Search results for: orthogonal decomposition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 578

Search results for: orthogonal decomposition

578 Secure Image Retrieval Based On Orthogonal Decomposition under Cloud Environment

Authors: Yanyan Xu, Lizhi Xiong, Zhengquan Xu, Li Jiang

Abstract:

In order to protect data privacy, image with sensitive or private information needs to be encrypted before being outsourced to the cloud. However, this causes difficulties in image retrieval and data management. A secure image retrieval method based on orthogonal decomposition is proposed in the paper. The image is divided into two different components, for which encryption and feature extraction are executed separately. As a result, cloud server can extract features from an encrypted image directly and compare them with the features of the queried images, so that the user can thus obtain the image. Different from other methods, the proposed method has no special requirements to encryption algorithms. Experimental results prove that the proposed method can achieve better security and better retrieval precision.

Keywords: Secure image retrieval, secure search, orthogonal decomposition, secure cloud computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114
577 Encryption Image via Mutual Singular Value Decomposition

Authors: Adil Al-Rammahi

Abstract:

Image or document encryption is needed through egovernment data base. Really in this paper we introduce two matrices images, one is the public, and the second is the secret (original). The analyses of each matrix is achieved using the transformation of singular values decomposition. So each matrix is transformed or analyzed to three matrices say row orthogonal basis, column orthogonal basis, and spectral diagonal basis. Product of the two row basis is calculated. Similarly the product of the two column basis is achieved. Finally we transform or save the files of public, row product and column product. In decryption stage, the original image is deduced by mutual method of the three public files.

Keywords: Image cryptography, Singular values decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2086
576 Decomposition of Graphs into Induced Paths and Cycles

Authors: I. Sahul Hamid, Abraham V. M.

Abstract:

A decomposition of a graph G is a collection ψ of subgraphs H1,H2, . . . , Hr of G such that every edge of G belongs to exactly one Hi. If each Hi is either an induced path or an induced cycle in G, then ψ is called an induced path decomposition of G. The minimum cardinality of an induced path decomposition of G is called the induced path decomposition number of G and is denoted by πi(G). In this paper we initiate a study of this parameter.

Keywords: Path decomposition, Induced path decomposition, Induced path decomposition number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2373
575 An Improved Algorithm for Calculation of the Third-order Orthogonal Tensor Product Expansion by Using Singular Value Decomposition

Authors: Chiharu Okuma, Naoki Yamamoto, Jun Murakami

Abstract:

As a method of expanding a higher-order tensor data to tensor products of vectors we have proposed the Third-order Orthogonal Tensor Product Expansion (3OTPE) that did similar expansion as Higher-Order Singular Value Decomposition (HOSVD). In this paper we provide a computation algorithm to improve our previous method, in which SVD is applied to the matrix that constituted by the contraction of original tensor data and one of the expansion vector obtained. The residual of the improved method is smaller than the previous method, truncating the expanding tensor products to the same number of terms. Moreover, the residual is smaller than HOSVD when applying to color image data. It is able to be confirmed that the computing time of improved method is the same as the previous method and considerably better than HOSVD.

Keywords: Singular value decomposition (SVD), higher-orderSVD (HOSVD), outer product expansion, power method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
574 Induced Acyclic Path Decomposition in Graphs

Authors: Abraham V. M., I. Sahul Hamid

Abstract:

A decomposition of a graph G is a collection ψ of graphs H1,H2, . . . , Hr of G such that every edge of G belongs to exactly one Hi. If each Hi is either an induced path in G, then ψ is called an induced acyclic path decomposition of G and if each Hi is a (induced) cycle in G then ψ is called a (induced) cycle decomposition of G. The minimum cardinality of an induced acyclic path decomposition of G is called the induced acyclic path decomposition number of G and is denoted by ¤Çia(G). Similarly the cyclic decomposition number ¤Çc(G) is defined. In this paper we begin an investigation of these parameters.

