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Abstract—To study how to transfer knowledge from multiple
source problems to the target problem, we modeled the Transfer
Learning (TL) process using Genetic Algorithms as the model solver.
TL is the process that aims to transfer learned data from one
problem to another problem. The TL process aims to help Machine
Learning (ML) algorithms find a solution to the problems. The
Genetic Algorithms (GA) give researchers access to information that
we have about how the old problem is solved. In this paper, we
have five different source problems, and we transfer the knowledge
to the target problem. We studied different scenarios of the target
problem. The results showed that combined knowledge from multiple
source problems improves the GA performance. Also, the process of
combining knowledge from several problems results in promoting
diversity of the transferred population.

Keywords—Transfer Learning, Multiple Sources, Knowledge
Transfer, Domain Adaptation, Source, Target.

I. INTRODUCTION

TRANSFER Learning (TL) is a process of transferring

knowledge from one problem to another problem. The

objective of TL is to speed up the process of finding the

solution to the new problem. The mission of TL is to discover

and transfer the trained data. This data may be adapted from

multiple source problems.

TL is considered one of the ML techniques that help some

ML algorithms find solutions to problems more easily. TL

usually interacts with two problems: The first one is the source

problem (S), and the other problem is the target problem (T ).

TL transfers the knowledge from the S problem to the T
problem. In some cases, the S problem may not be presented,

but the knowledge of solving the S problem is stored, and we

can transfer it to the T problem [1].

The comprehensive process of TL mimics how humans

think. For example, humans learn from their life how to

adapt and solve problems or obstacles. They build on their

experience from what they have faced and also what others

have shared with them. Some people may listen to a lot

of advice to understand and think about how to overcome

his obstacles. Many people consider this behavior a wisdom

behavior.

In this study, we adopt the following real-life situation.

Students go to school and learn different subjects. They learn

and practice what they have learned in class to pass and have

good grades. For example, they apply what they learned in

mathematics classes in physics classes. We would like to study

how the possibility of transferring knowledge from several

source problems to the target problem. Also, this study can
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be applied to different situations: for example, having two

robots and each one has been trained to drive in two different

areas. Robot A was trained to drive and discover the sand area.

Robot B was trained to drive and discover the mountain area.

Having a third Robot that combines knowledge from Robot A

and Robot B may save us money, training time, and effort.

To address our goal, we modeled the TL process using

Genetic Algorithm (GA) [2], [3]. The GA was used as the

model solver for the S and the T problems. We created five

different source problems, and the model solved all of them

first. Then we constructed the transferred population using

the knowledge from all of these final solutions. We proposed

using the Multi Bowl Transfer Population (MBTP) method

to generate the transferred population (for more details, see

Section III). After that, the model transferred the constructed

population to the target problems. The model solved the

target problems using the constructed transferred population.

To make our study cover different life situations, we tested

four different target problems; each one describes different

approach (for more information see Section III).

Our study answers the following questions:

• Q1. Can we transfer knowledge from multiple source

problems?

• Q2. How good is sampling the transferred population

from multiple source problems?

• Q3. Can we solve a target problem that combined

knowledge from two different source problems?

This paper is organized as follows: Section II explains the

background of this study. Section III is the method we used in

our study. Section IV is the experiment and Section V is the

discussion, followed by the conclusion and acknowledgment

sections.

II. BACKGROUND

Liu and Wang [4] implemented TL in Dynamic

Multi-Objective Optimization Algorithms (DMO). They used

TL to improve the initial population prediction for the target

problem. They proposed an algorithm called TPS-DMOEA

that contains the following steps:

1) Select the transferred population using the Population

Prediction Strategy (PPS).

2) Modify the transferred population from the first step

using Transfer Component Analysis (TCA).

The authors evaluated the proposed algorithm using 10

different problems. The results showed the TPS-DMOEA

algorithm overcame the existing methods of DMO.
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Mendes et al. [5] implemented the TL to enhance CNN

performance. They proposed a new method called Many

Layer Transfer Learning Genetic Algorithm (MLTGA). They

claimed their method can help the medical doctors to explore

Pneumonia disease in early stages. The method built the

Pneumonia’s classifier model by transferring the well-trained

layers from previous CNN. The results showed that the

proposed algorithm was accurate with 2% higher than other

GA methods.

