Search results for: plastic anisotropy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 389

Search results for: plastic anisotropy

359 A Self-Consistent Scheme for Elastic-Plastic Asperity Contact

Authors: Xu Jianguo

Abstract:

In this paper, a generalized self-consistent scheme, or “three phase model", is used to set up a micro-mechanics model for rough surface contact with randomly distributed asperities. The dimensionless average real pressure p is obtained as function of the ratio of the real contact area to the apparent contact area, 0 A / A r . Both elastic and plastic materials are considered, and the influence of the plasticity of material on p is discussed. Both two-dimensional and three-dimensional rough surface contact problems are considered.

Keywords: Contact mechanics, plastic deformation, self-consistent scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
358 Improving Utilization of Sugarcane by Replacing Ordinary Propagation Material with Small Chips of Sugarcane Planted in Paper Pots

Authors: C. Garcia, C. Andreasen

Abstract:

Sugarcane is an important resource for bioenergy. Fields are usually established by using 15-20 cm pieces of sugarcane stalks as propagation material. An alternative method is to use small chips with nodes from sugarcane stalks. Plants from nodes are often established in plastic pots, but plastic pots could be replaced with biodegradable paper pots. This would be a more sustainable solution, reducing labor costs and avoiding pollution with plastic. We compared the establishment of plants from nodes taken from three different part of the sugarcane plant. The nodes were planted in plastic and paper pots. There was no significant difference between plants established in the two pot types. Nodes from different part of the stalk had different sprouting capacity. Nodes from the top parts sprouted significantly better than nodes taken from the middle or nodes taken closed to the ground in two experiments. Nodes with a length of 3 cm performed better than nodes with a length of 2 cm.

Keywords: Nodes, paper pots, propagation, sugarcane.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1020
357 Modelling, Simulation and Validation of Plastic Zone Size during Deformation of Mild Steel

Authors: S. O. Adeosun, E. I. Akpan, S. A. Balogun, O. O. Taiwo

Abstract:

A model to predict the plastic zone size for material under plane stress condition has been developed and verified experimentally. The developed model is a function of crack size, crack angle and material property (dislocation density). Simulation and validation results show that the model developed show good agreement with experimental results. Samples of low carbon steel (0.035%C) with included surface crack angles of 45o, 50o, 60o, 70o and 90o and crack depths of 2mm and 4mm were subjected to low strain rate between 0.48 x 10-3 s-1 – 2.38 x 10-3 s-1. The mechanical properties studied were ductility, tensile strength, modulus of elasticity, yield strength, yield strain, stress at fracture and fracture toughness. The experimental study shows that strain rate has no appreciable effect on the size of plastic zone while crack depth and crack angle plays an imperative role in determining the size of the plastic zone of mild steel materials.

Keywords: Applied stress, crack angle, crack size, material property, plastic zone size, strain rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
356 Identification of Ductile Damage Parameters for Austenitic Steel

Authors: J. Dzugan, M. Spaniel, P. Konopík, J. Ruzicka, J. Kuzelka

Abstract:

The modeling of inelastic behavior of plastic materials requires measurements providing information on material response to different multiaxial loading conditions. Different triaxiality conditions and values of Lode parameters have to be covered for complex description of the material plastic behavior. Samples geometries providing material plastic behavoiur over the range of interest are proposed with the use of FEM analysis. Round samples with 3 different notches and smooth surface are used together with butterfly type of samples tested at angle ranging for 0 to 90°. Identification of ductile damage parameters is carried out on the basis of obtained experimental data for austenitic stainless steel. The obtained material plastic damage parameters are subsequently applied to FEM simulation of notched CT normally samples used for fracture mechanics testing and results from the simulation are compared with real tests.

