
Abstract— Computers are being integrated in the various aspects

of human every day life in different shapes and abilities. This fact

has intensified a requirement for the software development

technologies which is ability to be: 1) portable, 2) adaptable, and 3)

simple to develop. This problem is also known as the Pervasive

Computing Problem (PCP) which can be implemented in different

ways, each has its own pros and cons and Context Oriented

Programming (COP) is one of the methods to address the PCP.

In this paper a design for a COP framework, a context aware

framework, is presented which has eliminated weak points of a

previous design based on interpreter languages, while introducing the

compiler languages power in implementing these frameworks.

The key point of this improvement is combining COP and

Dependency Injection (DI) techniques. Both old and new frameworks

are analyzed to show advantages and disadvantages. Finally a

simulation of both designs is proposed to indicating that the practical

results agree with the theoretical analysis while the new design runs

almost 8 times faster.

Keywords— Dependency Injection, Compiler-based architecture,

Context-Oriented Programming, COP, Pervasive Computing

Problem

I. INTRODUCTION

Cs, PDAs, cellular phones, and hundreds of portable

electronic devices containing microchips are our familiar

partners in every day life which play an important role in

every moment of modern lifestyle so that in many cases we

are not even aware of these calculations among us. This

lifestyle has led to a problem which in spite of developments

in hardware technologies, software developers are still

challenging with.

This problem is the ability to develop applications which

have 1) Maximum adaptability with the running context, 2)

Portability to different platforms, and also have 3) an

acceptable simple process of development. This problem is

also known as Pervasive Computing Problem (PCP).

The new embedded computers technology in mobile

devices have led the PCP to a new stage at which requirement

of a framework capable of developing applications having

H. Nejati is PhD candidate, School of Computing, National University of

Singapore (e-mail: nejati@nus.edu.sg)

S. H. Mirisaee is Master Candidate, Faculty of Information Science and

Technology, University KEBANGSAAN Malaysia (e-mail:

h.mirisaee@ftsm.ukm.my)

G. H. Dastghaibifard Assistant Professor, Computer Sciences and

Engineering, Shiraz University, Shiraz, Iran (e-mail: dstghaib@shirazu.ac.ir)

adaptability, portability, and simplicity is vital. This is because

the new mobile applications should work with any type of

hardware and software on which the may be run and adapt

their behavior in order to reach desired goals. These type of

applications are Context Aware applications.

Context Oriented Programming (COP) is one of the most

important methods, introduced for implementing context

aware architectures. COP aims to reach a context aware

framework which changes the application behavior with

respects to the running context in order to tune its steps

towards reaching goals. In this framework, the final

application can have different behavior, adapted to the

environment. This property can address the adaptability and

portability problems. Framework development tools enable

developing COP application using simple and human-

understandable logic which indeed address the simplicity

problem. As it is clear, COP aims to address the Pervasive

Computing Problem.

Although many researches have been done on the Context

Aware frameworks, the implementation of this framework is

yet a problem. Almost all of the context-aware applications

are being used in the research laboratories [1]. This means the

current implementations are still not suitable and powerful

enough to answer the PCP in real environments. In this article,

a new feasible design for implementing COP frameworks are

presented based on an interpreter-based method by R. Keays

(2003) [2]. Our new compiler-based architecture uses

Dependency Injection (DI) technique to involve compiler

languages (beside interpreter languages) as a development

basis and therefore inheriting their power to the COP. After

describing related works in the next section, advantages and

disadvantages of the interpreter-based design is discussed in

section three which is followed by describing the new design

in section four. Finally, Implementation and conclusion are

presented in the fifth and sixth sections.

II. RELATED WORKS

Different works have been introduced in related to COP,

using approaches such as multiple inheritance, layered

software architecture, and interpreter-based architecture,

which each one has its strengths and weaknesses. Rather than

implementing COP or semi-COP frameworks, several

researches on related issues such as Typing, Matching and

Binding have been also presented. In this section some of the

related literature is described.

Compiler-Based Architecture for Context Aware

Frameworks

Hossein Nejati, Seyed H. Mirisaee, and Gholam H. Dastghaibifard

P

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering

 Vol:2, No:6, 2008

671International Scholarly and Scientific Research & Innovation 2(6) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 M

an
uf

ac
tu

ri
ng

 E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
6,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
35

.p
df

Dey and Abwors (2000) have defined the context as

follows: “Any information that can be used to characterize the

situation of an entity. An entity is a person, a place, or a

physical or computational object that is considered relevant to

the interaction between a user and application including the

user and application themselves [3].” By this definition, they

also categorize meaning of the data into context class.