Ardeh et al. [6] studied the uncertain capacitated arc

routing problem. This problem simulates an environment

that has an undirected graph that connects tasks together,

and the vehicles must serve these tasks. The best solution

is to find the minimum cost that serves most tasks. The

Genetic Programming Hyper Heuristic (GPHH) method is

used to solve the previous problem. The authors enhanced the

performance of the GPHH method using the TL. The proposed

method discovers and removes the duplicated individuals

from the transferred population. Also, the method maintains

diversity that may be affected by the removing process. The

experiment showed this approach overcomes state-of-the-art

genetic programming with TL methods.

Chen and Liu [7] studied the Bi-Level Optimization

Problems (BLOP). This problem is complex and is

considered as nondeterministic polynomial (NP) type of

problem. Typically, this problem deals with two levels

of optimization. The low-level optimization controls the

high-level optimization. Studies show this problem can be

solved by using the Covariance Matrix Adaptation Evolution

Strategy (CMA-ES). The authors used the TL strategy to

improve the performance of the CMA-ES strategy. Their

strategy is composed of two steps. First, they restricted the

search process to neighboring lower levels. Then they selected

the transferred feature using the learning rate. The results

showed the proposed algorithm improves the performance and

efficiency compared to other CMA-ES enhanced methods.

III. METHOD

Our model employed the Genetic Algorithm (GA) as the

solver unit. The GA allows us to know what information we

have about solving a problem by analyzing the final solution

of the problem. The GA generates a set of potential candidate

solutions to the problem and searches among them to find

the optimal’s solution to the problem. The differences of the

problems can be managed by controlling the fitness and the

gene representations. The model blends the TL with GA by

transferring the knowledge that has been learned to solve the

S problem to the T problem. Our model counts how many

generations the T solver took to find the solution to the T
problem using the transferred population.

Our study looked at different perspectives in which the T
problems require the T solver to search for different solutions.

Our fitness function counted to learn new things. By changing

the fitness value of the T problem or the gene representation,

we can discover different approaches.

For this study, we have developed five different source

problems (3) and four different target problems (4). We

consider cases where the target solver must learn new things,

protect the knowledge the transferred population has, or forget

some knowledge. We consider whether these cases required

the solver to generate many generations to find the optimal

solution. The number of generations reveals the efficiency of

the transferred population. In this manner, we can study how

effective our model is at transferring knowledge from multiple

source problems.

The model starts by solving each one of the S problems

using a random initialized population and stores the final

solution of each problem separately. Then we construct the

transferred population using the final solutions of all source

problems that we stored (see Section IV). After that, the model

transfers the transferred population to the T solver to find

the solution to the T problem. The model counts how many

generations the T solver took to find the final solution to the

T problem.

In this study, we have generated four different T problems.

Our model can study different cases and approaches. For

example, what is the effect of having the system initiate

a random T problem and ask the T solver to solve the

problem? What is the effect of having a target problem requires

combined knowledge from different S problems? What is the

effect or the benefit of having a T problem simulate one of

the S problems? What is the effect of having a T problem that

requires partial data from different S problems? We considered

if the T problems will require the T solver to generate many

generations to find the solution to the T problem. We also

considered if the transferred population is able to solve this

type of problem easily or if the transferred knowledge is

missing and not able to lead the T solver to solve the problem.

We have used the generational GA. The GA will deal with

a population consisting of a fixed number of individuals. Each

individual consists of 40 bits or genes long. For the selection

operation of the GA, the tournament selection is enabled. In

this selection, selected randomly individuals are selected and

they have the right to produce the new generation. In this study,

the tournament size is 3. The details of the GA arguments are

specified in Table I.

TABLE I
PARAMETERS OF THE GENERATIONAL GENETIC ALGORITHM (GA)

Genetic Parameter Value
GA Type Generational
Chromosome length 40
Population size 100
Mutation rate (per bit) 0.1
Crossover rate 0.05
Type of crossover Uniform crossover
Tournament Size 3

Fitness Function is a function that the GA used to evaluate

each individual. This function yields a value that describes

how close the evaluated individual is to solving the problem.

For our study, we have used a fitness function that is defined

on a number of bits or genes and divided them into many

subfunctions. The following is the fitness function (1):
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f(x) =

m∑
i=0

ai gi(x[i ∗ s, (i+ 1) ∗ s− 1]) (1)

where (x) is the individual. gi is a subfunction, and it is

defined over s bits subfunction. We have m subfunctions and

s number of bits for each subfunction. The n is the total

individual length. n = m ∗ s ( n = 10 ∗ 4 = 40). The ai
is [0,1] is the bit position of the x.