Keywords: baqus, austenitic steel, computer simulation, ductile damage, triaxiality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3693
355 Triboelectric Separation of Binary Plastic Mixture

Authors: M. Saeki

Abstract:

This paper presents the results of an experimental study on the performance of a triboelectric separator of plastic mixtures used for recycling. The separator consists of four cylindrical electrodes. The principle behind the separation technique is based on the difference in the Coulomb force acting on the plastic particles after triboelectric charging. The separation of mixtures of acrylonitrile butadiene styrene (ABS) and polystyrene (PS) using this method was studied. The effects of the triboelectric charging time and applied voltage on the separation efficiency were investigated. The experimental results confirm that it is possible to obtain a high purity and recovery rate for the initial compositions considered in this study.

Keywords: Coulomb force, recycling, triboelectric separator, waste plastics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2799
354 Plastic Waste Utilization as Asphalt Binder Modifier in Asphalt Concrete Pavement

Authors: H. Naghawi, R. Al-Ajarmeh, R. Allouzi, A. AlKlub, K. Masarwah, A. AL-Quraini, M. Abu-Sarhan

Abstract:

The main objective of this paper is to evaluate the use of plastic waste as a low cost asphalt binder modifier. For this purpose Marshall mix design procedure was used. Marshall mix design procedure seeks to select the Optimum Binder Content (OBC) to be added to a specific aggregate blend resulting in a mixture that satisfies the desired properties of strength and durability. In order to evaluate the plastic waste modified (PWM) asphalt mixtures, the OBC for the conventional asphalt mix was first identified, and then different percentages of crushed plastic waste by weight of the identified OBC were tested. Marshall test results for the modified asphalt mixtures were analyzed to find the optimum PWM content. Finally, the static indirect tensile strength (IDT) was determined for all mixtures using the splitting tensile test. It was found that PWM content of 7.43% by weight of OBC is recommended as the optimum PWM content needed for enhancing the performance of asphalt mixtures. It enhanced stability by 42.56%, flow by 89.91% and strength by 13.54%. This would lead to a more durable pavement by improving the pavement resistance to fatigue cracking and rutting.

Keywords: Binder content modifier, Marshall test, plastic waste, polyethylene terephthalate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1362
353 Effect of Injection Moulding Process Parameter on Tensile Strength Using Taguchi Method

Authors: Gurjeet Singh, M. K. Pradhan, Ajay Verma

Abstract:

The plastic industry plays very important role in the economy of any country. It is generally among the leading share of the economy of the country. Since metals and their alloys are very rarely available on the earth. Therefore, to produce plastic products and components, which finds application in many industrial as well as household consumer products is beneficial. Since 50% plastic products are manufactured by injection moulding process. For production of better quality product, we have to control quality characteristics and performance of the product. The process parameters plays a significant role in production of plastic, hence the control of process parameter is essential. In this paper the effect of the parameters selection on injection moulding process has been described. It is to define suitable parameters in producing plastic product. Selecting the process parameter by trial and error is neither desirable nor acceptable, as it is often tends to increase the cost and time. Hence, optimization of processing parameter of injection moulding process is essential. The experiments were designed with Taguchi’s orthogonal array to achieve the result with least number of experiments. Plastic material polypropylene is studied. Tensile strength test of material is done on universal testing machine, which is produced by injection moulding machine. By using Taguchi technique with the help of MiniTab-14 software the best value of injection pressure, melt temperature, packing pressure and packing time is obtained. We found that process parameter packing pressure contribute more in production of good tensile plastic product.

Keywords: Injection moulding, tensile strength, Taguchi method, poly-propylene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3709
352 The Nonlinear Dynamic Elasto-Plastic Analysis for Evaluating the Controlling Effectiveness and Failure Mechanism of the MSCSS

Authors: Toi Limazie, Xun'an Zhang, Xianjie Wang

Abstract:

This paper focuses on the Mega-Sub Controlled Structure Systems (MSCSS) performances and characteristics regarding the new control principle contained in MSCSS subjected to strong earthquake excitations. The adopted control scheme consists of modulated sub-structures where the control action is achieved by viscous dampers and sub-structure own configuration. The elastic-plastic time history analysis under severe earthquake excitation is analyzed base on the Finite Element Analysis Method (FEAM), and some comparison results are also given in this paper. The result shows that the MSCSS systems can remarkably reduce vibrations effects more than the mega-sub structure (MSS). The study illustrates that the improved MSCSS presents good seismic resistance ability even at 1.2g and can absorb seismic energy in the structure, thus imply that structural members cross section can be reduce and achieve to good economic characteristics. Furthermore, the elasto-plastic analysis demonstrates that the MSCSS is accurate enough regarding international building evaluation and design codes. This paper also shows that the elasto-plastic dynamic analysis method is a reasonable and reliable analysis method for structures subjected to strong earthquake excitations and that the computed results are more precise.

