
Parallel Computation of Data Summation
for Multiple Problem Spaces

on Partitioned Optical Passive Stars Network
Khin Thida Latt, Mineo Kaneko, and Yoichi Shinoda

Abstract— In Partitioned Optical Passive Stars POPS network,
nodes and couplers become free after slot to slot in some computation.
It is necessary to efficiently utilize free couplers and nodes to be cost
effective. Improving parallelism, we present the fast data summation
algorithm for multiple problem spaces on POPS(g, g) with smaller
number of nodes for the case of d =

√

n = g. For the case of
d >

√

n > g, we simulate the calculation of large number of data
items dedicated to larger system with many nodes on smaller system
with smaller number of nodes. The algorithm is faster than the best
know algorithm and using smaller number of nodes and groups make
the system low cost and practical.

Keywords— Partitioned optical passive stars network, parallel
computing, optical computing, data sum

I. INTRODUCTION

THE optical Technology offers simple interconnection
schemes with straightforward layouts providing with

complex logical interconnection patterns. The optical passive
star (OPS) is often suggested as a platform for implementing
the optical network. The Partitioned Optical Passive Stars
(POPS) network was proposed in [3], [4], [5], [6], [7], [8], and
[9] as a fast optical interconnection network for multiprocessor
systems. The POPS network uses multiple optical passive
star (OPS) couplers to construct a flexible interconnection
topology.

Gravenstreter and Melhem [4] have shown the embedding
of rings and tori on POPS networks when the number of
processors n and the degree d of an OPS coupler are powers of
2. Data broadcasting algorithms are also developed in [4] and
[6]. Berthome and Ferreira [1] have shown that POPS networks
can be modeled by directed stack-complete graphs with loops.
This is used to obtain optimal embedding of rings and de
Bruijn graphs into POPS networks. Berthome and Ferreira [1]
and Berthome et al. [2] have generalized the results obtained
by Gravenstreter and Melhem [4] for embedding of rings [1]
and tori [2] in POPS networks with arbitrary values of n
and d. Sahni [7] has shown that an n processor POPS(d, g)
can simulate every move of an n processor SIMD hypercube.
Sahni [7] has presented algorithms for several fundamental
operations like data sum, prefix sum, rank, adjacent sum,
consecutive sum, concentrate, distribute, and generalize. In an-
other paper, Sahni [8] has presented fast algorithms for matrix
multiplication, data permutations, and BPC permutations on

Authors are with Japan Advanced Institute of Science and Technology 1-1,
Asahidai, Nomi-shi, Ishikawa, 923-1292 Japan. (e-mail: kt-latt@jaist.ac.jp)

Fig. 1. An optical passive star coupler with four source and four destination
nodes.

the POPS network. Datta and Soundaralakshmi [10] presented
fast algorithms for data sum, prefix sum and permutation
routing on POPS(d, g) such that d >

√
n > g.

The rest of this paper is organized as follows: in section
2, we discuss some details of the POPS network topology.
Data sum algorithm is presented in section 3 and finally, we
conclude with some comments in section 4.

II. POPS TOPOLOGY

This section describes the topological approach to providing
multiple physical data channels. POPS networks use a multiple
passive star topology. POPS networks are distinguished from
other types of multiple passive star topologies in [11] and
[12] as follows. First, all couplers have equal fanout and are
symmetric in the degree of fanin and fanout. Second, the nodes
are completely connected with couplers arranged in parallel
and without hierarchical interconnections. In POPS network,
n nodes are partitioned into g groups of d processors each.
We denote such a POPS network as a POPS(d, g). n is the
number of nodes and d is the partition size. It is also the degree
of each coupler. g refers to the number of groups in the system
and it determines the number of transmitter/receiver channels
per node as well as the total number of couplers in the system.
There is OPS couler between every pair of groups and hence,
overall, g2 couplers are needed. Each processor is connected
to the inputs of g couplers and thus every processor must
have g optical transmitters for transmitting data to any coupler.
Also, each processor is connected to the outputs of g couplers
and thus every processor must have g optical receivers for
receiving data from each of the g coupler. Each OPS receives
optical signal from any one of its source nodes through d
input channels and broadcasts the received signal to all of its

World Academy of Science, Engineering and Technology
International Journal of Aerospace and Mechanical Engineering

 Vol:1, No:3, 2007 

603International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 A
er

os
pa

ce
 a

nd
 M

ec
ha

ni
ca

l E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
3,

 2
00

7 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/2
20

1.
pd

f



Fig. 2. A 10-processor computer connected via POPS(5,2) network

destination nodes through d output channels. Hence, each OPS
in a POPS(d, g) network has degree d.

