
 

 

  
Abstract—Graph decompositions are vital in the study of 

combinatorial design theory. A decomposition of a graph G is a 
partition of its edge set. An n-sun graph is a cycle Cn with an edge 
terminating in a vertex of degree one attached to each vertex. In this 
paper, we define n-sun decomposition of some even order graphs 
with a perfect matching. We have proved that the complete graph 
K2n, complete bipartite graph K2n, 2n and the Harary graph H4, 2n have 
n-sun decompositions. A labeling scheme is used to construct the n-
suns. 

 
Keywords—Decomposition, Hamilton cycle, n-sun graph, 

perfect matching, spanning tree. 

I. INTRODUCTION 
Y a graph G = (V, E) we mean a simple undirected 
connected graph. A cycle of length n in G is denoted by 

Cn. An n-sun graph is a cycle Cn with an edge terminating 
from each vertex of Cn [1]. Thus every n-sun graph contains 
exactly one cycle of length n and n pendant vertices. A 
decomposition of a graph is a collection of edge-disjoint 
subgraphs G1, G2, …, Gn of G such that every edge of G 
belongs to exactly one Gi. Graph decompositions, known for 
its applications in combinatorial design theory, have been 
studied since the mid nineteenth century. Several decades after 
its introduction, Walecki had the credit of constructing 
Hamilton cycle decomposition of complete graphs [2]-[4]. In 
this paper we have decomposed complete graphs of even 
order, K2n into n-suns. The decomposition is based on 
Walecki’s construction of Hamilton cycles in complete 
graphs. A systematic approach to the decomposition with a 
labeling scheme is provided.  By an orderly removal of edges 
from the cycles in n-suns, we have shown a spanning tree 
decomposition of K2n. Every such spanning tree has the 
specialty of containing a perfect matching of K2n. Complete 
bipartite graphs K2n, 2n are equally significant. Their n-sun 
decompositions are also given. The next type of graphs 
considered are the k-connected, 2n-vertex graphs having the 
smallest possible number of edges, called the Harary graphs. 
These graphs are widely used in interconnection network 
topology. For particular type of Harary graphs n-sun 
decomposition is studied. 
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II. PRELIMINARIES 
A graph G in which any two distinct points are adjacent is 
called a complete graph, Kn.  A complete bipartite graph Km, n 
is a graph whose vertices can be partitioned into two sets U 
and W such that every edge in Km, n has one end in U and the 
other end in W. Frank Harary constructed a class of graphs Hk, 

n, called the Harary graphs, beginning with an n-cycle graph 
whose vertices are consecutively numbered 0, 1,…, n-1 
clockwise around its perimeter. If k and n are even, form Hk, n 
by joining each vertex to the nearest k/2 vertices in both 
directions around the circle. If k is odd and n is even, form Hk, 

n by joining each vertex to the nearest (k-1)/2 vertices in each 
direction and to the diametrically opposite vertex. In both the 
cases Hk, n is k-regular, k-connected n-vertex graph. We 
exclude the case of odd n in Hk, n since n-sun is defined only 
for even order graphs. 

 
Fig. 1 The Harary graphs H4, 8 and H5, 8. 

 
A spanning cycle in G is called a Hamilton cycle of G. In an 

even order graph G, a perfect matching or 1-factor, denoted as 
I, is a set of mutually non-adjacent edges, which covers all 
vertices of G [5]. Thus a Hamilton cycle of a graph G of even 
order is the union of two perfect matching in G. Perfect 
matching exists in Kn and Hk, n if and only if n is even; and for 
Km, n, m = n. 

A Hamilton decomposition is a partitioning of the edge set 
of G into Hamilton cycles if G is 2d-regular or into Hamilton 
cycles and a perfect matching if G is (2d+1)-regular [6]. The 
complete graph Kn has Hamilton decomposition for all n > 2. 
Any complete graph Kn can be decomposed into (n-1)/2 
Hamilton cycles if n is odd and (n-2)/2 Hamilton cycles plus a 
perfect matching if n is even. For convenience in labeling, we 
denote the even order complete graph as K2n. In the 
decomposition of K2n into n-suns we choose Cn to be the 
Hamilton cycles of its subgraph, Kn. The complete bipartite 
graph Kn, n can be decomposed into n/2 Hamilton cycles when 
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n is even and (n-1)/2 Hamilton cycles and a perfect matching 
when n is odd. 

III. MAIN DEFINITIONS AND RESULTS 
 We define a new kind of decomposition for even order 

graphs with a perfect matching. An n-sun decomposition of an 
even order graph G with a perfect matching is partitioning the 
edge set into n-suns and m (>0) copies of K2 which forms 
either a perfect matching or a Hamilton cycle or both.  

A graph G is said to have total n-sun decomposition if 
every edge belongs to exactly one n-sun of the decomposition; 
i.e. m = 0 in the n-sun decomposition. An example graph is 
shown in Fig. 2.  

 
Fig. 2 A graph with total n-sun decomposition 

 
A graph with 2n vertices may have an n-sun as its subgraph 

but need not have n-sun decomposition which can be observed 
from Fig. 3. 

 
Fig. 3 A graph with six vertices and one its 3-suns 

 
Regularity of graphs does not play a role in total n-sun 

decomposition. Not all regular graphs have n-sun 
decomposition. An example shown in Fig. 4 is the Petersen 
graph P, whose edge set can be partitioned into a 5-sun (bold 
line) and a cycle C5 (dotted line). 