Keywords: controlling effectiveness, Elasto-plastic dynamic analysis, Mega-Sub Controlled Structure, Plastic hinge pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
351 Optimization of New 25A-size Metal Gasket Design Based on Contact Width Considering Forming and Contact Stress Effect

Authors: Didik Nurhadiyanto , Moch Agus Choiron , Ken Kaminishi , Shigeyuki Haruyama

Abstract:

At the previous study of new metal gasket, contact width and contact stress were important design parameter for optimizing metal gasket performance. However, the range of contact stress had not been investigated thoroughly. In this study, we conducted a gasket design optimization based on an elastic and plastic contact stress analysis considering forming effect using FEM. The gasket model was simulated by using two simulation stages which is forming and tightening simulation. The optimum design based on an elastic and plastic contact stress was founded. Final evaluation was determined by helium leak quantity to check leakage performance of both type of gaskets. The helium leak test shows that a gasket based on the plastic contact stress design better than based on elastic stress design.

Keywords: Contact stress, metal gasket, plastic, elastic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1714
350 Identification and Classification of Plastic Resins using Near Infrared Reflectance Spectroscopy

Authors: Hamed Masoumi, Seyed Mohsen Safavi, Zahra Khani

Abstract:

In this paper, an automated system is presented for identification and separation of plastic resins based on near infrared (NIR) reflectance spectroscopy. For identification and separation among resins, a "Two-Filter" identification method is proposed that is capable to distinguish among polyethylene terephthalate (PET), high density polyethylene (HDPE), polyvinyl chloride (PVC), polypropylene (PP) and polystyrene (PS). Through surveying effects of parameters such as surface contamination, sample thickness, label and cap existence, it was obvious that the "Two-Filter" method has a high efficiency in identification of resins. It is shown that accurate identification and separation of five major resins can be obtained through calculating the relative reflectance at two wavelengths in the NIR region.

Keywords: Identification, Near Infrared, Plastic, Separation, Spectroscopy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9920
349 Analysis of Cyclic Elastic-Plastic Loading of Shaft Based On Kinematic Hardening Model

Authors: Isa Ahmadi, Ramin Khamedi

Abstract:

In this paper, the elasto-plastic and cyclic torsion of a shaft is studied using a finite element method. The Prager kinematic hardening theory of plasticity with the Ramberg and Osgood stress-strain equation is used to evaluate the cyclic loading behavior of the shaft under the torsional loading. The material of shaft is assumed to follow the non-linear strain hardening property based on the Prager model. The finite element method with C1 continuity is developed and used for solution of the governing equations of the problem. The successive substitution iterative method is used to calculate the distribution of stresses and plastic strains in the shaft due to cyclic loads. The shear stress, effective stress, residual stress and elastic and plastic shear strain distribution are presented in the numerical results.

Keywords: Cyclic Loading, Finite Element Analysis, Prager Kinematic Hardening Model, Torsion of shaft.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2688
348 Assessment of Modern RANS Models for the C3X Vane Film Cooling Prediction

Authors: Mikhail Gritskevich, Sebastian Hohenstein

Abstract:

The paper presents the results of a detailed assessment of several modern Reynolds Averaged Navier-Stokes (RANS) turbulence models for prediction of C3X vane film cooling at various injection regimes. Three models are considered, namely the Shear Stress Transport (SST) model, the modification of the SST model accounting for the streamlines curvature (SST-CC), and the Explicit Algebraic Reynolds Stress Model (EARSM). It is shown that all the considered models face with a problem in prediction of the adiabatic effectiveness in the vicinity of the cooling holes; however, accounting for the Reynolds stress anisotropy within the EARSM model noticeably increases the solution accuracy. On the other hand, further downstream all the models provide a reasonable agreement with the experimental data for the adiabatic effectiveness and among the considered models the most accurate results are obtained with the use EARMS.