Keywords: Cycle decomposition, Induced acyclic path decomposition, Induced acyclic path decomposition number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
573 Extracting the Coupled Dynamics in Thin-Walled Beams from Numerical Data Bases

Authors: Mohammad A. Bani-Khaled

Abstract:

In this work we use the Discrete Proper Orthogonal Decomposition transform to characterize the properties of coupled dynamics in thin-walled beams by exploiting numerical simulations obtained from finite element simulations. The outcomes of the will improve our understanding of the linear and nonlinear coupled behavior of thin-walled beams structures. Thin-walled beams have widespread usage in modern engineering application in both large scale structures (aeronautical structures), as well as in nano-structures (nano-tubes). Therefore, detailed knowledge in regard to the properties of coupled vibrations and buckling in these structures are of great interest in the research community. Due to the geometric complexity in the overall structure and in particular in the cross-sections it is necessary to involve computational mechanics to numerically simulate the dynamics. In using numerical computational techniques, it is not necessary to over simplify a model in order to solve the equations of motions. Computational dynamics methods produce databases of controlled resolution in time and space. These numerical databases contain information on the properties of the coupled dynamics. In order to extract the system dynamic properties and strength of coupling among the various fields of the motion, processing techniques are required. Time- Proper Orthogonal Decomposition transform is a powerful tool for processing databases for the dynamics. It will be used to study the coupled dynamics of thin-walled basic structures. These structures are ideal to form a basis for a systematic study of coupled dynamics in structures of complex geometry.

Keywords: Coupled dynamics, geometric complexity, Proper Orthogonal Decomposition (POD), thin walled beams.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1016
572 A Sparse Representation Speech Denoising Method Based on Adapted Stopping Residue Error

Authors: Qianhua He, Weili Zhou, Aiwu Chen

Abstract:

A sparse representation speech denoising method based on adapted stopping residue error was presented in this paper. Firstly, the cross-correlation between the clean speech spectrum and the noise spectrum was analyzed, and an estimation method was proposed. In the denoising method, an over-complete dictionary of the clean speech power spectrum was learned with the K-singular value decomposition (K-SVD) algorithm. In the sparse representation stage, the stopping residue error was adaptively achieved according to the estimated cross-correlation and the adjusted noise spectrum, and the orthogonal matching pursuit (OMP) approach was applied to reconstruct the clean speech spectrum from the noisy speech. Finally, the clean speech was re-synthesised via the inverse Fourier transform with the reconstructed speech spectrum and the noisy speech phase. The experiment results show that the proposed method outperforms the conventional methods in terms of subjective and objective measure.

Keywords: Speech denoising, sparse representation, K-singular value decomposition, orthogonal matching pursuit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1014
571 Vertex Configurations and Their Relationship on Orthogonal Pseudo-Polyhedra

Authors: Jefri Marzal, Hong Xie, Chun Che Fung

Abstract:

Vertex configuration for a vertex in an orthogonal pseudo-polyhedron is an identity of a vertex that is determined by the number of edges, dihedral angles, and non-manifold properties meeting at the vertex. There are up to sixteen vertex configurations for any orthogonal pseudo-polyhedron (OPP). Understanding the relationship between these vertex configurations will give us insight into the structure of an OPP and help us design better algorithms for many 3-dimensional geometric problems. In this paper, 16 vertex configurations for OPP are described first. This is followed by a number of formulas giving insight into the relationship between different vertex configurations in an OPP. These formulas will be useful as an extension of orthogonal polyhedra usefulness on pattern analysis in 3D-digital images.

Keywords: Orthogonal Pseudo Polyhedra, Vertex configuration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1368
570 Investigation on Flexural Behavior of Non-Crimp 3D Orthogonal Weave Carbon Composite Reinforcement

Authors: Sh. Minapoor, S. Ajeli

Abstract:

Non-crimp three-dimensional (3D) orthogonal carbon fabrics are one of the useful textiles reinforcements in composites. In this paper, flexural and bending properties of a carbon non-crimp 3D orthogonal woven reinforcement are experimentally investigated. The present study is focused on the understanding and measurement of the main bending parameters including flexural stress, strain, and modulus. For this purpose, the three-point bending test method is used and the load-displacement curves are analyzed. The influence of some weave's parameters such as yarn type, geometry of structure, and fiber volume fraction on bending behavior of non-crimp 3D orthogonal carbon fabric is investigated. The obtained results also represent a dataset for the simulation of flexural behavior of non-crimp 3D orthogonal weave carbon composite reinforcement.