Dey and Abwors’ proposed architecture is consisted of four

main components: application core, adoption system, context

management system, and user interface. The whole design is

based on web services to ensure maximum adoption to the

running context [3]. In the adoption component, they have

used a model [4] which Berhe and his research team have

developed, for comparing all possible transformations and

finding optimum path to achieve an adopted format to content

situation.

ContextL [5] is an extension to Common Lisp Object

systems which allows Context Oriented Programming. It

provides means to associate partial class and method

definitions with layers and to activate and deactivate such

layers in the control flow of a running program. When a layer

is activated, the partial definitions become part of the program

until it becomes deactivated. This enables modifications in the

program behavior according to the context of its use. In

ContextL, the application layers can be designed only before

releasing the application.

The Java 2 Micro Edition (J2ME) extends the functionality

of Java by grouping device capabilities into specific categories

[6]. J2ME architecture consists of three layers of abstraction

to ensure that applications will execute across varying

devices. The first layer, the Java Virtual Machine (JVM)

implements a customized virtual machine for that device. The

second layer (the Configuration layer) defines available

features of the JVM and core Java libraries. Portable

applications must meet the third layer (the Profile layer) which

defines application programming interfaces (APIs), made

available by the underlying layers. That specific application

will run on all devices conforming to that profile. J2ME have

actually chosen the other way in which context is virtually

changed for host application.

Gassanenko [7] has added context and first class

environments definitions to Forth programming language [8]

by adding Object Oriented Programming (OOP) concepts [9].

These definitions can result in different behavior in different

execution environments. These contexts do not extend further

than function definitions.

Keays and Rakotonirainy [2] use the term COP for an

approach that separates code structure (referred to as skeleton)

from program parts which need to be changed according to

different environments (referred to as stubs). When the

environment changes, a procedure named context-filling

substitutes old stubs with new stubs and therefore controls the

program behavior. Finding the most suitable stub is done by

“Match-Box” process which searches for a stub using

parameters such as stub goal and context. This design is

described in more details in the next section because it is used

as a basis for the new compiler based design.

Another important portion of a COP framework design is to

define a format for goals and contexts of program parts (i.e.

typing) and to match and bind the closest available behavior to

current context (i.e. binding) . Knowledge representation (KR)

[2] is one of the most famous works to address typing.

Several approaches have been also proposed to address the

matching and binding problems. Instances are the matching

the nearest available service in the Blue-tooth Service

Discovery Protocol [10] and XML tree to tree transformations

in Zhang and Shasha algorithm [11], [12] for matching; and

scoping by using local, global, and built-in Python dictionaries

[9] Semantic Web [13] and RFD [14] for binding. However in

this paper, this section of COP is not described in detail and

instead, the focus is on details of injecting compiler language

abilities into COP design presented in [2].

III. AN INTERPRETER-BASED ARCHITECTURE FOR

COP FRAMEWORKS

In this section an interpreter-based approach presented by

Keays (2003) in [2] is described and discussed in more details.

This is because the new compiler-based design is built on

the basis of this architecture. Bold properties of this

architecture is that 1) it is based on interpreter language

specific properties 2) it has theoretically addressed almost all

of the COP framework requirements. 3) The design is flexible

and derived from an intuitive idea.

It is noticeable that Keays’ design also violated some minor

COP requirement rules such as first class goal constructs (first

class definition will be discussed later in this section) and at

the end a demonstration implementation is presented in

Python language using the Python dictionaries and XML-

based knowledge representation.

Keays’ design is divided into three parts [2]:

1) Skeleton: is the user program’s main structure which

contains basic logic of the program. Skeletons are actually

traditional user programs which are converted to

COP style. In this style the code is implicitly divided into

parts which do not have to change in context changes, and

parts which are required to be changed in when the context

changes to a specific status.

2) Stub which is a code, developed for a particular goal in a

particular context. These codes are collected in a stub database

and are indexed by their goal and working context. Stubs are

pure codes which have COP style and can be attached to the

skeleton after modifications (Binding process will be

described in advance).