Keywords: Discrete holes film cooling, Reynolds Averaged Navier-Stokes, Reynolds stress tensor anisotropy, turbulent heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1075
347 Elasto-Plastic Behavior of Rock during Temperature Drop

Authors: N. Reppas, Y. L. Gui, B. Wetenhall, C. T. Davie, J. Ma

Abstract:

A theoretical constitutive model describing the stress-strain behavior of rock subjected to different confining pressures is presented. A bounding surface plastic model with hardening effects is proposed which includes the effect of temperature drop. The bounding surface is based on a mapping rule and the temperature effect on rock is controlled by Poisson’s ratio. Validation of the results against available experimental data is also presented. The relation of deviatoric stress and axial strain is illustrated at different temperatures to analyze the effect of temperature decrease in terms of stiffness of the material.

Keywords: Bounding surface, cooling of rock, plasticity model, rock deformation, elasto-plastic behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 823
346 Effect of Zr Addition on Mechanical Properties of Cr-Mo Plastic Mold Steels

Authors: Hyun-Ho Kim, Seok-Jae Lee, Oh-Yeon Lee

Abstract:

We investigated the effects of the additions of Zr and other alloying elements on the mechanical properties and microstructure in Cr-Mo plastic mold steels. The addition of alloying elements changed the microstructure of the normalized samples from the upper bainite to lower bainite due to the increased hardenability. The tempering temperature influenced the strength and hardness values, especially the phenomenon of 350oC embrittlement was observed. The alloy additions of Cr, Mo, and V improved the resistance to the temper embrittlement. The addition of Zr improved the tensile strength and yield strength, but the impact energy was sharply decreased. It may be caused by the formation of Zr-MnS inclusion and rectangular-shaped Zr inclusion due to the Zr addition.

Keywords: Inclusions, mechanical properties, plastic mold steel, Zr addition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2276
345 The Influence of Thermic Plastic Films on Vegetative and Reproductive Growth of Iceberg Lettuce ‘Dublin’

Authors: Wael M. Semida, P. Hadley, W. Sobeih, N. A. El-Sawah, M. A. S. Barakat

Abstract:

Photoselective plastic films with thermic properties are now available so that greenhouses clad with such plastics exhibit a higher degree of “Greenhouse Effect” with a consequent increase in night time temperature. In this study, we investigate the potential benefits of a range of thermic plastic films used as greenhouse cover materials on the vegetative and reproductive growth and development of Iceberg lettuce (Lactuca sativa L). Transplants were grown under thermic films and destructively harvested 4, 5, and 6 weeks after transplanting. Thermic films can increase night temperatures up to 2 ⁰C reducing the wide fluctuation in greenhouse temperature during winter compared to the standard commercial film and consequently increased the yield (leaf number, fresh weight, and dry weight) of lettuce plants. Lettuce plants grown under Clear film respond to cold stress by the accumulation of secondary products (phenolics, and flavonoids).

Keywords: Photoselective plastic films, thermic films, secondary metabolites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037
344 Risk of Plastic Shrinkage Cracking in Recycled Aggregate Concrete

Authors: M. Eckert, M. Oliveira

Abstract:

The intensive use of natural aggregates, near cities and towns, associated to the increase of the global population, leads to its depletion and increases the transport distances. The uncontrolled deposition of construction and demolition waste in landfills and city outskirts, causes pollution and takes up space. The use of recycled aggregates in concrete preparation would contribute to mitigate the problem. However, it arises the problem that the high water absorption of recycled aggregate decreases the bleeding rate of concrete, and when this gets lower than the evaporation rate, plastic shrinkage cracking occurs. This phenomenon can be particularly problematic in hot and windy curing environments. Cracking facilitates the flow of liquid and gas into concrete which attacks the reinforcement and degrades the concrete. These factors reduce the durability of concrete structures and consequently the lifetime of buildings. A ring test was used, cured in a wind tunnel, to evaluate the plastic shrinkage cracking sensitivity of recycled aggregate concrete, in order to implement preventive means to control this phenomenon. The role of several aggregate properties on the concrete segregation and cracking mechanisms were also discussed.