In a single slot, a processor can send the same message to
all of the OPSs for which it is a source node. If more than
one coupler attempts to send the message to same coupler at
the same time, sending conflict will occur at the coupler. In a
single slot, a processor can receive a message from only one of
the OPSs for which it is a destination node. Melhem et al. [6]
observe that faster all-to-all broadcasts can be implemented
by allowing a processor to receive different messages from
different OPSs in the same slot. Figure 1 shows that each
OPS coupler can receive an optical signal from any one of
its source nodes and broadcasts the received signal to all of
its destination nodes. The time needed to perform this receive
and broadcast is referred to as a slot. The complexity of an
algorithm designed for the POPS network is measured in terms
of the number of slots taken.

The choice of partition size affects both the interconnection
cost as well as bandwidth. Single OPS can be used to
interconnect n processors and such a network is denoted by
POPS(n, 1). In such kind of network, only one processor
can send a message through the single coupler per slot since
at most one input link to a single coupler should be active
at a given slot to prevent collisions. As the coupler degree d
approaches n and the system consists of a single passive star,
this kind of network has low system cost, low complexity,
restricted throughput, low bandwidth and increased power
dissipation. Whereas, coupler degree d approaches 1, the
system consists of n2 couplers and such network is denoted
by POPS(1, n). In such kind of network, the system is fully
connected and network bandwidth also becomes n2. This kind
of POPS network is highly expensive with optimal throughput
and high bandwidth.

A 10-processor computer connected via a POPS(5, 2)

network is shown in figure 2. Typically, a source node and
the corresponding destination node are the same processing
element. There are source nodes in the left of couplers and
receiving nodes in the right indicating that processors in each
group are both receivers and senders. A pair of groups is
connected by an OPS coupler. A major advantage of the POPS
network is that its diameter is one. To show how to route a
message from one node to another node, we use the following
notations. There are n processors and they are numbered from
0 to n− 1. P (k) such that 0 ≤ k < n is used to describe the
processor. There are g groups and n/g = d processors are in
each group. The groups are numbered from 0 to g−1 and Gi is
used to indicate ith group of processors for 0 ≤ i < g. P (i, j)
such that 0 ≤ i < g and 0 ≤ j < d is used to denote jth

node in ith group. We can calculate the actual node number
P (k)by means of id+j. OPS couplers are numbered as a pair
of group numbers denoted by C(i, j). The source nodes are
the processors in group j and the destination nodes are the
processors in group i such that 0 ≤ (i, j) < g. For example,
in figure 2, if a node from group 0 sends a message to any
node of group 1, the message will be sent through the coupler
C(1, 0).

The route of any message has a unique path composed of
a transmitter, a coupler, and a receiver, on the other hand,
this path is defined by a triple parameters (source, coupler
and receiver). Thus, a path exists between every pair of
nodes and each path traverses exactly one coupler. If more
than one message is sent using the same coupler during
the same slot, the conflict occurs. To send a message from
processor P (i, j) to processor P (x, y), processor P (i, j) uses
the coupler C(x, i), x is the group number of destination node
and i is the group number of source node. At first, P (i, j)
sends the message to C(x, i) and then C(x, i) broadcasts
that message to all processors in Gx and P (x, y) receives it.
Similarly, a one-to-all broadcast can also be implemented in
one slot [4] and [6]. Also, [4] and [6] give an algorithm for
all-to-all personalized communication.

III. DATA SUM

A. Parallel computation of data summation on one problem
space

In this section, we present data summation algorithm for
single problem space. We need to ensure that the following
conditions are true for each of the routings:

(1) There is no simultaneous attempt to send the messages
from more than one processor to same coupler in the same slot.