3) Match-Box which is a separate process which listens to

user program requests for code updates, and changes the

required code sections in the user program with respect to the

request, current context, and the nearest stub matched to the

request specifications.

Before detailed review, three more definitions should be

covered which are used in Keays’ design:

Context refers to any particular information, demonstrating

an entity or an entity status. Examples of context can be

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering

 Vol:2, No:6, 2008

672International Scholarly and Scientific Research & Innovation 2(6) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 M

an
uf

ac
tu

ri
ng

 E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
6,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
35

.p
df

intensity of the light which a device receives, hardware

specifications of the running device, or network bandwidth

accessible for the application.

Goal is referred to a specific goal of using a variable,

defining a function, writing a sub program, or developing an

entire application. For example, a variable goal can be

performing as an accumulator and a function goal can be

releasing calculation results.

Gap is a program sections required to be changed in

context-change events with respect to changed parameters of

environment. Gaps have a specific syntax for declaration in

which the goal of the section and the context parameter that

should be watched for changing is specified. For example

consider a mobile robot navigation program in which a gap is

defined with its goal set to “sensing obstacles” and its context

parameter to “available sensors”. This part of code (stub)

should be changed if the available sensors are changed

(context-change event) and substitute with another stub which

is developed to use current sensor(s) for sensing an obstacle in

the way.

Fig. 1 Interpreter-based architecture for COP framework by R.

Keays: 1) Skeleton request for a gap filling operation, sent to the

Match-Box; 2) Match- Box query, using request parameters and

Elvin Bus context information, sent to stub database; 3) The stub,

selected according to the Match-Box query, is sent back to the

Match-Box; 4) Modified stub, adapted to the skeleton, substitutes the

gap.

During run-time when interpreter reaches a gap in the

skeleton code (user program code) it sends a request to the

match-box process including the gap parameters (goal and

context). Match-box then fills in the gap with a sub which best

matches the requested parameters. This procedure is called

Gap Filling Procedure. As shown in Fig.1 Gap filling in the

interpreter-based design can be divided into 4 phases: 1.

Request, in which the skeleton reaches a gap and sends a

request including goal and context (and extra other parameters

if required), to the match-box for a gap filling; 2. Query, in

which the match-box queries the stub database using the

request parameters and current context status to find the best

matching stub; 3. Response, which contains selected stub from

the database; and 4. Modify and return the stub code, capable

of being bound to the skeleton.

This design combines codes in run-time without need for

code rewriting and therefore, updates user program whenever

required.

A. Interpreter-Based Design Evaluation

Keays’ architecture [2] has pros and cons which are almost

direct results from using interpreter languages as a basis. Its

three main advantages are: 1) effective design for addressing

Pervasive Computing Problem, 2) relatively simple way of

changing running process toward applying COP features, and

3) ability to change the skeleton codes without recompilation.

On the other hand, using this type of programming

languages has the problem of time which can be divided into

development time and running time sub-problems.

The simplicity of changing an interpreter in comparison

with changing a compiler can be regarded as one of the most

important motivations toward using an interpreter basis for

implementing this framework. Interpreter language running

processes are likely to be simpler than compilers where

changes are needed for adding COP features and structures.

In addition, interpreters run program statements one bye

one, leaving a chance for the gap filling operation to change

forwarding codes whenever needed. Due to this particular

feature of interpreters, pausing the interpreter running process

(e.g. via a proper usage of semaphores), filling the gap, and

then resuming the interpreter is possible when a gap filling

request is fired. In this way the interpreter would not be aware

of code changes and would start running the next statement

which is then the first statement of bound version of an

adapted stub.

Although it seems that the only weakness of using

interpreter language basis is time problem, this problem has

undermined the architecture. This problem can be divided into

two timing sections: Running time, which is required time for

released applications to run; and developing time, which is

amount of time consumed on developing a COP application to

be released.

Interpreters are normally slower than compilers when

running the resulting application, moreover, intensive amount

of input/output (I/O) in the former design slows down the

application even more. Most of these I/O operations are

required for searching in the skeleton and stub codes. Firstly,

none of these codes are well-formed which results in a word-

by-word linear search for keywords; Secondly, for binding the

stub to the skeleton additional I/O operations are also required

(e.g. for changing names to avoid collisions); And at last,

when substituting the modified code in the skeleton body, the

whole stub code should be rewritten in the user program. The

time problem extends even to application development.

