation allocation, Multiobjective optimization, Metaheuristic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863
4188 An Integrated Operational Research and System Dynamics Approach for Planning Decisions in Container Terminals

Authors: A. K. Abdel-Fattah, A. B. El-Tawil, N. A. Harraz

Abstract:

This paper focuses on the operational and strategic planning decisions related to the quayside of container terminals. We introduce an integrated operational research (OR) and system dynamics (SD) approach to solve the Berth Allocation Problem (BAP) and the Quay Crane Assignment Problem (QCAP). A BAP-QCAP optimization modeling approach which considers practical aspects not studied before in the integration of BAP and QCAP is discussed. A conceptual SD model is developed to determine the long-term effect of optimization on the system behavior factors like resource utilization, attractiveness to port, number of incoming vessels to port and port profits. The framework can be used for improving the operational efficiency of container terminals and providing a strategic view after applying optimization.

Keywords: Operational research, system dynamics, container terminal, quayside operational problems, strategic planning decisions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3264
4187 A Comparison of Exact and Heuristic Approaches to Capital Budgeting

Authors: Jindřiška Šedová, Miloš Šeda

Abstract:

This paper summarizes and compares approaches to solving the knapsack problem and its known application in capital budgeting. The first approach uses deterministic methods and can be applied to small-size tasks with a single constraint. We can also apply commercial software systems such as the GAMS modelling system. However, because of NP-completeness of the problem, more complex problem instances must be solved by means of heuristic techniques to achieve an approximation of the exact solution in a reasonable amount of time. We show the problem representation and parameter settings for a genetic algorithm framework.

Keywords: Capital budgeting, knapsack problem, GAMS, heuristic method, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696
4186 Transfer Knowledge from Multiple Source Problems to a Target Problem in Genetic Algorithm

Authors: Tami Alghamdi, Terence Soule

Abstract:

To study how to transfer knowledge from multiple source problems to the target problem, we modeled the Transfer Learning (TL) process using Genetic Algorithms as the model solver. TL is the process that aims to transfer learned data from one problem to another problem. The TL process aims to help Machine Learning (ML) algorithms find a solution to the problems. The Genetic Algorithms (GA) give researchers access to information that we have about how the old problem is solved. In this paper, we have five different source problems, and we transfer the knowledge to the target problem. We studied different scenarios of the target problem. The results showed that combined knowledge from multiple source problems improves the GA performance. Also, the process of combining knowledge from several problems results in promoting diversity of the transferred population.

Keywords: Transfer Learning, Multiple Sources, Knowledge Transfer, Domain Adaptation, Source, Target.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 271
4185 Optimization Using Simulation of the Vehicle Routing Problem

Authors: Nayera E. El-Gharably, Khaled S. El-Kilany, Aziz E. El-Sayed

Abstract:

A key element of many distribution systems is the routing and scheduling of vehicles servicing a set of customers. A wide variety of exact and approximate algorithms have been proposed for solving the vehicle routing problems (VRP). Exact algorithms can only solve relatively small problems of VRP, which is classified as NP-Hard. Several approximate algorithms have proven successful in finding a feasible solution not necessarily optimum. Although different parts of the problem are stochastic in nature; yet, limited work relevant to the application of discrete event system simulation has addressed the problem. Presented here is optimization using simulation of VRP; where, a simplified problem has been developed in the ExtendSimTM simulation environment; where, ExtendSimTM evolutionary optimizer is used to minimize the total transportation cost of the problem. Results obtained from the model are very satisfactory. Further complexities of the problem are proposed for consideration in the future.

Keywords: Discrete event system simulation, optimization using simulation, vehicle routing problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5792
4184 Tabu Search to Draw Evacuation Plans in Emergency Situations

Authors: S. Nasri, H. Bouziri

Abstract:

Disasters are quite experienced in our days. They are caused by floods, landslides, and building fires that is the main objective of this study. To cope with these unexpected events, precautions must be taken to protect human lives. The emphasis on disposal work focuses on the resolution of the evacuation problem in case of no-notice disaster. The problem of evacuation is listed as a dynamic network flow problem. Particularly, we model the evacuation problem as an earliest arrival flow problem with load dependent transit time. This problem is classified as NP-Hard. Our challenge here is to propose a metaheuristic solution for solving the evacuation problem. We define our objective as the maximization of evacuees during earliest periods of a time horizon T. The objective provides the evacuation of persons as soon as possible. We performed an experimental study on emergency evacuation from the tunisian children’s hospital. This work prompts us to look for evacuation plans corresponding to several situations where the network dynamically changes.