(2) Each processor has g receivers for receiving packets
from g couplers which it is connected to. A processor needs
to know exactly which receiver it should listen to since a
processor can listen to only one of its receivers in a single slot.

(3) For simplicity, we assume that g is even and if it is
odd, the algorithm may use g + 1 to become even ignoring

World Academy of Science, Engineering and Technology
International Journal of Aerospace and Mechanical Engineering

 Vol:1, No:3, 2007 

604International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 A
er

os
pa

ce
 a

nd
 M

ec
ha

ni
ca

l E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
3,

 2
00

7 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/2
20

1.
pd

f



operations of processors that do not exist.

There can be three cases for POPS network: (1) d =
√

n =
g, (2) d <

√
n < g and (3) d >

√
n > g. At first, we consider

the algorithm for the case (1) and it is designed to efficiently
utilize the resources. We do not consider the case (2) because it
is highly expensive and not realistic for most practical systems.
At last, we simulate case (3).

At first, we consider the case d =
√

n = g. Using
matrix transpose function, we show how to reduce the original
problem size of POPS(g, g) until we get POPS(1, 1) with
one node left. Initially, n data items are distributed among
n processors, one item per processor on POPS(g, g). We
reduce the original problem size n to n/2 and again to n/4
and repeating this process until POPS(1, 1) with one node
left. Finally, processor P (0, 0) holds the final data summation.
Our algorithm is based on the following strategy. The proces-
sors are placed in a two-dimensional array on POPS(g, g)
network. Each row represents the processors in the same group
and first row is in group 0 and the last row is in group g− 1.
The processor in the top left corner is P (0, 0). As shown
in figure 3.a, horizontal line and vertical line are logically
drawn to become four P (g/2, g/2) networks. Let us call that
logically divided POPS(g, g) as POPS(d, d) network. We
apply matrix transpose function to map the nodes of each side
to those of another side in order to send the data values. Once
a receiver of destinatation node receives a data item, it adds
the received data with its accumulated sum.

In order to do first stage routing as shown in figure 3.b,
the data values on the nodes of lower-left side are routed
to those of upper-left side to make partial summation. To
indentify the destination nodes to be mapped, swap the row
and column indices of source nodes. Then (i, j) becomes
(j, i). Since the group numbers of destination nodes are less
than those of the source nodes, i indices are reduced by
d/2 since we horizontally divided POPS(g, g) network by
2. Formally P (i, j) maps to P (j, i − d/2) for all i and j
such that g/2 ≤ i < g and 0 ≤ j < g/2. The coupler
indices through which the routing should be carried are
c(destination group number, source group number). This
routing is accomplished by the following routing.

p(i, j)→ c(j, i) → p(j, i− d/2) (1)

Similarly, at the same time, the data values on the nodes
of upper-right side are routed to those of lower-right side and
it is opposite to line 1. After swapping the row and column
indices of source nodes, as the group numbers of destination
nodes are greater than those of the source nodes, i indices are
added by d/2. P (i, j) maps to P (j, i + d/2) for all i and j
such that 0 ≤ i < g/2 and g/2 ≤ j < g. This routing is
carried out as belows.

p(i, j)→ c(j, i) → p(j, i + d/2) (2)

In a single slot, above line 1 and line 2 routings are done
in parallel without any coupler conflict. We will verify in
order to ensure that no two processors in both routing use

the same coupler. Line 1 routing is done for all i such that
g/2 ≤ i < g whereas line 2 routing is done for all i such
that 0 ≤ i < g/2. Similarly, line 1 routing is done for all
j such that 0 ≤ j < g/2 while line 2 routing is done for j
such that g/2 ≤ j < g. It is clear that i and j indices of line
1 are different from those of line 2. On the other hand, the
destination group number of line 1 routing is less than that of
its source group while the destination group number of line 2
routing is greater than that of its source group. Hence, the cou-
plers c(destination group number, source group number)
used by both routing are different in first index. Again, the
source nodes of both routing are from different groups and
there is no chance to get the same number for second index
of c(destination group number, source group number).
Therefore, line 1 and line 2 routings can be carried out in
parallel without any coupler conflict and it takes one slot.