Developers have to consume a significant amount of time for

development because:

1) Developer is doomed to define goal and context for

every variable and function which appears in the gap scope

using a specific syntax.

2) Lack of modern interpreter based development

environments make developing process slow.

The interpreter-based design presented in [2] has introduced

a general method for solving COP problem. Implementing this

method on the interpreter languages basis has added simplicity

but also caused the architecture to perform relatively slowly.

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering

 Vol:2, No:6, 2008

673International Scholarly and Scientific Research & Innovation 2(6) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 M

an
uf

ac
tu

ri
ng

 E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
6,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
35

.p
df

Next section describes a compiler-based architecture in

details which has inherited strong points of the later design

and used DI technique to solve its weaknesses.

IV. COMPILER-BASED ARCHITECTURE FOR COP

FRAMEWORKS

This section deals with the compiler-based architecture

based on the aforementioned interpreter-based design. Two

considerable issues for designing this architecture is keeping

structure of the later design, and reducing compiler

complexity and overload. Applying both together, results in

solving the interpreter-based architecture weaknesses and

remaining its advantageous points unchanged.

The most complex and most important component in

Keays’ architecture is the Match-Box. It is responsible for

almost all of COP-related behavior of the framework -

receiving gap-filling request, processing information from the

real world, matching the best stub from database, binding, and

placing final code in the skeleton gap. Therefore, for keeping

the structure of the architecture, the structure of match-box

should be kept. To mitigate the complexity, and remove the

recompilation requirement, DI method has been utilized,

changing some parts of the older design, but keeping the

concepts unchanged. Before describing the new compiler-

based architecture and using DI, a preliminary section of DI is

presented here.

A. Dependency Injection

Dependency Injection (DI) is a programming pattern which

generates a general interface to inject component

dependencies and in this way creates a level of abstraction

[15]. DI removes responsibility of object instantiation,

initialization and configuration from the requester to an Object

Factory also known as Container. Therefore, the requester

component does not need to be aware of how the object is

created, initialized, or configured and in this way

dependencies between classes will be removed. DI has been

also named as Inversion Of Control (IoC) in some contexts

[15], but it is technically a type of IoC family as it removes

control of object creation, initialization, and configuration

from user class, to a general object factory class.

Interface Injection, Setter Injection, and Constructor

Injection [16], [17], [15] are three different implementations

of DI which our recommended method for COP framework

implementation is Setter Injection. Reasons are described in

“Design Details”, (see IV-B).

B. Design Details

The compiler-based framework can employ DI technique

for removing recompiling requirement while having code

changes. It should be noted that combining these aspects

should be done in such a way that it has minimum overhead,

maximum speed, and benefits of both interpreter and compiler

languages. This idea is described here first, following with

relative designs for new database and DI object factory.

1) Combining DI and COP: Combining COP and DI is an

idea, motivated from a similarity between these two aspects.

DI wants to remove control of instantiating dependent objects

from the user program and therefore relaxing these

dependencies. COP similarly, wants to remove control of

behavior changing with respect to the running context from

the user program. Therefore COP can be considered as

another type of IoC.

COP main goals are adaptability, portability, and simplicity

and to reach these goals in a compiler-based platform,

changing the program behavior without recompilation is one

of the most important issues. Simultaneously, DI technique

can create required objects dynamically, on the fly, and

without any recompilation. However, for utilizing DI in our

COP framework implementation there exist other points

which should be considered. These issues are: (1) To keep the

advantages of previous design, and (2) to reduce overhead of

input/output (I/O) operations for configuration codes. These

codes are used to build object factories and are usually in

XML format. The overhead of configuration code should be

then compare with the I/O operation of interpreter-based

design to ensure that it does not exceed the previous design

I/O time. For the first issue, it should be noted that the

interpreter-based architecture owes its important properties to

the matchbox.

Fig. 2 Compiler-based architecture for COP frameworks: 1)

Skeleton request for a gap filling operation, sent to the Match-Box;

2) Match-Box query using request parameters and Elvin Bus context

information, sent to stub database; 3) Object creation parameters for

the closest match, returned from the object database; 4) Modifying

the XML configuration document to satisfy the object creation

parameters, by Match-Box; 5) Binding the factory to the modified

XML configuration file ; 6) Match-Box call for object creation, sent

to the bounded DI factory; 7) Resulting object from the factory; 8)

Return of factory produced, adapted live object to the skeleton, ready

to be used.