Keywords: Recycled Aggregate, Plastic Shrinkage Cracking; Wind Tunnel, Durability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 993
343 Near-Infrared Hyperspectral Imaging Spectroscopy to Detect Microplastics and Pieces of Plastic in Almond Flour

Authors: H. Apaza, L. Chévez, H. Loro

Abstract:

Plastic and microplastic pollution in human food chain is a big problem for human health that requires more elaborated techniques that can identify their presences in different kinds of food. Hyperspectral imaging technique is an optical technique than can detect the presence of different elements in an image and can be used to detect plastics and microplastics in a scene. To do this statistical techniques are required that need to be evaluated and compared in order to find the more efficient ones. In this work, two problems related to the presence of plastics are addressed, the first is to detect and identify pieces of plastic immersed in almond seeds, and the second problem is to detect and quantify microplastic in almond flour. To do this we make use of the analysis hyperspectral images taken in the range of 900 to 1700 nm using 4 unmixing techniques of hyperspectral imaging which are: least squares unmixing (LSU), non-negatively constrained least squares unmixing (NCLSU), fully constrained least squares unmixing (FCLSU), and scaled constrained least squares unmixing (SCLSU). NCLSU, FCLSU, SCLSU techniques manage to find the region where the plastic is found and also manage to quantify the amount of microplastic contained in the almond flour. The SCLSU technique estimated a 13.03% abundance of microplastics and 86.97% of almond flour compared to 16.66% of microplastics and 83.33% abundance of almond flour prepared for the experiment. Results show the feasibility of applying near-infrared hyperspectral image analysis for the detection of plastic contaminants in food.

Keywords: Food, plastic, microplastic, NIR hyperspectral imaging, unmixing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1116
342 Optimum Design of Pressure Vessel Subjected to Autofrettage Process

Authors: Abu Rayhan Md. Ali, Nidul Ch. Ghosh, Tanvir-E-Alam

Abstract:

The effect of autofrettage process in strain hardened thick-walled pressure vessels has been investigated theoretically by finite element modeling. Equivalent von Mises stress is used as yield criterion to evaluate the optimum autofrettage pressure and the optimum radius of elastic-plastic junction. It has been observed that the optimum autofrettage pressure increases along with the working pressure. For two different working pressures, the effect of the ratio of outer to inner radius (b/a=k) value on the optimum autofrettage pressure is also noticed. The Optimum autofrettage pressure solely depends on K value rather than on the inner or outer radius. Furthermore, percentage reduction of von Mises stresses is compared for different working pressures and different k values. Maximum von Mises stress developed at different autofrettage pressure is equated for elastic perfectly plastic and elastic-plastic material with different slope of strain hardening segment. Cylinder material having higher slope of strain hardening segment provides better benedictions in the autofrettage process.

Keywords: Autofrettage, elastic plastic junction, pressure vessel, von Mises stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3767
341 Rapid Data Acquisition System for Complex Algorithm Testing in Plastic Molding Industry

Authors: A. Tellaeche, R. Arana

Abstract:

Injection molding is a very complicated process to monitor and control. With its high complexity and many process parameters, the optimization of these systems is a very challenging problem. To meet the requirements and costs demanded by the market, there has been an intense development and research with the aim to maintain the process under control. This paper outlines the latest advances in necessary algorithms for plastic injection process and monitoring, and also a flexible data acquisition system that allows rapid implementation of complex algorithms to assess their correct performance and can be integrated in the quality control process. This is the main topic of this paper. Finally, to demonstrate the performance achieved by this combination, a real case of use is presented.