Keywords: Non-crimp 3D orthogonal weave, carbon composite reinforcement, flexural behavior, three-point bending.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
569 Blind Channel Estimation Based on URV Decomposition Technique for Uplink of MC-CDMA

Authors: Pradya Pornnimitkul, Suwich Kunaruttanapruk, Bamrung Tau Sieskul, Somchai Jitapunkul

Abstract:

In this paper, we investigate a blind channel estimation method for Multi-carrier CDMA systems that use a subspace decomposition technique. This technique exploits the orthogonality property between the noise subspace and the received user codes to obtain channel of each user. In the past we used Singular Value Decomposition (SVD) technique but SVD have most computational complexity so in this paper use a new algorithm called URV Decomposition, which serve as an intermediary between the QR decomposition and SVD, replaced in SVD technique to track the noise space of the received data. Because of the URV decomposition has almost the same estimation performance as the SVD, but has less computational complexity.

Keywords: Channel estimation, MC-CDMA, SVD, URV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
568 Generalized Morphological 3D Shape Decomposition Grayscale Interframe Interpolation Method

Authors: Dragos Nicolae VIZIREANU

Abstract:

One of the main image representations in Mathematical Morphology is the 3D Shape Decomposition Representation, useful for Image Compression and Representation,and Pattern Recognition. The 3D Morphological Shape Decomposition representation can be generalized a number of times,to extend the scope of its algebraic characteristics as much as possible. With these generalizations, the Morphological Shape Decomposition 's role to serve as an efficient image decomposition tool is extended to grayscale images.This work follows the above line, and further develops it. Anew evolutionary branch is added to the 3D Morphological Shape Decomposition's development, by the introduction of a 3D Multi Structuring Element Morphological Shape Decomposition, which permits 3D Morphological Shape Decomposition of 3D binary images (grayscale images) into "multiparameter" families of elements. At the beginning, 3D Morphological Shape Decomposition representations are based only on "1 parameter" families of elements for image decomposition.This paper addresses the gray scale inter frame interpolation by means of mathematical morphology. The new interframe interpolation method is based on generalized morphological 3D Shape Decomposition. This article will present the theoretical background of the morphological interframe interpolation, deduce the new representation and show some application examples.Computer simulations could illustrate results.

Keywords: 3D shape decomposition representation, mathematical morphology, gray scale interframe interpolation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
567 Comparison between Higher-Order SVD and Third-order Orthogonal Tensor Product Expansion

Authors: Chiharu Okuma, Jun Murakami, Naoki Yamamoto

Abstract:

In digital signal processing it is important to approximate multi-dimensional data by the method called rank reduction, in which we reduce the rank of multi-dimensional data from higher to lower. For 2-dimennsional data, singular value decomposition (SVD) is one of the most known rank reduction techniques. Additional, outer product expansion expanded from SVD was proposed and implemented for multi-dimensional data, which has been widely applied to image processing and pattern recognition. However, the multi-dimensional outer product expansion has behavior of great computation complex and has not orthogonally between the expansion terms. Therefore we have proposed an alterative method, Third-order Orthogonal Tensor Product Expansion short for 3-OTPE. 3-OTPE uses the power method instead of nonlinear optimization method for decreasing at computing time. At the same time the group of B. D. Lathauwer proposed Higher-Order SVD (HOSVD) that is also developed with SVD extensions for multi-dimensional data. 3-OTPE and HOSVD are similarly on the rank reduction of multi-dimensional data. Using these two methods we can obtain computation results respectively, some ones are the same while some ones are slight different. In this paper, we compare 3-OTPE to HOSVD in accuracy of calculation and computing time of resolution, and clarify the difference between these two methods.