After the first stage routing, n nodes becomes n/2 reducing
to half of its original size. As shown in figure 3.c, there are
n/2 nodes left and those nodes hold partial summation results.
In order to carry out the second stage routing in figure 3.c,
the nodes on the lower side are mapped to those on the upper
side. This routing is a little similar with line 1 but not identical.
Swap the row and column indices of source nodes. Since the
group numbers of destination nodes are less than those of
the source nodes as in line 1, i indices are reduced by d/2.
Moreover, as they are in different sides i.e. left and right,
their column indices are also different. This routing is carried
as below and it also takes one slot.

p(i, j)→ c(j − d/2, i)→ p(j − d/2, i− d/2) (3)

After the second stage routing, n/2 nodes becomes n/4 and
the resulting POPS network becomes as shown in figure 3.d.
The original POPS(g, g) network becomes POPS(g/2, g/2)
network and thus, we need to update d = d/2 before
starting third stage routing. In this case, the nodes, which
hold the partial results, are in one square and this condition
is similar to the original stage. Therefore, logically divide
new POPS(d, d) network to get four squares as stated in
figure 3.a. Following routings are done in parallel without any
coupler conflict in a single slot and its correctness proof is
similar with line 1 and line 2 routings.

p(i, j)→ c(j − d/2, i)→ p(j − d/2, i) (4)

p(i, j)→ c(j + d/2, i)→ p(j + d/2, i) (5)

We can also make above routings in different way. As the
source and destination nodes are in same column, we can skip
swapping of two indices and alternative routings can be done
as follows:

p(i, j)→ c(i− d/2, i)→ p(i− d/2, j) (6)

p(i, j)→ c(i + d/2, i)→ p(i + d/2, j) (7)

After third stage routing, there are only n/8 nodes left as
shown in figure 3.e. This fourth stage is similar with figure 3.c

World Academy of Science, Engineering and Technology
International Journal of Aerospace and Mechanical Engineering

 Vol:1, No:3, 2007 

605International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 A
er

os
pa

ce
 a

nd
 M

ec
ha

ni
ca

l E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
3,

 2
00

7 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/2
20

1.
pd

f



Fig. 3. data summation of n data items on n processors of POPS(g,g)

and we can apply line 3 routing as follows and it also takes
one slot.

p(i, j)→ c(j − d/2, i)→ p(j − d/2, i− d/2) (8)

After fourth stage routing, n/8 nodes becomes n/16 and
there is only one node left as shown in figure 3.f. Now the
final data summation is held in the processor P (0, 0).

After every two slots, as the problem is back to original
state, we can repeat the routing until one node left. Therefore,
the algorithm is much simpler. n becomes n/2, n/22 and n/23

etc. after each slot. Generally, there are n/2k left after kth

slots. On the other hand, the algorithm takes one slot to reduce
n nodes to half of its size and total time slots taken until
one node left for n data items is log n. The data summation
algorithms designed by Sahni [7] have different complexities
for different group size. Among them, the complexity for d =√

n = g is log n. The idea behind that algorithm is to fold
the nodes residing on two-dimensional array along the anti
diagonal line. But there is coupler conflict in first folding stage.
Although the time complexity is the same, our algorithm is
much simpler and free from coupler conflict.

B. Parallel computation of data summation on multiple prob-
lem spaces

We showed how data summation is done for n data
items distributed on n nodes of POPS(g, g) network. The
algorithm uses at most half of couplers in each stage of
parallel routing and at least, other half of the couplers are
free. Moreover, in figure 3, we can easily see that some
of nodes and couplers become free after each stage. To
efficiently utilize the resources, we design the algorithm,
which can calculate data items for multiple problem spaces in
parallel. Improving parallelism makes the computation faster
and it is also necessary to ensure that

(1) Each processor in a POPS network consists of the
processing element with a distributed memory unit.

Fig. 4. parallel data summation of 2n data items on n processors of POPS(g,g)

In some POPS network, in order to transmit two different
messages simultaneously to two different couplers, the trans-
mitters of the node should be tunable to different wavelengths
simultaneously and independently. Similarly, if the receivers
of the node are active at the same time, it can receive the
messages in parallel. However, in order to ensure that the
conditions of the new proposed algorithm are same with those
of the algorithm for the system mentioned in section 3.A, we
need to make sure the following conditions are true:

(2) There are g transmitters in each node and
these transmitters cannot tune to different wavelengths
simultaneously. It defines that in a single slot, a processor
can send the same message to all of the OPSs for which it is
a source node.