Keywords: Dynamic network flow, Load dependent transit time, Evacuation strategy, Earliest arrival flow problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760
4183 Compiler-Based Architecture for Context Aware Frameworks

Authors: Hossein Nejati, Seyed H. Mirisaee, Gholam H. Dastghaibifard

Abstract:

Computers are being integrated in the various aspects of human every day life in different shapes and abilities. This fact has intensified a requirement for the software development technologies which is ability to be: 1) portable, 2) adaptable, and 3) simple to develop. This problem is also known as the Pervasive Computing Problem (PCP) which can be implemented in different ways, each has its own pros and cons and Context Oriented Programming (COP) is one of the methods to address the PCP. In this paper a design for a COP framework, a context aware framework, is presented which has eliminated weak points of a previous design based on interpreter languages, while introducing the compiler languages power in implementing these frameworks. The key point of this improvement is combining COP and Dependency Injection (DI) techniques. Both old and new frameworks are analyzed to show advantages and disadvantages. Finally a simulation of both designs is proposed to indicating that the practical results agree with the theoretical analysis while the new design runs almost 8 times faster.

Keywords: Dependency Injection, Compiler-based architecture, Context-Oriented Programming, COP, Pervasive ComputingProblem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1889
4182 In Search of Robustness and Efficiency via l1− and l2− Regularized Optimization for Physiological Motion Compensation

Authors: Angelica I. Aviles, Pilar Sobrevilla, Alicia Casals

Abstract:

Compensating physiological motion in the context of minimally invasive cardiac surgery has become an attractive issue since it outperforms traditional cardiac procedures offering remarkable benefits. Owing to space restrictions, computer vision techniques have proven to be the most practical and suitable solution. However, the lack of robustness and efficiency of existing methods make physiological motion compensation an open and challenging problem. This work focusses on increasing robustness and efficiency via exploration of the classes of 1−and 2−regularized optimization, emphasizing the use of explicit regularization. Both approaches are based on natural features of the heart using intensity information. Results pointed out the 1−regularized optimization class as the best since it offered the shortest computational cost, the smallest average error and it proved to work even under complex deformations.

Keywords: Motion Compensation, Optimization, Regularization, Beating Heart Surgery, Ill-posed problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1983
4181 Avoiding Pin Ball Routing Problem in Network Mobility Hand-Off Management

Authors: M. Dinakaran, P. Balasubramanie

Abstract:

With the demand of mobility by users, wireless technologies have become the hotspot developing arena. Internet Engineering Task Force (IETF) working group has developed Mobile IP to support node mobility. The concept of node mobility indicates that in spite of the movement of the node, it is still connected to the internet and all the data transactions are preserved. It provides location-independent access to Internet. After the incorporation of host mobility, network mobility has undergone intense research. There are several intricacies faced in the real world implementation of network mobility significantly the problem of nested networks and their consequences. This article is concerned regarding a problem of nested network called pinball route problem and proposes a solution to eliminate the above problem. The proposed mechanism is implemented using NS2 simulation tool and it is found that the proposed mechanism efficiently reduces the overload caused by the pinball route problem.

Keywords: Mobile IP, Pinball routing problem, NEMO

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806
4180 A Practical Distributed String Matching Algorithm Architecture and Implementation

Authors: Bi Kun, Gu Nai-jie, Tu Kun, Liu Xiao-hu, Liu Gang

Abstract:

Traditional parallel single string matching algorithms are always based on PRAM computation model. Those algorithms concentrate on the cost optimal design and the theoretical speed. Based on the distributed string matching algorithm proposed by CHEN, a practical distributed string matching algorithm architecture is proposed in this paper. And also an improved single string matching algorithm based on a variant Boyer-Moore algorithm is presented. We implement our algorithm on the above architecture and the experiments prove that it is really practical and efficient on distributed memory machine. Its computation complexity is O(n/p + m), where n is the length of the text, and m is the length of the pattern, and p is the number of the processors.