This is the match-box which is responsible for receiving

user program request, finding the best match for it, and

binding it back to the skeleton. Therefore, match-box main

structure should not be changed to maintain interpreter-based

benefits as much as possible. In the new design match-box has

an additional role of creating an adapted object for being used

in skeleton. This object creation and adaptation is done via DI

factory. The match-box can be divided to two main parts: first

part is front end which receives the user program request and

values from environment by Elvin Bus process and the second

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering

 Vol:2, No:6, 2008

674International Scholarly and Scientific Research & Innovation 2(6) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 M

an
uf

ac
tu

ri
ng

 E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
6,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
35

.p
df

part is back end which includes searching for suitable stub in

data base based on environmental values and filling the gap.

DI factory relates to the back end and does not change the

front end; therefore, match-box main structure will remain

unchanged. After object creation by DI factory, matchbox

consequently delivers the object to the user program. The

resulting object should also implement an interface, using a

unique signature in order to let the user program use it as a

turn-on switch. This interface should activate the object to

perform a particular task it is created for.

Introducing DI to the design also leads to database structure

changes. I/O problem should be considered in both database

and DI factory design. This particular design is discussed in

the next two parts, “Database Design” and “DI Object Factory

Design”.

Having these changes in the previous design, application

developers are not restricted to use interpreter languages and

both of interpreter and compiler are usable if they support

object oriented programming. Fig. 2 shows the proposed

design.

2) data base design: Database should store two types of data

in compiler-based design: 1. Data required for creating each

individual object 2. Data required for finding the best match,

for match-box query. In this design database includes

definitions for all of producible objects. There are different

database schema which can be employed here. Selecting the

schema depends on object definition method used in XML

files because different types of defining objects require

different information to be stored. Here three methods for

XML file structures and therefore for database schemata are

briefly discussed.

First method is storing entire set of objects for different

conditions in a single XML file. The database is therefore

merely one XML file and searching process is parsing this file

and finding the suitable object. Advantage of this approach is

that a separate database management system is no longer

required and therefore system cost and load would decrease in

simple cases having a few simple objects. In the other hand,

XML file size drastically increases when number of objects

increases (common in real pervasive environments) and this

results in unacceptably slow search operations. There are two

ways for searching (parsing) an XML document, SAX [18]

and DOM [19], in both of which, a large-sized document

decreases parsing speed significantly.

One alternative approach is having possible objects set,

categorized based on their goal or context in several XML

files, in a manner that no changes would be required. This

means having a complete definition for each object before the

running time. This causes XML document modification

overhead to be omitted. A simple database is also needed to

indicate XML file which contains an individual object

definition. This method mitigates the effect of increasing

objects number in comparison with the latter method and can

be used having a larger set of objects. However, as in a real

pervasive environment the number of possible cases (and

therefore objects) is inevitably high, the XML files will again

grow very fast and the parsing pace will tumble.

The third method has relatively small XML documents;

each one contains only one object definition for a set of

possible goals. The goals are categorized into several XML

file based on their types. For example one XML file for I/O

based goals; one for OS based goals, and one for network

based. These object definitions do not contain actual class

library or property values and will be set to real values when a

request is received. The real values should be kept in a

separate database. This causes the XML file to grow slower,

but needs a more complicated database which can increase

system cost for implementation and maintenance. In this

solution the database should contain XML file URL, object

name, class library, and actual values for object properties

which are needed in initialization. Despite having the

overhead of a separate database and more complicated

implementation this method seems to be more reliable in real

pervasive environments than the two others. This is again

because it is closer to real pervasive environments which

require defining a large set of objects.

As a conclusion for this discussion, it appears that the first

method can be useful when the focus is on other framework

components rather than database; the second suggested way is

similar to the first one but can be used for more complicated

contexts and can be realized for simple real applications; And

the third is the most reliable one among presented approaches

while it can manage a noticeably larger number of objects in

each goal category but forcing overhead of a separate

complicated database management system.