(3) There are g receivers in each node and only one of the
receiver can be active at a time. It means that, in a single
slot, a processor can receive a message from only one of the
OPSs for which it is a destination node.

In order to do multiple parallel computations, we need to
develop the algorithm not only free from coupler conflict, but
also satisfying the underlying hardware mentioned above.

The transmitter and receiver of a certain node are indepen-
dent i.e. the processor can send the data using its transmitter
while receiving the data from its receiver. The algorithm for
multiple problem space is as simple as that of single problem
space. The idea behind is to take advantage of the independent
nature of transmitter and receiver. As shown in figure 4, there
are two problems of n data items each and hence altogether
2n data items. These 2n data items are distributed over n
nodes with one data item each from two problems per node.
A node holds one data item from first problem space as shown
in figure 4.a and that node holds the another data item from
second problem space as shown in figure 4.b. While the node
acts as the receiver for the first problem, that node acts as

World Academy of Science, Engineering and Technology
International Journal of Aerospace and Mechanical Engineering

 Vol:1, No:3, 2007 

606International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 A
er

os
pa

ce
 a

nd
 M

ec
ha

ni
ca

l E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
3,

 2
00

7 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/2
20

1.
pd

f



sender for the second problem as shown in the first stages of
figure 4.a and 4.b.

Figure 4.a is the same as figure 3 and thus, the algorithm for
problem space 1 is also same as that described in section 3.A.
The algorithm of problem space 2 is not very much different
from the first one. We need to compute problem space 1 and
2 simultaneously carrying out the data routing in parallel. For
the first stage routing of figure 4.a, the following routings are
done in parallel as described in section 3.A.

p(i, j)→ c(j, i) → p(j, i− d/2) (9)

p(i, j)→ c(j, i) → p(j, i + d/2) (10)

At the same time, for the first stage of figure 4.b, data values
on the nodes of upper left side are routed to those of upper
right side. Similarly, those of lower right side are routed to
those of lower left side. These routings are carried out as
follows.

p(i, j)→ c(j, i) → p(j, i + d/2) (11)

p(i, j)→ c(j, i) → p(j, i− d/2) (12)

Above four routings are done in parallel and it only takes
single slot. In section 3.A, it is already shown that line 9 and
10 routing are free from coupler conflict and can be done in
parallel in a single slot. For the case of line 11 and 12, it is
also clear that routings are opposite to each other. Therefore,
we will prove that there is no sending and receiving conflict
between two problem spaces. In the first stages of figure 4.a
and 4.b, it is shown that the receiving nodes for problem
space 1 become sending nodes for problem space 2 and vice
versa. Since the transmitter and receiver of a certain node
are independent from each other, it is clear that there is no
transmitting and listening conflict. Then, we will show that
there is no coupler conflict between two problem spaces as
below.

For problem space 1, in the first stage of figure 4.a, the
nodes on lower left side send data to those on upper left side
and generally, the routing is denoted by

p(i1, j1)→ c(i2, i1) → p(i2, j2) (13)

The receiving nodes on upper left side of problem space 1
becomes sending nodes in problem space 2 as shown in first
stage of figure 4.b. In addition, these nodes send data to those
on upper right side and generally, the routing is denoted by

p(i2, j2)→ c(i3, i2) → p(i3, j3) (14)

The coupler numbers used by both routings are different.
Therefore, it is clear that there is no coupler conflict among
the routings of two problems. The reason why the first index of
first coupler is the same as second index of the second coupler
is that the nodes on upper left side acts as senders and receivers

Fig. 5. Comparison between previous best algorithm and our proposed
algorithm

respectively in both problems. The other stages of problem
space 2 are similar with the algorithm described in section
3.A. It is necessary to update d after reducing POPS(g, g)
to POPS(g/2, g/2) and again to POPS(g/4, g/4) etc. On
the other hand, after every two slots, the problem is back to
original state and routing can be repeated using updated d.
At last, the final data sum of first problem space is held in
the first processor on first row i.e. P (0, 0) and that of second
problem space is held in the first processor on the last row i.e
P (g − 1, 0). Although there are two problems, the algorithm
takes the time slots needed for one problem because of the
parallelisms. For the case of d =