Keywords: Boyer-Moore algorithm, distributed algorithm, parallel string matching, string matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147
4179 Optimal Capacitor Placement in Distribution Feeders

Authors: N. Rugthaicharoencheep, S. Auchariyamet

Abstract:

Optimal capacitor allocation in distribution systems has been studied for a long times. It is an optimization problem which has an objective to define the optimal sizes and locations of capacitors to be installed. In this works, an overview of capacitor placement problem in distribution systems is briefly introduced. The objective functions and constraints of the problem are listed and the methodologies for solving the problem are summarized.

Keywords: Capacitor Placement, Distribution Systems, Optimization Techniques

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2379
4178 A New Multi-Target, Multi-Agent Search-and-Rescue Path Planning Approach

Authors: Jean Berger, Nassirou Lo, Martin Noel

Abstract:

Perfectly suited for natural or man-made emergency and disaster management situations such as flood, earthquakes, tornadoes, or tsunami, multi-target search path planning for a team of rescue agents is known to be computationally hard, and most techniques developed so far come short to successfully estimate optimality gap. A novel mixed-integer linear programming (MIP) formulation is proposed to optimally solve the multi-target multi-agent discrete search and rescue (SAR) path planning problem. Aimed at maximizing cumulative probability of successful target detection, it captures anticipated feedback information associated with possible observation outcomes resulting from projected path execution, while modeling agent discrete actions over all possible moving directions. Problem modeling further takes advantage of network representation to encompass decision variables, expedite compact constraint specification, and lead to substantial problem-solving speed-up. The proposed MIP approach uses CPLEX optimization machinery, efficiently computing near-optimal solutions for practical size problems, while giving a robust upper bound obtained from Lagrangean integrality constraint relaxation. Should eventually a target be positively detected during plan execution, a new problem instance would simply be reformulated from the current state, and then solved over the next decision cycle. A computational experiment shows the feasibility and the value of the proposed approach.

Keywords: Search path planning, search and rescue, multi-agent, mixed-integer linear programming, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2433
4177 Parallel Computation of Data Summation for Multiple Problem Spaces on Partitioned Optical Passive Stars Network

Authors: Khin Thida Latt, Mineo Kaneko, Yoichi Shinoda

Abstract:

In Partitioned Optical Passive Stars POPS network,nodes and couplers become free after slot to slot in some computation.It is necessary to efficiently utilize free couplers and nodes to be cost effective. Improving parallelism, we present the fast data summation algorithm for multiple problem spaces on P OP S(g, g) with smaller number of nodes for the case of d =n = g. For the case of d >n > g, we simulate the calculation of large number of data items dedicated to larger system with many nodes on smaller system with smaller number of nodes. The algorithm is faster than the best know algorithm and using smaller number of nodes and groups make the system low cost and practical.

Keywords: Partitioned optical passive stars network, parallelcomputing, optical computing, data sum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1134
4176 Reconstruction of Binary Matrices Satisfying Neighborhood Constraints by Simulated Annealing

Authors: Divyesh Patel, Tanuja Srivastava

Abstract:

This paper considers the NP-hard problem of reconstructing binary matrices satisfying exactly-1-4-adjacency constraint from its row and column projections. This problem is formulated into a maximization problem. The objective function gives a measure of adjacency constraint for the binary matrices. The maximization problem is solved by the simulated annealing algorithm and experimental results are presented.