Keywords: Singular value decomposition (SVD), higher-order SVD (HOSVD), higher-order tensor, outer product expansion, power method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
566 N-Sun Decomposition of Complete Graphs and Complete Bipartite Graphs

Authors: R. Anitha, R. S. Lekshmi

Abstract:

Graph decompositions are vital in the study of combinatorial design theory. Given two graphs G and H, an H-decomposition of G is a partition of the edge set of G into disjoint isomorphic copies of H. An n-sun is a cycle Cn with an edge terminating in a vertex of degree one attached to each vertex. In this paper we have proved that the complete graph of order 2n, K2n can be decomposed into n-2 n-suns, a Hamilton cycle and a perfect matching, when n is even and for odd case, the decomposition is n-1 n-suns and a perfect matching. For an odd order complete graph K2n+1, delete the star subgraph K1, 2n and the resultant graph K2n is decomposed as in the case of even order. The method of building n-suns uses Walecki's construction for the Hamilton decomposition of complete graphs. A spanning tree decomposition of even order complete graphs is also discussed using the labeling scheme of n-sun decomposition. A complete bipartite graph Kn, n can be decomposed into n/2 n-suns when n/2 is even. When n/2 is odd, Kn, n can be decomposed into (n-2)/2 n-suns and a Hamilton cycle.

Keywords: Hamilton cycle, n-sun decomposition, perfectmatching, spanning tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261
565 Computing Visibility Subsets in an Orthogonal Polyhedron

Authors: Jefri Marzal, Hong Xie, Chun Che Fung

Abstract:

Visibility problems are central to many computational geometry applications. One of the typical visibility problems is computing the view from a given point. In this paper, a linear time procedure is proposed to compute the visibility subsets from a corner of a rectangular prism in an orthogonal polyhedron. The proposed algorithm could be useful to solve classic 3D problems.

Keywords: Visibility, rectangular prism, orthogonal polyhedron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1389
564 Analysis of Catalytic Properties of Ni3Al Thin Foils for the Methanol and Hexane Decomposition

Authors: M. Michalska-Domańska, P. Jóźwik, Z. Bojar

Abstract:

Intermetallic Ni3Al – based alloys belong to a group of advanced materials characterized by good chemical and physical properties (such as structural stability, corrosion resistance) which offer advenced technological applications. The paper presents the study of catalytic properties of Ni3Al foils (thickness approximately 50 &m) in the methanol and hexane decomposition. The egzamined material posses microcrystalline structure without any additional catalysts on the surface. The better catalytic activity of Ni3Al foils with respect to quartz plates in both methanol and hexane decomposition was confirmed. On thin Ni3Al foils the methanol conversion reaches approximately 100% above 480 oC while the hexane conversion reaches approximately 100% (98,5%) at 500 oC. Deposit formed during the methanol decomposition is built up of carbon nanofibers decorated with metal-like nanoparticles.

Keywords: hexane decomposition, methanol decomposition, Ni3Al thin foils, Ni nanoparticles

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
563 Optimizing Approach for Sifting Process to Solve a Common Type of Empirical Mode Decomposition Mode Mixing

Authors: Saad Al-Baddai, Karema Al-Subari, Elmar Lang, Bernd Ludwig

Abstract:

Empirical mode decomposition (EMD), a new data-driven of time-series decomposition, has the advantage of supposing that a time series is non-linear or non-stationary, as is implicitly achieved in Fourier decomposition. However, the EMD suffers of mode mixing problem in some cases. The aim of this paper is to present a solution for a common type of signals causing of EMD mode mixing problem, in case a signal suffers of an intermittency. By an artificial example, the solution shows superior performance in terms of cope EMD mode mixing problem comparing with the conventional EMD and Ensemble Empirical Mode decomposition (EEMD). Furthermore, the over-sifting problem is also completely avoided; and computation load is reduced roughly six times compared with EEMD, an ensemble number of 50.