For our study, ai value is fixed to [0,1]. We have chosen to

deal with this type of problem because we want to show the

importance of each crossbanding subfunction. For example,

if the ai = 1, that means the crossbanding subfunction is

important and we have to solve it to achieve the solution to

the problem. On the other hand, if ai = 0, that means the

crossbanding subfunction is not important and we do not have

to find a solution to this subfunction. In other words, the only

important subfunctions are the ones that crossband to 1.

We have 10 subfunctions that describe each individual.

Each subfunction consists of four bits. Our model must solve

each subfunction to evaluate each individual. To solve each

subfunction we have implemented the deceptive function.

This function is a type misleading subfunction. In general,

this function shows it is improving as there is a zero in

its argument, but the best solution is when all arguments or

(subfunction’s bits) are one. The following is the deceptive

function (2):

g(b) =

⎧⎨
⎩
s bc(b) = s

s− 1− bc(b) otherwise
(2)

where bc(b) is the bit counter function. This function evaluates

each subfunction. The best answer is when all bit of the

subfunction are equal to 1.

For the feasibility of our study, we created five different

source problems. We combined the transferred population

from the final solution of these source problems. We developed

four different target problems. The model transferred the

combined population to the target solver. The model dealt with

each one of the T problems separately. Our model created four

copies of the transferred population and solve each T problem

individually. The following are the source problems:

�as1 = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0) (3a)

�as2 = (0, 0, 0, 1, 1, 1, 0, 0, 0, 0) (3b)

�as3 = (0, 0, 0, 0, 0, 0, 0, 1, 1, 1) (3c)

�as4 = (0, 1, 1, 1, 1, 0, 0, 0, 0, 0) (3d)

�as5 = (0, 0, 0, 0, 0, 1, 1, 1, 0, 0) (3e)

The following are the target problems. The first target

problem (4a) has been chosen by the system.

�at1 = (1, 1, 0, 0, 1, 0, 0, 0, 1, 1) (4a)

�at2 = (1, 1, 1, 0, 0, 0, 0, 1, 1, 1) (4b)

�at3 = (0, 1, 1, 1, 1, 0, 0, 0, 0, 0) (4c)

�at4 = (1, 0, 0, 1, 0, 0, 0, 1, 0, 0) (4d)

As we can see, each one of the target problems discovers a

different approach. For example:

• First T Problem (4a): GA(T-Random) random target

problem. This problem will be initialized randomly by

the system.

• Second T Problem (4b): GA(T-S1 & S3) combination

of two source problems. This problem consists of a

collection of the first S problem (3a) and the third S
problem (3c).

• Third T problem (4c): GA(T-S4) a simulation of the

fourth S problem (3d).

• Fouth T problem (4d): GA(T-S1,S2,S5) a partial

matching problem. This problem is a partial matching

problem of the first, second, and fifth S problems (3a),

(3b), and (3e).

We hypothesize that we can transfer knowledge from

multiple source problems to a target problem and this behavior

will improve the GA performance. The TL can combine the

knowledge from different problems, and this combination will

prevent knowledge from being losing. Also, this combination

will add an amount of diversity to the transferred population.

The diversity will increase the search space of the GA.

The GA performance can be measured by the number of

generations the GA must generate to find the solution to the

problem.

IV. EXPERIMENT

Our experiment looked at cases where the model samples

the transferred population from multiple S problems and

transfer them to the T solver. The target solver must use

this population to find the solution to the T problem. We

experimented with four different target problems. Each one

of these problems cover a different approach.

In our experiment, we have five source problems denoted

as (S1, S2, S3, S4, and S5) (see Fig. 1). The source solver

was denoted as (GA), the solver used a randomly initialized

population to solve each one of the source problems. The

model solved and stored each problem individually. After

the model finished solving all source problems, the model

constructed the transferred population using the final solutions

of all source problems. Then the model used the control

unit population, a copy of each source’s final population, and

the constructed transferred population (MBTP) to solve the

target problems. Each one of the target problems was solved

individually. The model counted how many generations the

target solver took to find the solution to each one of the

target problems. This experiment ran for 50 iterations. For

comparison purposes, we used the first initialized population

(control unit) the final solutions of the source problems and

the MBTP population. We compared the difference between

these strategies. Fig. 1 represents the steps that we used in our

experiment.