Keywords: Discrete Tomography, exactly-1-4-adjacency, simulated annealing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2414
4175 Vibration Base Identification of Impact Force Using Genetic Algorithm

Authors: R. Hashemi, M.H.Kargarnovin

Abstract:

This paper presents the identification of the impact force acting on a simply supported beam. The force identification is an inverse problem in which the measured response of the structure is used to determine the applied force. The identification problem is formulated as an optimization problem and the genetic algorithm is utilized to solve the optimization problem. The objective function is calculated on the difference between analytical and measured responses and the decision variables are the location and magnitude of the applied force. The results from simulation show the effectiveness of the approach and its robustness vs. the measurement noise and sensor location.

Keywords: Genetic Algorithm, Inverse problem, Optimization, Vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
4174 An Effective Algorithm for Minimum Weighted Vertex Cover Problem

Authors: S. Balaji, V. Swaminathan, K. Kannan

Abstract:

The Minimum Weighted Vertex Cover (MWVC) problem is a classic graph optimization NP - complete problem. Given an undirected graph G = (V, E) and weighting function defined on the vertex set, the minimum weighted vertex cover problem is to find a vertex set S V whose total weight is minimum subject to every edge of G has at least one end point in S. In this paper an effective algorithm, called Support Ratio Algorithm (SRA), is designed to find the minimum weighted vertex cover of a graph. Computational experiments are designed and conducted to study the performance of our proposed algorithm. Extensive simulation results show that the SRA can yield better solutions than other existing algorithms found in the literature for solving the minimum vertex cover problem.

Keywords: Weighted vertex cover, vertex support, approximation algorithms, NP-complete problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3835
4173 Creative Thinking Skill Approach Through Problem-Based Learning: Pedagogy and Practice in the Engineering Classroom

Authors: Halizah Awang, Ishak Ramly

Abstract:

Problem-based learning (PBL) is one of the student centered approaches and has been considered by a number of higher educational institutions in many parts of the world as a method of delivery. This paper presents a creative thinking approach for implementing Problem-based Learning in Mechanics of Structure within a Malaysian Polytechnics environment. In the learning process, students learn how to analyze the problem given among the students and sharing classroom knowledge into practice. Further, through this course-s emphasis on problem-based learning, students acquire creative thinking skills and professional skills as they tackle complex, interdisciplinary and real-situation problems. Once the creative ideas are generated, there are useful additional techniques for tender ideas that will grow into a productive concept or solution. The combination of creative skills and technical abilities will enable the students to be ready to “hit-the-ground-running" and produce in industry when they graduate.

Keywords: Creative Thinking Skills, Problem-based Learning, Problem Solving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7211
4172 The Algorithm to Solve the Extend General Malfatti’s Problem in a Convex Circular Triangle

Authors: Ching-Shoei Chiang

Abstract:

The Malfatti’s problem solves the problem of fitting three circles into a right triangle such that these three circles are tangent to each other, and each circle is also tangent to a pair of the triangle’s sides. This problem has been extended to any triangle (called general Malfatti’s problem). Furthermore, the problem has been extended to have 1 + 2 + … + n circles inside the triangle with special tangency properties among circles and triangle sides; it is called the extended general Malfatti’s problem. In the extended general Malfatti’s problem, call it Tri(Tn), where Tn is the triangle number, there are closed-form solutions for the Tri(T₁) (inscribed circle) problem and Tri(T₂) (3 Malfatti’s circles) problem. These problems become more complex when n is greater than 2. In solving the Tri(Tn) problem, n > 2, algorithms have been proposed to solve these problems numerically. With a similar idea, this paper proposed an algorithm to find the radii of circles with the same tangency properties. Instead of the boundary of the triangle being a straight line, we use a convex circular arc as the boundary and try to find Tn circles inside this convex circular triangle with the same tangency properties among circles and boundary as in Tri(Tn) problems. We call these problems the Carc(Tn) problems. The algorithm is a mO(Tn) algorithm, where m is the number of iterations in the loop. It takes less than 1000 iterations and less than 1 second for the Carc(T16) problem, which finds 136 circles inside a convex circular triangle with specified tangency properties. This algorithm gives a solution for circle packing problem inside convex circular triangle with arbitrarily-sized circles. Many applications concerning circle packing may come from the result of the algorithm, such as logo design, architecture design, etc.