√
n = g, the algorithm

designed by Sahni [7] takes log n slots for n data items on
POPS(g, g) network. If the number of data items is the same
as number of nodes available, it takes log n. For multiple m
problems with at most n data items each, it takes at least
m log n. Whereas our algorithm takes only �m/2� logn and
it is at most two times faster than previous best algorithm.
Moreover, our algorithm is much simpler since it uses only
matrix transpose function for all routing. To avoid sending,
receiving and coupler conflict, we just change the direction
of routing from up to down and left to right etc. Figure 5
shows the comparison of time slots taken between previous
best algorithm and our algorithm.

For the case of d <
√

n < g, as g >
√

n, we need g2 > n
couplers to be interconnected with the nodes. Gravenstreter
and Melhem [4] mention that, the number of couplers will be
less than the number of processors for most practical systems.
It is not likely that a large number of couplers will be used in
a practical system. Since the number of groups is larger than
the partition size and such kind of system is highly expensive,
we do not consider the case for d <

√
n < g.

In order to achieve certain speedup to compute the large
data items, a large system with many nodes is needed, for
instance, POPS(d, g) with d >

√
n > g. If the system is

World Academy of Science, Engineering and Technology
International Journal of Aerospace and Mechanical Engineering

 Vol:1, No:3, 2007 

607International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 A
er

os
pa

ce
 a

nd
 M

ec
ha

ni
ca

l E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
3,

 2
00

7 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/2
20

1.
pd

f



POPS(32, 2), 64 nodes and 4 couplers are needed for such
kind of system. Since g <

√
n, only g2 < n couplers are

needed and therefore, the system is low cost and practical.
However, we can also achieve a similar speedup on smaller
system with smaller number nodes. For instance, the system
size we need is POPS(2, 2) with only 4 nodes and 4 couplers.
As only the smaller number of nodes is needed and the number
of couplers is the same as that of former system, the proposed
system is also low cost. We simulate the system to handle
the large number of data items dedicated for large system by
breaking up the problem sizes to the system size. If we extend
the algorithm mentioned in section 3, we do not need very new
algorithm for this simulation.

Chiarulli et al. [3] mention that computation achieves certain
speedup on a large system with many nodes. Then it can also
achieve a similar speedup on smaller system. We simulate the
POPS(g, g) with smaller nodes for the case of d >

√
n > g.

If the algorithm computes multiple m problems of at most n
data items each on n = g2 nodes, it takes �m/2� logn. If
the number of data items n is larger than the number of nodes
available in the system such that n > g2, the system takes 2g2

data items for each time. Hence, after n/2g2 times, P (0, 0)
and P (g−1, 0) hold the partial summation. Thus, extra one slot
is needed to sum up the data value on these nodes. By this way,
for the case of POPS(d, g), with d >

√
n > g, we simulate

POPS(g, g) with smaller nodes in order to compute the large
data items. The complexity for the case of POPS(d, g) with
d >

√
n > g is �n/g2� log g+1. The correctness proof for this

algorithm is similar to that for the case when d = g mentioned
in section 3.B. It is also faster than the algorithm designed
by Sahni [7]. Datta and Soundaralakshmi [10] presented fast
algorithms for data sum on POPS(d, g) such that d >

√
n >

g. Their data sum algorithm improves upon the best known
algorithm designed by Sahni [7] reducing the number of data
items rapidly until there are only g data items in each group
and then the rest of calculation is done using Sahni’s algorithm
[7]. Their algorithm is faster than that designed by Sahni
[7] and the time complexity is d/g + 2 log g − 1. Although
it is difficult to compare their algorithm with our proposed
algorithm, except that both of them takes same slots for g = 2,
sometimes one of the algorithm is faster than each other
respectively depending on different g values. However, as the
system simulated by our algorithm needs smaller number of
nodes, it is low cost and more practical than the system with
many nodes.