Fig. 1 shows experiment diagram. We have five different

source problems and four different target problems. Our

model solves these problems and stores the final solution of

each problem individually. Then the transferred population is

constructed using the MBTP method. After that, the model will
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Fig. 1 Experiment Diagram, transferred population combined from all S
problems

use the constructed population which is then the transferred

population to solve each one of the target problems. The model

counts how many generations the target solver used to find the

solution to each one of the target problems.

Multi Bowl Transferred Population (MBTP) is the

transferred population method we constructed for this study. In

this study, we are dealing with five different source problems

and we want to combine the knowledge of solving all S
problems. We used 20% of each final solution of the S
problems as follows:

• Top-10%: transferring the 10% of the top final solution

of each S problem to the transferred population.

• Best-10% coping the best individual of each S problem

10% of the transferred population.

After we used the MBTP method to construct the transferred

population, we transferred the final population to the T solver

to solve the T problems.

A. First Target Problem

First target problem (4a) is the random problem. This

problem was testing the random problem that was initialized

by the system. The target solver must find a solution to this

problem. Fig. 2 represents how many generations the target

solver used to solve this problem.

Fig. 2 represents how many generations the target solver

took to find a solution to the first target problem (4a).

The fourth and MBTP populations show fewer number of

generations compared to other populations. The control unit

population represents the first random population. The target

solver takes a large number of generations using the control

unit population to solve this problem.

Table II is the pairwise Mann-Whitney U test. This test

shows the significance (p-value) of using each type of

Fig. 2 Generations used by the model to solve problem (4a)

population to solve the problem. The last row of this table

shows the average number of generations for each strategy.

B. Second Target Problem

Second target problem (4b) is the combination problem.

This problem tests the ability of the model to solve a problem

that combines knowledge from two different source problems.

This problem combines knowledge from S problem (3a) and

S problem (3c). The target solver must use the transferred

populations to find a solution to this problem.

Fig. 3 Generations used by the model to solve problem (4b)

Fig. 3 represents how many generations the T solver spends

to find the solution to the problem. The MBTP population

shows fewer number of generations compared to the other

population. The final solution of the fifth problem spends a

large number of generations.

Table III shows the pairwise Mann-Whitney U test results

of the number of generations. This test shows the p-value of

each sampled population. The last row of this table shows the

average number of generations for each strategy.

C. Third Target Problem

Third target problem (4c) is the simulation problem. This

problem is exactly the same as the fourth source problem (3d).

The aim of this problem was to test if the knowledge stored in
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TABLE II
THE PAIRWISE MANN-WHITNEY U TEST P-VALUE FOR SOLVING THE FIRST TARGET PROBLEM (4A)

control-unit fifth-solution first-solution fourth-solution MBTP second-solution
fifth-solution 0.928 - - - - -
first-solution 0.018 0.021 - - - -

fourth-solution 0.0005 0.0007 0.156 - - -
MBTP 0.0004 0.0004 0.106 0.764 - -

second-solution 0.156 0.194 0.273 0.018 0.011 -
third-solution 0.475 0.541 0.085 0.002 0.0009 0.404

Mean 141.34 143.04 99.08 87.7 73.68 109.1

The third-solution mean is 120.56.

TABLE III
THE PAIRWISE MANN-WHITNEY U TEST P-VALUE FOR SOLVING THE SECOND TARGET PROBLEM (4B)

control-unit fifth-solution first-solution fourth-solution MBTP second-solution
fifth-solution 0.612 - - - - -
first-solution 0.052 0.011 - - - -

fourth-solution 0.059 0.034 0.890 - - -
MBTP 7.4E-06 1.4E-06 0.007 0.003 - -

second-solution 0.475 0.244 0.165 0.339 5.0E-05 -
third-solution 0.077 0.019 0.814 0.893 0.003 0.238

Mean 168.74 196 127.52 135.56 87.82 150.64

The third-solution mean is 130.3.