Keywords: Circle packing, computer-aided geometric design, geometric constraint solver, Malfatti’s problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50
4171 Localizing Acoustic Touch Impacts using Zip-stuffing in Complex k-space Domain

Authors: R. Bremananth, Andy W. H. Khong, A. Chitra

Abstract:

Visualizing sound and noise often help us to determine an appropriate control over the source localization. Near-field acoustic holography (NAH) is a powerful tool for the ill-posed problem. However, in practice, due to the small finite aperture size, the discrete Fourier transform, FFT based NAH couldn-t predict the activeregion- of-interest (AROI) over the edges of the plane. Theoretically few approaches were proposed for solving finite aperture problem. However most of these methods are not quite compatible for the practical implementation, especially near the edge of the source. In this paper, a zip-stuffing extrapolation approach has suggested with 2D Kaiser window. It is operated on wavenumber complex space to localize the predicted sources. We numerically form a practice environment with touch impact databases to test the localization of sound source. It is observed that zip-stuffing aperture extrapolation and 2D window with evanescent components provide more accuracy especially in the small aperture and its derivatives.

Keywords: Acoustic source localization, Near-field acoustic holography (NAH), FFT, Extrapolation, k-space wavenumber errors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
4170 Implementation of Heuristics for Solving Travelling Salesman Problem Using Nearest Neighbour and Minimum Spanning Tree Algorithms

Authors: Fatma A. Karkory, Ali A. Abudalmola

Abstract:

The travelling salesman problem (TSP) is a combinatorial optimization problem in which the goal is to find the shortest path between different cities that the salesman takes. In other words, the problem deals with finding a route covering all cities so that total distance and execution time is minimized. This paper adopts the nearest neighbor and minimum spanning tree algorithm to solve the well-known travelling salesman problem. The algorithms were implemented using java programming language. The approach is tested on three graphs that making a TSP tour instance of 5-city, 10 –city, and 229–city. The computation results validate the performance of the proposed algorithm.

Keywords: Heuristics, minimum spanning tree algorithm, Nearest Neighbor, Travelling Salesman Problem (TSP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7758
4169 Partial Derivatives and Optimization Problem on Time Scales

Authors: Francisco Miranda

Abstract:

The optimization problem using time scales is studied. Time scale is a model of time. The language of time scales seems to be an ideal tool to unify the continuous-time and the discrete-time theories. In this work we present necessary conditions for a solution of an optimization problem on time scales. To obtain that result we use properties and results of the partial diamond-alpha derivatives for continuous-multivariable functions. These results are also presented here.

Keywords: Lagrange multipliers, mathematical programming, optimization problem, time scales.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
4168 Solving Bus Terminal Location Problem Using Genetic Algorithm

Authors: S. Babaie-Kafaki, R. Ghanbari, S.H. Nasseri, E. Ardil

Abstract:

Bus networks design is an important problem in public transportation. The main step to this design, is determining the number of required terminals and their locations. This is an especial type of facility location problem, a large scale combinatorial optimization problem that requires a long time to be solved. The genetic algorithm (GA) is a search and optimization technique which works based on evolutionary principle of natural chromosomes. Specifically, the evolution of chromosomes due to the action of crossover, mutation and natural selection of chromosomes based on Darwin's survival-of-the-fittest principle, are all artificially simulated to constitute a robust search and optimization procedure. In this paper, we first state the problem as a mixed integer programming (MIP) problem. Then we design a new crossover and mutation for bus terminal location problem (BTLP). We tested the different parameters of genetic algorithm (for a sample problem) and obtained the optimal parameters for solving BTLP with numerical try and error.