Keywords: Plastic injection, machine learning, rapid complex algorithm prototyping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2086
340 Construction of Strain Distribution Profiles of EDD Steel at Elevated Temperatures

Authors: Eshwara K. Prasad, Raman R. Goud, Swadesh Kumar Singh, N. Sateesh

Abstract:

In the present work, forming limit diagrams and strain distribution profile diagrams for extra deep drawing steel at room and elevated temperatures have been determined experimentally by conducting stretch forming experiments by using designed and fabricated warm stretchforming tooling setup. With the help of forming Limit Diagrams (FLDs) and strain, distribution profile diagrams the formability of Extra Deep Drawing steel has been analyzed and co-related with mechanical properties like strain hardening COEFFICIENT (n) and normal anisotropy (r−). Mechanical properties of EDD steel from room temperature to 4500C were determined and discussed the impact of temperature on the properties like work hardening exponent (n) anisotropy (r-) and strength coefficient of the material. In addition, the fractured surfaces after stretching have undergone the some metallurgical investigations and attempt has been made to co-relate with the formability of EDD steel sheets. They are co-related and good agreement with FLDs at various temperatures.

Keywords: FLD, microhardness, strain distribution profile, stretch forming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
339 Investigation of the Effect of Fine-Grained and Its Plastic Properties on Liquefaction Resistance of Sand

Authors: S. A. Naeini, M. Mortezaee

Abstract:

The purpose of this paper is to investigate the effect of fine grain content in soil and its plastic properties on soil liquefaction potential. For this purpose, the conditions for considering the fine grains effect and percentage of plastic fine on the liquefaction resistance of saturated sand presented by researchers has been investigated. Then, some comprehensive results of all the issues raised by some researchers are stated. From these investigations it was observed that by increasing the percentage of cohesive fine grains in the sandy soil (up to 20%), the maximum shear strength decreases and by adding more fine- grained percentage, the maximum shear strength of the resulting soil increases but never reaches the amount of clean sand.

Keywords: Fine-grained, liquefaction, plasticity, shear strength, sand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 425
338 Computation and Validation of the Stress Distribution around a Circular Hole in a Slab Undergoing Plastic Deformation

Authors: S. D. El Wakil, J. Rice

Abstract:

The aim of the current work was to employ the finite element method to model a slab, with a small hole across its width, undergoing plastic plane strain deformation. The computational model had, however, to be validated by comparing its results with those obtained experimentally. Since they were in good agreement, the finite element method can therefore be considered a reliable tool that can help gain better understanding of the mechanism of ductile failure in structural members having stress raisers. The finite element software used was ANSYS, and the PLANE183 element was utilized. It is a higher order 2-D, 8-node or 6-node element with quadratic displacement behavior. A bilinear stress-strain relationship was used to define the material properties, with constants similar to those of the material used in the experimental study. The model was run for several tensile loads in order to observe the progression of the plastic deformation region, and the stress concentration factor was determined in each case. The experimental study involved employing the visioplasticity technique, where a circular mesh (each circle was 0.5 mm in diameter, with 0.05 mm line thickness) was initially printed on the side of an aluminum slab having a small hole across its width. Tensile loading was then applied to produce a small increment of plastic deformation. Circles in the plastic region became ellipses, where the directions of the principal strains and stresses coincided with the major and minor axes of the ellipses. Next, we were able to determine the directions of the maximum and minimum shear stresses at the center of each ellipse, and the slip-line field was then constructed. We were then able to determine the stress at any point in the plastic deformation zone, and hence the stress concentration factor. The experimental results were found to be in good agreement with the analytical ones.

Keywords: Finite element method to model a slab, slab undergoing plastic deformation, stress distribution around a circular hole, visioplasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058
337 Stress and Strain Analysis of Notched Bodies Subject to Non-Proportional Loadings

Authors: A. Ince

Abstract:

In this paper, an analytical simplified method for calculating elasto-plastic stresses strains of notched bodies subject to non-proportional loading paths is discussed. The method was based on the Neuber notch correction, which relates the incremental elastic and elastic-plastic strain energy densities at the notch root and the material constitutive relationship. The validity of the method was presented by comparing computed results of the proposed model against finite element numerical data of notched shaft. The comparison showed that the model estimated notch-root elasto-plastic stresses strains with good accuracy using linear-elastic stresses. The prosed model provides more efficient and simple analysis method preferable to expensive experimental component tests and more complex and time consuming incremental non-linear FE analysis. The model is particularly suitable to perform fatigue life and fatigue damage estimates of notched components subjected to nonproportional loading paths.