Keywords: Empirical mode decomposition, mode mixing, sifting process, over-sifting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 992
562 Near-Lossless Image Coding based on Orthogonal Polynomials

Authors: Krishnamoorthy R, Rajavijayalakshmi K, Punidha R

Abstract:

In this paper, a near lossless image coding scheme based on Orthogonal Polynomials Transform (OPT) has been presented. The polynomial operators and polynomials basis operators are obtained from set of orthogonal polynomials functions for the proposed transform coding. The image is partitioned into a number of distinct square blocks and the proposed transform coding is applied to each of these individually. After applying the proposed transform coding, the transformed coefficients are rearranged into a sub-band structure. The Embedded Zerotree (EZ) coding algorithm is then employed to quantize the coefficients. The proposed transform is implemented for various block sizes and the performance is compared with existing Discrete Cosine Transform (DCT) transform coding scheme.

Keywords: Near-lossless Coding, Orthogonal Polynomials Transform, Embedded Zerotree Coding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
561 N-Sun Decomposition of Complete, Complete Bipartite and Some Harary Graphs

Authors: R. Anitha, R. S. Lekshmi

Abstract:

Graph decompositions are vital in the study of combinatorial design theory. A decomposition of a graph G is a partition of its edge set. An n-sun graph is a cycle Cn with an edge terminating in a vertex of degree one attached to each vertex. In this paper, we define n-sun decomposition of some even order graphs with a perfect matching. We have proved that the complete graph K2n, complete bipartite graph K2n, 2n and the Harary graph H4, 2n have n-sun decompositions. A labeling scheme is used to construct the n-suns.

Keywords: Decomposition, Hamilton cycle, n-sun graph, perfect matching, spanning tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2395
560 On the Flow of a Third Grade Viscoelastic Fluid in an Orthogonal Rheometer

Authors: Carmen D. Pricinâ, E. Corina Cipu, Victor Ţigoiu

Abstract:

The flow of a third grade fluid in an orthogonal rheometer is studied. We employ the admissible velocity field proposed in [5]. We solve the problem and obtain the velocity field as well as the components for the Cauchy tensor. We compare the results with those from [9]. Some diagrams concerning the velocity and Cauchy stress components profiles are presented for different values of material constants and compared with the corresponding values for a linear viscous fluid.

Keywords: Non newtonian fluid flow, orthogonal rheometer, third grade fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1467
559 PAPR Reduction in OFDM Systems Using Orthogonal Eigenvector Matrix

Authors: Md. Mahmudul Hasan

Abstract:

OFDM systems are known to have a high PAPR (Peak-to-Average Power Ratio) compared with single-carrier systems. In fact, the high PAPR is one of the most detrimental aspects in the OFDM system, as it can cause power degradation (Inband distortion) and spectral spreading (Out-of-band radiation). In this paper, from the foundation of the PAPR analysis an effective method of PAPR reduction has been proposed based on Orthogonal Eigenvector Matrix (OEM) transform. Extensive computer simulations show that a PAPR reduction of up to 4.4 dB can be obtained without introducing in-band distortion or out-of-band radiation in the system.

Keywords: Orthogonal frequency division multiplexing (OFDM), peak-to-average power ratio (PAPR), Orthogonal Eigenvector Matrix (OEM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022
558 New Subband Adaptive IIR Filter Based On Polyphase Decomposition

Authors: Young-Seok Choi

Abstract:

We present a subband adaptive infinite-impulse response (IIR) filtering method, which is based on a polyphase decomposition of IIR filter. Motivated by the fact that the polyphase structure has benefits in terms of convergence rate and stability, we introduce the polyphase decomposition to subband IIR filtering, i.e., in each subband high order IIR filter is decomposed into polyphase IIR filters with lower order. Computer simulations demonstrate that the proposed method has improved convergence rate over conventional IIR filters.