Keywords: Bus networks, Genetic algorithm (GA), Locationproblem, Mixed integer programming (MIP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2263
4167 Constant Factor Approximation Algorithm for p-Median Network Design Problem with Multiple Cable Types

Authors: Chaghoub Soraya, Zhang Xiaoyan

Abstract:

This research presents the first constant approximation algorithm to the p-median network design problem with multiple cable types. This problem was addressed with a single cable type and there is a bifactor approximation algorithm for the problem. To the best of our knowledge, the algorithm proposed in this paper is the first constant approximation algorithm for the p-median network design with multiple cable types. The addressed problem is a combination of two well studied problems which are p-median problem and network design problem. The introduced algorithm is a random sampling approximation algorithm of constant factor which is conceived by using some random sampling techniques form the literature. It is based on a redistribution Lemma from the literature and a steiner tree problem as a subproblem. This algorithm is simple, and it relies on the notions of random sampling and probability. The proposed approach gives an approximation solution with one constant ratio without violating any of the constraints, in contrast to the one proposed in the literature. This paper provides a (21 + 2)-approximation algorithm for the p-median network design problem with multiple cable types using random sampling techniques.

Keywords: Approximation algorithms, buy-at-bulk, combinatorial optimization, network design, p-median.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 539
4166 Solving Facility Location Problem on Cluster Computing

Authors: Ei Phyo Wai, Nay Min Tun

Abstract:

Computation of facility location problem for every location in the country is not easy simultaneously. Solving the problem is described by using cluster computing. A technique is to design parallel algorithm by using local search with single swap method in order to solve that problem on clusters. Parallel implementation is done by the use of portable parallel programming, Message Passing Interface (MPI), on Microsoft Windows Compute Cluster. In this paper, it presents the algorithm that used local search with single swap method and implementation of the system of a facility to be opened by using MPI on cluster. If large datasets are considered, the process of calculating a reasonable cost for a facility becomes time consuming. The result shows parallel computation of facility location problem on cluster speedups and scales well as problem size increases.

Keywords: cluster, cost, demand, facility location

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
4165 Stability of Stochastic Model Predictive Control for Schrödinger Equation with Finite Approximation

Authors: Tomoaki Hashimoto

Abstract:

Recent technological advance has prompted significant interest in developing the control theory of quantum systems. Following the increasing interest in the control of quantum dynamics, this paper examines the control problem of Schrödinger equation because quantum dynamics is basically governed by Schrödinger equation. From the practical point of view, stochastic disturbances cannot be avoided in the implementation of control method for quantum systems. Thus, we consider here the robust stabilization problem of Schrödinger equation against stochastic disturbances. In this paper, we adopt model predictive control method in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. The objective of this study is to derive the stability criterion for model predictive control of Schrödinger equation under stochastic disturbances.

Keywords: Optimal control, stochastic systems, quantum systems, stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2299
4164 Recursive Similarity Hashing of Fractal Geometry

Authors: Timothee G. Leleu

Abstract:

A new technique of topological multi-scale analysis is introduced. By performing a clustering recursively to build a hierarchy, and analyzing the co-scale and intra-scale similarities, an Iterated Function System can be extracted from any data set. The study of fractals shows that this method is efficient to extract self-similarities, and can find elegant solutions the inverse problem of building fractals. The theoretical aspects and practical implementations are discussed, together with examples of analyses of simple fractals.

Keywords: hierarchical clustering, multi-scale analysis, Similarity hashing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
4163 Application of Machine Learning Methods to Online Test Error Detection in Semiconductor Test

Authors: Matthias Kirmse, Uwe Petersohn, Elief Paffrath

Abstract:

As in today's semiconductor industries test costs can make up to 50 percent of the total production costs, an efficient test error detection becomes more and more important. In this paper, we present a new machine learning approach to test error detection that should provide a faster recognition of test system faults as well as an improved test error recall. The key idea is to learn a classifier ensemble, detecting typical test error patterns in wafer test results immediately after finishing these tests. Since test error detection has not yet been discussed in the machine learning community, we define central problem-relevant terms and provide an analysis of important domain properties. Finally, we present comparative studies reflecting the failure detection performance of three individual classifiers and three ensemble methods based upon them. As base classifiers we chose a decision tree learner, a support vector machine and a Bayesian network, while the compared ensemble methods were simple and weighted majority vote as well as stacking. For the evaluation, we used cross validation and a specially designed practical simulation. By implementing our approach in a semiconductor test department for the observation of two products, we proofed its practical applicability.

Keywords: Ensemble methods, fault detection, machine learning, semiconductor test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221