3) DI Object Factory Design: The two main DI frameworks

are Spring-Java [20] from Sun family and Spring.NET from

Microsoft family which is almost same, therefore only

Spring.NET is described here. Spring.NET is chosen here to

describe the schema and the most important parameters in

creating an object factory in Spring.NET are: 1) Injection

method type, 2) object recreation configuration, and 3) Object

factory usage method [17]. The first parameter is a choice

between using Setter, Constructor, or interface injection

methods which is again related to the problem of large number

of objects. Applying the constructor or interface injection

method may lead to create hundreds of constructors and

interfaces for each object category which must be handled by

the object definers (i.e. the database element developers). In

the other hand, using the Setter injection, the developers are

required to indicate names of properties needed to be changed

and their values. These properties can vary from the class to a

simple text message.

After database finds the suitable class with its properties,

the match-box changes the properties instantly and calls the

factory to instantiate the suitable object. Setter injection seems

to be relatively simpler than creating constructors and

interfaces because the match-box takes responsibility of

changing XML document when needed, but it still need a time

consuming labor when the number of objects rapidly grow.

The second attribute has two possible values, being

singleton or non-singleton (prototype), which configures type

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering

 Vol:2, No:6, 2008

675International Scholarly and Scientific Research & Innovation 2(6) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 M

an
uf

ac
tu

ri
ng

 E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
6,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
35

.p
df

of object re-creation in the factory. The singleton type objects

is only instantiated at the first time the factory is called to

return it. The non-singleton type in the other hand is created

on every incoming request for the object. It is clear that the DI

factory must be a prototype object creator because using a

singleton object, it is highly probable that the dated version of

object does not satisfy requirements of a changed context.

Difference between static and instance factory methods, the

third parameter, lie in ways of using (calling) the factory

itself. In the static factory method there is a static method,

responsible for object instantiation. So the factory can be

called directly from factory class. But in the instance factories,

a factory object should be first instantiated from factory class

and then called for starting an object creation process. Here

again, there is a trade-off between simplicity and over head.

Although the static factory method is simpler, when the XML

resource file needs to be updated, it must be re-declared and

re-bound to the factory after each change. In COP framework

case, the XML resource should be changed during the running

time and therefore it is reasonable to use instance factory

method (which does not need re-declaration) to eliminate this

overhead.

At the end of this section, regarding to our discussion a

brief overall plane is that, database should contain properties

(and the values) needed to be changed and related XML URL;

XML files should contain dummy object definitions for each

goal and each XML file should be related to a particular

context; and at last, object factory is a setter object creator

which creates prototype (non-singleton) objects and is an

instance object factory method.

V. IMPLEMENTATION TERMS AND RESULTS

This section describes implementation terms for both

interpreter and compiler-based architectures using the design

details describes in previous sections to compare the features

and determine how the proposed architecture is better than the

interpreter-based version.

Selected scenario for this test was a context aware

application which displayed a welcome message customized

to language spoken in country of running context. For

example application displays “welcome” if the context is

Australia and “bienvenue” if it is France.

Python and C#.Net were programming languages which are

used for interpreter simulated and compiler simulated

implementations respectively, and Spring.Net was employed

for dependency injection service. For the sake of simplicity,

Elvin notification process and database search were simulated

with fake functions which returned a controlled set of

information. The former because of remaining unchanged in

the new architecture, and the later due to its remarkable

similarity in both designs.

For measuring the executing speed, gap-filling operation is

done 1000 times for each implementation. This operation

includes selecting one country randomly and substitute

suitable stub in user program or injecting adapted object in it.

These experiences are done using Microsoft Windows XP

running on a Pentium 4, 2.8 GHz processor and 256MB of

main memory.

Average run-time of 20 times running (each includes 1000

gap-fillings) is then presented. The test results show that

compiler-based application was 7.8 times faster than the

interpreter-based application like the prediction in the design

section. Fig. 3 illustrates the implementation results.

Fig. 3 it is Comparison between Interpreter-based design and

Compiler-based design in running time. The new design finished the

task in 9.697 seconds while the other one finished the same task in

75.861 seconds.

VI. CONCLUSION

Although automatic instrument usage in human life is

growing with a significant pace, a powerful framework

capable of addressing problems of real environment pervasive

computing problem is not proposed yet. This type of programs

must change their behaviors according to environment

conditions.

In this article a new architecture based on an existing

interpreter-based architecture was introduced and simulated.