Keywords: Subband adaptive filter, IIR filtering. Polyphase decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2497
557 Simulation of Non-Crimp 3D Orthogonal Carbon Fabric Composite for Aerospace Applications Using Finite Element Method

Authors: Sh. Minapoor, S. Ajeli, M. Javadi Toghchi

Abstract:

Non-crimp 3D orthogonal fabric composite is one of the textile-based composite materials that are rapidly developing light-weight engineering materials. The present paper focuses on geometric and micromechanical modeling of non-crimp 3D orthogonal carbon fabric and composites reinforced with it for aerospace applications. In this research meso-finite element (FE) modeling employs for stress analysis in different load conditions. Since mechanical testing of expensive textile carbon composites with specific application isn't affordable, simulation composite in a virtual environment is a helpful way to investigate its mechanical properties in different conditions.

Keywords: 3D orthogonal woven composite, Aerospace applications, Finite element method, Mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3059
556 A Novel Instantaneous Frequency Computation Approach for Empirical Mode Decomposition

Authors: Liming Zhang

Abstract:

This paper introduces a new instantaneous frequency computation approach  -Counting Instantaneous Frequency for a general class of signals called simple waves. The classsimple wave contains a wide range of continuous signals for which the concept instantaneous frequency has a perfect physical sense. The concept of  -Counting Instantaneous Frequency also applies to all the discrete data. For all the simple wave signals and the discrete data, -Counting instantaneous frequency can be computed directly without signal decomposition process. The intrinsic mode functions obtained through empirical mode decomposition belongs to simple wave. So  -Counting instantaneous frequency can be used together with empirical mode decomposition.

Keywords: Instantaneous frequency, empirical mode decomposition, intrinsic mode function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
555 Adaptive Fourier Decomposition Based Signal Instantaneous Frequency Computation Approach

Authors: Liming Zhang

Abstract:

There have been different approaches to compute the analytic instantaneous frequency with a variety of background reasoning and applicability in practice, as well as restrictions. This paper presents an adaptive Fourier decomposition and (α-counting) based instantaneous frequency computation approach. The adaptive Fourier decomposition is a recently proposed new signal decomposition approach. The instantaneous frequency can be computed through the so called mono-components decomposed by it. Due to the fast energy convergency, the highest frequency of the signal will be discarded by the adaptive Fourier decomposition, which represents the noise of the signal in most of the situation. A new instantaneous frequency definition for a large class of so-called simple waves is also proposed in this paper. Simple wave contains a wide range of signals for which the concept instantaneous frequency has a perfect physical sense. The α-counting instantaneous frequency can be used to compute the highest frequency for a signal. Combination of these two approaches one can obtain the IFs of the whole signal. An experiment is demonstrated the computation procedure with promising results.

Keywords: Adaptive Fourier decomposition, Fourier series, signal processing, instantaneous frequency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2357
554 Blind Identification and Equalization of CDMA Signals Using the Levenvberg-Marquardt Algorithm

Authors: Mohammed Boutalline, Imad Badi, Belaid Bouikhalene, Said Safi

Abstract:

In this paper we describe the Levenvberg-Marquardt (LM) algorithm for identification and equalization of CDMA signals received by an antenna array in communication channels. The synthesis explains the digital separation and equalization of signals after propagation through multipath generating intersymbol interference (ISI). Exploiting discrete data transmitted and three diversities induced at the reception, the problem can be composed by the Block Component Decomposition (BCD) of a tensor of order 3 which is a new tensor decomposition generalizing the PARAFAC decomposition. We optimize the BCD decomposition by Levenvberg-Marquardt method gives encouraging results compared to classical alternating least squares algorithm (ALS). In the equalization part, we use the Minimum Mean Square Error (MMSE) to perform the presented method. The simulation results using the LM algorithm are important.

Keywords: Identification and equalization, communication channel, Levenvberg-Marquardt, tensor decomposition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
553 On Pseudo-Random and Orthogonal Binary Spreading Sequences

Authors: Abhijit Mitra

Abstract:

Different pseudo-random or pseudo-noise (PN) as well as orthogonal sequences that can be used as spreading codes for code division multiple access (CDMA) cellular networks or can be used for encrypting speech signals to reduce the residual intelligence are investigated. We briefly review the theoretical background for direct sequence CDMA systems and describe the main characteristics of the maximal length, Gold, Barker, and Kasami sequences. We also discuss about variable- and fixed-length orthogonal codes like Walsh- Hadamard codes. The equivalence of PN and orthogonal codes are also derived. Finally, a new PN sequence is proposed which is shown to have certain better properties than the existing codes.