Keywords: Elasto-plastic, stress-strain, notch analysis, nonprortional loadings, cyclic plasticity, fatigue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2510
336 Effect of Plastic Fines on Liquefaction Resistance of Sandy Soil Using Resonant Column Test

Authors: S. A. Naeini, M. Ghorbani Tochaee

Abstract:

The aim of this study is to assess the influence of plastic fines content on sand-clay mixtures on maximum shear modulus and liquefaction resistance using a series of resonant column tests. A high plasticity clay called bentonite was added to 161 Firoozkooh sand at the percentages of 10, 15, 20, 25, 30 and 35 by dry weight. The resonant column tests were performed on the remolded specimens at constant confining pressure of 100 KPa and then the values of Gmax and liquefaction resistance were investigated. The maximum shear modulus and cyclic resistance ratio (CRR) are examined in terms of fines content. Based on the results, the maximum shear modulus and liquefaction resistance tend to decrease within the increment of fine contents.

Keywords: Gmax, liquefaction, plastic fines, resonant column, sand-clay mixtures, bentonite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 674
335 Reliability Based Optimal Design of Laterally Loaded Pile with Limited Residual Strain Energy Capacity

Authors: M. Movahedi Rad

Abstract:

In this study, a general approach to the reliability based limit analysis of laterally loaded piles is presented. In engineering practice the uncertainties play a very important role. The aim of this study is to evaluate the lateral load capacity of free-head and fixed-head long pile when plastic limit analysis is considered. In addition to the plastic limit analysis to control the plastic behaviour of the structure, uncertain bound on the complementary strain energy of the residual forces is also applied. This bound has significant effect for the load parameter. The solution to reliability-based problems is obtained by a computer program which is governed by the reliability index calculation.

Keywords: Reliability, laterally loaded pile, residual strain energy, probability, limit analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1871
334 Optimal Performance of Plastic Extrusion Process Using Fuzzy Goal Programming

Authors: Abbas Al-Refaie

Abstract:

This study optimized the performance of plastic extrusion process of drip irrigation pipes using fuzzy goal programming. Two main responses were of main interest; roll thickness and hardness. Four main process factors were studied. The L18 array was then used for experimental design. The individual-moving range control charts were used to assess the stability of the process, while the process capability index was used to assess process performance. Confirmation experiments were conducted at the obtained combination of optimal factor setting by fuzzy goal programming. The results revealed that process capability was improved significantly from -1.129 to 0.8148 for roll thickness and from 0.0965 to 0.714 and hardness. Such improvement results in considerable savings in production and quality costs.

Keywords: Fuzzy goal programming, extrusion process, process capability, irrigation plastic pipes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 853
333 Modeling Directional Thermal Radiance Anisotropy for Urban Canopy

Authors: Limin Zhao, Xingfa Gu, C. Tao Yu

Abstract:

one of the significant factors for improving the accuracy of Land Surface Temperature (LST) retrieval is the correct understanding of the directional anisotropy for thermal radiance. In this paper, the multiple scattering effect between heterogeneous non-isothermal surfaces is described rigorously according to the concept of configuration factor, based on which a directional thermal radiance model is built, and the directional radiant character for urban canopy is analyzed. The model is applied to a simple urban canopy with row structure to simulate the change of Directional Brightness Temperature (DBT). The results show that the DBT is aggrandized because of the multiple scattering effects, whereas the change range of DBT is smoothed. The temperature difference, spatial distribution, emissivity of the components can all lead to the change of DBT. The “hot spot" phenomenon occurs when the proportion of high temperature component in the vision field came to a head. On the other hand, the “cool spot" phenomena occur when low temperature proportion came to the head. The “spot" effect disappears only when the proportion of every component keeps invariability. The model built in this paper can be used for the study of directional effect on emissivity, the LST retrieval over urban areas and the adjacency effect of thermal remote sensing pixels.