IV. CONCLUSION

We have presented the algorithms for data summation
for the POPS network. Although the time complexity of
algorithm for single problem space is the same as previous
best known algorithm, we have shown that there is no coupler
conflict compared to [7]. The algorithm for multiple problem
spaces is designed for the reasons: (1) to utilize free resources
(2) to compute multiple problems using only half of the time
slots that actually needed and (3) to simulate the calculation
of large number of data items on smaller system to achieve the

similar speed of large system. It takes �m/2� logn for multiple
problems and �n/g2� log g + 1 for simulation. Compared to
the best known algorithm designed by Sahni [7], the algorithm
for multiple problems is at most two times faster and the
simulation is considerably faster. Moreover, all algorithms are
much simpler and dedicated to low cost and practical systems.
It also confirms that, POPS network data channels, couplers,
and nodes can be efficiently utilized to be cost effective.

REFERENCES

[1] P. Berthome and A. Ferreira, “Improved Embeddings in POPS Networks
through Stack-Graph Models”, Proc. Third Int’l Workshop Massively
Parallel Processing Using Optical Interconnections, pp. 130-135, 1996.

[2] P. Berthome, J. Cohen, and A. Ferreira, “Embedding Tori in Partitioned
Optical Passive Stars Networks,” Proc. Fourth Int’l Colloquium on
Structural Information and Comm. Complexity, pp. 40-52, 1997.

[3] D. Chiarulli, S. Levitan, R. Melhem, J. Teza and G. Gravenstreter,
“Partitioned Optical Passive Star (POPS) Multiprocessor Interconnection
Networks with Distributed Control,” Proc. First Int’l Workshop on
Massively Parallel Processing Using Optical Interconnections, pp. 70-
80, 1994.

[4] G. Gravenstreter and R. Melhem, “Realizing Common Communication
Patterns in Partitioned Optical Passive Stars (POPS) Networks”, IEEE
Trans. Computers, vol. 47, no. 9, pp. 998-1013, September 1998.

[5] G. Gravenstreter, R. Melhem, D. Chiarulli, S. Levitan, and J. Teza,
“The Partitioned Optical Passive Stars (POPS) Topology”, Proc. Ninth
Int’l Parallel Processing Symp., pp. 4-10, 1995.

[6] R. Melhem, G. Gravenstrater, D. Chiarulli and S. Levitan, “The Com-
munication Capabilities of Partitioned Optical Passive Stars Networks”,
Parallel Computing Using Optical Interconnections, K. Li, Y. Pan, and
S. Zheng, eds. Kluwer Academic, pp. 77-98, 1998.

[7] S. Sahni, “The Partitioned Optical Passive Stars Network: Simulations
and Fundamental Operations”, IEEE Trans. Parallel and Distributed
Systems, vol. 11, no. 7, pp. 739-748, July 2000.

[8] S. Sahni, “Matrix Multiplication and Data Routing Using a Partitioned
Optical Passive Stars Network”, IEEE Trans. Parallel and Distributed
Systems, vol. 11, no. 7, pp. 720-728, July 2000.

[9] S. Sahni, “Models and Algorithms for Optical and Optoelectronic
Parallel Computers”, Int’l J. Foundations of Computer Science, vol.
12, no. 3, pp. 249-264, 2001.

[10] A. Datta and S. Soundaralakshmi, “Summation and Routing on a
Partitioned Optical Passive Stars Network with Large Group Size”,
IEEE Trans. ON Parallel and Distributed Systems, vol. 14, no. 12,
December 2003.

[11] Y. Birk, “Power-optimal layout of passive, single-hop, fiber-optic
interconnection whose capacity increases with the number of stations”,
Proc. IEEE INFOCOM, 1993.

[12] A. Ganz, B. Li, and L. Zenou, “Reconfigurability of multi-star based
lightwave LANs”, Proc. IEEE GLOBE-COM, 1992.

World Academy of Science, Engineering and Technology
International Journal of Aerospace and Mechanical Engineering

 Vol:1, No:3, 2007 

608International Scholarly and Scientific Research & Innovation 1(3) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 A
er

os
pa

ce
 a

nd
 M

ec
ha

ni
ca

l E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
3,

 2
00

7 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/2
20

1.
pd

f