Keywords: Code division multiple access, pseudo-noise codes, maximal length, Gold, Barker, Kasami, Walsh-Hadamard, autocorrelation, crosscorrelation, figure of merit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6053
552 A Reconfigurable Processing Element for Cholesky Decomposition and Matrix Inversion

Authors: Aki Happonen, Adrian Burian, Erwin Hemming

Abstract:

Fixed-point simulation results are used for the performance measure of inverting matrices by Cholesky decomposition. The fixed-point Cholesky decomposition algorithm is implemented using a fixed-point reconfigurable processing element. The reconfigurable processing element provides all mathematical operations required by Cholesky decomposition. The fixed-point word length analysis is based on simulations using different condition numbers and different matrix sizes. Simulation results show that 16 bits word length gives sufficient performance for small matrices with low condition number. Larger matrices and higher condition numbers require more dynamic range for a fixedpoint implementation.

Keywords: Cholesky Decomposition, Fixed-point, Matrix inversion, Reconfigurable processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
551 Analysis of Temperature Change under Global Warming Impact using Empirical Mode Decomposition

Authors: Md. Khademul Islam Molla, Akimasa Sumi, M. Sayedur Rahman

Abstract:

The empirical mode decomposition (EMD) represents any time series into a finite set of basis functions. The bases are termed as intrinsic mode functions (IMFs) which are mutually orthogonal containing minimum amount of cross-information. The EMD successively extracts the IMFs with the highest local frequencies in a recursive way, which yields effectively a set low-pass filters based entirely on the properties exhibited by the data. In this paper, EMD is applied to explore the properties of the multi-year air temperature and to observe its effects on climate change under global warming. This method decomposes the original time-series into intrinsic time scale. It is capable of analyzing nonlinear, non-stationary climatic time series that cause problems to many linear statistical methods and their users. The analysis results show that the mode of EMD presents seasonal variability. The most of the IMFs have normal distribution and the energy density distribution of the IMFs satisfies Chi-square distribution. The IMFs are more effective in isolating physical processes of various time-scales and also statistically significant. The analysis results also show that the EMD method provides a good job to find many characteristics on inter annual climate. The results suggest that climate fluctuations of every single element such as temperature are the results of variations in the global atmospheric circulation.

Keywords: Empirical mode decomposition, instantaneous frequency, Hilbert spectrum, Chi-square distribution, anthropogenic impact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2148
550 A Decomposition Method for the Bipartite Separability of Bell Diagonal States

Authors: Wei-Chih Su, Kuan-Peng Chen, Ming-Chung Tsai, Zheng-Yao Su

Abstract:

A new decomposition form is introduced in this report to establish a criterion for the bi-partite separability of Bell diagonal states. A such criterion takes a quadratic inequality of the coefficients of a given Bell diagonal states and can be derived via a simple algorithmic calculation of its invariants. In addition, the criterion can be extended to a quantum system of higher dimension.

Keywords: decomposition, bipartite separability, Bell diagonal states.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
549 Algebraic Riccati Matrix Equation for Eigen- Decomposition of Special Structured Matrices; Applications in Structural Mechanics

Authors: Mahdi Nouri

Abstract:

In this paper Algebraic Riccati matrix equation is used for Eigen-decomposition of special structured matrices. This is achieved by similarity transformation and then using algebraic riccati matrix equation to triangulation of matrices. The process is decomposition of matrices into small and specially structured submatrices with low dimensions for fast and easy finding of Eigenpairs. Numerical and structural examples included showing the efficiency of present method.

Keywords: Riccati, matrix equation, eigenvalue problem, symmetric, bisymmetric, persymmetric, decomposition, canonical forms, Graphs theory, adjacency and Laplacian matrices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806