Keywords: Directional thermal radiance, multiple scattering, configuration factor, urban canopy, hot spot effect

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563
332 Finite Element Modeling to Predict the Effect of Nose Radius on the Equivalent Strain (PEEQ) for Titanium Alloy (Ti-6Al-4V)

Authors: Moaz H. Ali, M. N. M. Ansari, Pang Jing Shen

Abstract:

In present work, prediction the effect of nose radius, rz (mm) on the equivalent strain (PEEQ) and surface finish during the machining of titanium alloy (Ti-6Al-4V) through orthogonal cutting process. The results were performed at several of the nose radiuses, rz (mm) while the cutting speed, vc (m/min), feed rate, f (mm/tooth) and depth of cut, d (mm) were remained constant. The equivalent plastic strain (PEEQ) was estimated by using finite element modeling (FEM) and applied through ABAQUS/EXPLICIT software. The simulation results led to conclude that the equivalent plastic strain (PEEQ) was increased and surface roughness (Ra) decreased when increasing nose radius, rz (mm) during the machining of titanium alloy (Ti–6Al–4V) in dry cutting conditions.

Keywords: Finite element modeling (FEM), nose radius, plastic strain (PEEQ), titanium alloy (Ti-6Al-4V).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2435
331 Possible Number of Dwelling Units Using Waste Plastic Bottle for Construction

Authors: Dibya Jivan Pati, Kazuhisa Iki, Riken Homma

Abstract:

Unlike other metro cities of India, Bhubaneswar–the capital city of Odisha, is expected to reach 1-million-mark population by now. The demands of dwelling unit requirement mostly among urban poor belonging to Economically Weaker section (EWS) and Low Income groups (LIG) is becoming a challenge due to high housing cost and rents. As a matter of fact, it’s also noted that, with increase in population, the solid waste generation also increases subsequently affecting the environment due to inefficiency in collection of waste by local government bodies. Methods of utilizing Solid Waste - especially in form of Plastic bottles, Glass bottles and Metal cans (PGM) are now widely used as an alternative material for construction of low-cost building by Non-Government Organizations (NGOs) in developing countries like India to help the urban poor afford a shelter. The application of disposed plastic bottle used in construction of single dwelling significantly reduces the overall cost of construction to as much as 14% compared to traditional construction material. Therefore, considering its cost-benefit result, it’s possible to provide housing to EWS and LIGs at an affordable price. In this paper, we estimated the quantity of plastic bottles generated in Bhubaneswar which further helped to estimate the possible number of single dwelling unit that can be constructed on yearly basis so as to refrain from further housing shortage. The estimation results will be practically used for planning and managing low-cost housing business by local government and NGOs.

Keywords: Construction, dwelling unit, plastic bottle, solid waste generation, groups.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1028
330 Elasto-Visco-Plastic-Damage Model for Pre-Strained 304L Stainless Steel Subjected to Low Temperature

Authors: Jeong-Hyeon Kim, Ki-Yeob Kang, Myung-Hyun Kim, Jae-Myung Lee

Abstract:

Primary barrier of membrane type LNG containment system consist of corrugated 304L stainless steel. This 304L stainless steel is austenitic stainless steel which shows different material behaviors owing to phase transformation during the plastic work. Even though corrugated primary barriers are subjected to significant amounts of pre-strain due to press working, quantitative mechanical behavior on the effect of pre-straining at cryogenic temperatures are not available. In this study, pre-strain level and pre-strain temperature dependent tensile tests are carried to investigate mechanical behaviors. Also, constitutive equations with material parameters are suggested for a verification study.

Keywords: Constitutive equation, corrugated sheet, pre-strain effect, elasto-visco-plastic-damage model, 304L stainless steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594