TABLE IV
THE PAIRWISE MANN-WHITNEY U TEST P-VALUE FOR SOLVING THE THIRD TARGET PROBLEM (4C)

control-unit fifth-solution first-solution fourth-solution MBTP second-solution
fifth-solution 0.107 - - - - -
first-solution 0.375 0.088 - - - -

fourth-solution <2E-16 <2E-16 <2E-16 - - -
MBTP <2E-16 <2E-16 <2E-16 - - -

second-solution 0.902 0.057 0.415 <2E-16 <2E-16 -
third-solution 0.137 0.745 0.017 <2E-16 <2E-16 0.104

Mean 134.4 150.28 88.64 0 0 104

The third-solution mean is 132.2.

the transferred population solves the problem easily or if the

model can improve the solution to this problem. The model

must find the solution to this problem.

Fig. 4 Generations used by the model to solve problem (4c)

Fig. 4 represents how many generations the T solver takes to

find a solution to the fourth T problem. This figure shows that

the target solver spends 0 generations using the final solution

of the fourth source problem (3d) and the MBTP populations.

This is because these two populations already have the solution

for this problem.

Table IV is the pairwise Mann-Whitney U test. This test

shows the significant p-values for each transferred population.

The last row represents the average number of generations for

each population.

D. Fourth Target Problem

Fourth target problem (4d) is a partial matching problem.

This problem has knowledge from source problems one, two,

and five (3a), (3b), and (3e). This problem aims to test the

model ability to solve a problem that required knowledge from

multiple different parts of the final solutions of multiple source

problems. The target solver must use parts of the knowledge

that is stored in the population to find a solution to this

problem.

Fig. 5 represents how many generations the T solver spends

to find the solution to this problem. The MBTP population

shows fewer number of generations compared to the other

population type.

Table V is the pairwise Mann-Whitney U test. This table

shows the p-values of the significance level of the number of

generations for each population type. The last row shows the

average number of generations the T took to find the solution

to the problem.
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TABLE V
THE PAIRWISE MANN-WHITNEY U TEST P-VALUE FOR SOLVING THE FOURTH TARGET PROBLEM 4D

control-unit fifth-solution first-solution fourth-solution MBTP second-solution
fifth-solution 0.108 - - - - -
first-solution 0.574 0.236 - - - -

fourth-solution 0.330 0.318 0.801 - - -
MBTP 0.006 0.360 0.031 0.045 - -

second-solution 0.055 0.955 0.201 0.323 0.491 -
third-solution 0.183 0.616 0.400 0.614 0.168 0.552

Mean 261.5 192.98 234.62 198.7 97.52 186.56

The third-solution mean value is 178.3.

Fig. 5 Generations used by the model to solve problem (4d)

V. DISCUSSION

This study showed that transferring knowledge from

multiple source problems is possible and may help algorithm

designers to improve the GA performance. Knowledge from

multiple sources can be combined together in one population

and solve more advanced problems. For example, our study

gathers knowledge from five different source problems and

applied it to solve the target problem.

By analyzing the transferred population that contains the

combined knowledge, we found that the process of combining

knowledge from multiple source problems added some

diversity to the transferred population. Also, the combining

process protected the old knowledge from loss. According to

other studies such as [8] and [9], old knowledge and diversity

are two important components that must be available in the

transferred population.

The MBTP method constructed the transferred population

using knowledge from final solutions of multiple source

problems. This method follows the fashion of exploiting and

exploring. The exploitation was enhanced by using the 10%

copy of the best individual of each source problem, and the

exploration was enhanced by transferring the top 10% of each

source problem’s final solution.

In this study, we have used diversity from the source

problems that we had already used to solve our problems. We

transferred the top 10% of each final solution to the transferred

population to enhance the population diversity. We feel this

diversity did not cover all possibilities since it was used to

solve other problems. In the future, we must investigate what

happens if we use a totally random individual as population

diversity.

VI. CONCLUSION

We studied how to transfer knowledge from multiple source

problems. We proposed the MBTP method, which samples

the transferred population using knowledge and diversity from

solutions of the solved source problems. We experimented with

five different source problems. We constructed the transferred

population and transferred it to the target solver to solve the

target problems.

We studied four different approaches of target problems.

These approaches cover some real-life scenarios. For example,

if we have two robots that had been trained to drive in two

different environments, we can combine their knowledge into

one robot that can serve in both environments.

Transfer Learning can combine data from multiple sources

in one population. Our proposed method may help the GA
task to solve more advanced problems or at least protect

the knowledge from loss. The experiment and results show

gathering knowledge from multiple sources improves the GA
performance compared to starting from scratch.
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