The new design has kept advantages of the previous and

removed its major weaknesses by injecting possibility of using

compiler programming languages via using dependency

injection technique. Details of both previous interpreter-based

and new compiler-based architectures were discussed and

finally results from simulated applications of both were

demonstrated. The test showed agreement with theoretical

analysis while the new architecture was 7.8 times faster.

Providing the ability for using the compiler languages in new

design also improves programming and developing quality in

produced applications because of existing compiler language

features such as modern interactive development

environments (IDEs).

REFERENCES

[1] P.J. Brown, J.D. Bovey, X. Chen, “Context-aware applications: from the

laboratory to the marketplace,” IEEE Personal Communications, vol. 4,

no. 5, Oct. 1997, pp. 58-64.

[2] R. Keays, A. Rekotonirainy, “Context-Oriented Programming,”

International workshop on Data Engineering for Wireless and Mobile

Access, San Diego, USA, ACM Press, pp. 9-16, 2003.

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering

 Vol:2, No:6, 2008

676International Scholarly and Scientific Research & Innovation 2(6) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 M

an
uf

ac
tu

ri
ng

 E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
6,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
35

.p
df

[3] A.K. Dey, G.D. Abowd, “Towards a better understanding of context and

context-awareness,” CHI 2000 workshop on the what, who, where,

when, and how of context-awareness, The Hague, The Netherlands

2000.

[4] G. Berhe, L. Brunie, J.M. Pierson, “Content adaption in distributed

multimedia systems,” Journal of Digital Information Management 3 (2),

95- 100 (special issue on distributed data management)

[5] D. Gelernter, S. Jagannathan, T. London, Environments as First Class

Objects. POPL ’87, Proceedings.

[6] S. Helal, "Pervasive Java," IEEE Pervasive Computing, vol. 1, no. 1, pp.

82-85, Jan.-Mar. 2002.

[7] M.L. Gassanenko, “Context-Oriented Programing: Evolution of

Vocabularies,” Proc. of the euroFORTH'93 conference, Marianske

Lazne (Marienbad), Czech Republic, pp. 14, 1993.

[8] S. Pelc, “Programming Forth”, MicroProcessor Engineering Limited, -

Copyright © 2005. available:

www.mpeltd.demon.co.uk/arena/ProgramForth.pdf

[9] M. Lutz, Programming Python. O’Reilly and Associates. USA 1996.

[10] A. Sasikanth, “Enhancing the Bluetooth Service Discovery Protocol,”

Honours thesis, University of Maryland, 2001.

[11] J. Wang, B.A. Shapiro, D. Shasha, K. Zhang, K. M. Curre, “An

Algorithm for Finding the Largest Approximately Common

Substructures of Two Trees,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 20, no. 8, pp. 889-895, 1998.

[12] D. Shasha, J.T.-L. Wang, K. Zhang, F.Y Shih, “Exact and Approximate

Algorithms for Unordered Tree Matching,” IEEE Trans. Systems. Man,

and Cybernetics, vol. 24, pp. 668-678, 1994.

[13] T. Berners-Lee, Semantic Web Road Map. W3C draft September 1998.

Available: http://www.w3.org/DesignIssues/Semantic.html

[14] F. Monala, E. Miller, “RDF Primer,” W3C Working Draft 19 March

2002. Available: http://www.w3.org/TR/2002/WD-rdf-primer-

20020319/

[15] Apache Software Foundation. Available: http://avalon.apache.org

[16] M. Talevi, “container overview,” 2006. available:

http://docs.codehaus.org/display/PICO/3.+PicoContainer

[17] M. Pollack, et al, “The Spring.NET Framework Reference

Documentation,” Version 1.1.2, June 12, 2008. available:

http://www.springframework.net/doc-latest/reference/html/index.html

[18] D. Megginson's, SAX. 27-April 2004, available:

http://www.saxproject.org

[19] Java Script Kit – DOM (Document Object Model) Reference. available:

http://www.javascriptkit.com/domref/

[20] R. Johnson, et al, “Spring - Java/J2EE Application Framework

Reference Documentation,” Version 1.2.9, 2008. Available:

http://static.springframework.org/spring/docs/1.2.x/reference/index.html

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering

 Vol:2, No:6, 2008

677International Scholarly and Scientific Research & Innovation 2(6) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 M

an
uf

ac
tu

ri
ng

 E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
6,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
35

.p
df