 
Fig. 4 Decomposition of Petersen’s graph into 5-sun and C5 

 
It is interesting to note that P + 5K2 can be decomposed into 

two n-suns by a choice of 5K2 = {(1, 7), (2, 8), (3, 9), (4, 10), 
(5, 6)}. 

Lemma 3.1: A necessary condition for the n-sun 
decomposition of G(V2n, E) into t isomorphic copies of n-suns 
and mK2 is that E  is divisible by 2tn +m.  

Proof: Since there are 2n edges in G, 2nt edges are required 

to construct t isomorphic copies of n-suns and m edges in K2.  
We show below that K2n can be decomposed into n-1 n-

suns and a perfect matching when n is odd. For n even, K2n 
can be decomposed into n-2 n-suns, a Hamilton cycle and a 
perfect matching. A proper labeling of G with k vertices is a 
bijection f: V(G) → {0, 1, 2, …, k-1}. The method of building 
n-suns uses a labeling scheme and Walecki’s construction for 
the Hamilton decomposition of complete graphs. 

Theorem 3.2: The complete graph K2n has n-sun 
decomposition for all odd n ≥ 3. 

Proof: Consider the complete graph K2n where n is odd. 
Split the vertex set V = {v0, v1,…, vn-1, vn, vn+1, …, v2n-1} of 
K2n into two such that V1 = {v0, v1,…, vn-1} and V2 = {vn, vn+1, 
…, v2n-1}. Let X and Y be the induced subgraph of K2n with 
vertex subsets V1 and V2 respectively. Then X and Y are 
complete graphs of odd order and have n(n-1)/2 edges each. 
The remaining n2 edges of K2n form an edge cut (whose 
removal disconnects K2n). To construct n-suns for K2n, we first 
find Hamilton cycles of X and Y using Walecki’s 
construction. Then to each Hamilton cycle, adjoin n edges 
from the edge cut. A similar functional notation of [2] is 
adopted in finding the Hamilton cycles of X and Y.  

Since n is odd, X can be decomposed into (n-1)/2 Hamilton 
cycles and a perfect matching. Hence the maximum number of 
edge-disjoint n-suns possible using the Hamilton cycles in X 
is (n-1)/2. Let C be the Hamilton cycle,        
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of X. For simplicity, let kΦ = ( )Ck 1−α denote the kth Hamilton 
cycle and )(vΦ ik denote vertex vi in that Hamilton cycle, 
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Finally, the perfect matching given by (vi, vj) where i = 0, 

1,…, n-1and ( )[ ]⎪⎩

⎪
⎨

⎧

+≥++−

+<+−

=

2
1niifn,nmodi

2
13n

2
1niifi,

2
13n

j  and the n-

suns decompose K2n. 
When n is odd, the total of n(2n-1) edges in K2n are divided 

as follows. There are 2n edges in an n-sun and hence 2nt 
edges are in t isomorphic copies of n-suns and n edges in the 
perfect matching. Also n(2n-1) = 2nt + n implies t = n – 1. 
Thus when n is odd, the total number of n-suns in the 
decomposition of K2n is n-1 which is exactly the same number 
as in the decomposition of K2n into Hamilton cycles.  An 
illustration of the n-sun decomposition of K14 into six 7-suns 
and a perfect matching is shown in Fig. 7 of Appendix. 

Corollary 3.3: K2n + Cn can be decomposed into n n-suns 
when n is odd. 

From the previous theorem there are n-1 n-suns of K2n. Add 
n multi edges (v0, v1), (v1, v2), (v2, v3),…, (vn-1, v0).to form an 
n-cycle of K2n. The perfect matching of K2n in the previous 
theorem with the multi edges forms another n-sun.  

Spanning trees are well known in the literature as minimally 
connected subgraphs of a graph. They find immense 
applications in networks whenever there is a necessity of 
unique paths between vertices. K2n can be decomposed into n 
spanning trees [6]. By using the labeling scheme of Theorem 
3.2, and properly removing one edge from each cycle of n-sun 
and adding them with the perfect matching, we get spanning 
tree decomposition for K2n. 

Corollary 3.4: When n is odd, K2n can be decomposed into 
n spanning trees each containing a perfect matching. 

 In Theorem 3.3, delete edges (vk, vk+1) from ( )Ck 1−α  and 

edges (vn+k, vn+k+1) from ( )Ck 1−β , k = 1, 2, …, 
2

1−n . The edge 

deleted n-suns form n–1 spanning trees. The edges deleted 
from the n-suns when added with the perfect matching give 
another spanning tree.  

Theorem 3.5: The complete graph K2n has n-sun 
decomposition for all even n ≥  4. 

Proof: The procedure for the decomposition is the same as 
that for odd n except for a slight change in the labels. Let the 
notations V1, V2, X and Y be as in Theorem 3.2 except that n 
is odd in this case. In X, let C be the Hamilton cycle 
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−−  and α  be 

the permutation (v0)(v1v2…vn-1) as in the odd case. Then 

( ) ( ) ( )CCCC
n

2
4

2 ...,,,,
−

ααα  is a Hamilton cycle decomposition 
of X.  

Let kΦ = ( )Ck 1−α and )(vΦ ik denote vertex vi in the kth 

Hamilton cycle of X, where k = 1, 2, …,
2

2−n . Append the 

edges to the Hamilton cycles of X as 

2
2n...,2,1,k,

n1ikifnn]1)modi[(k

n1ikif1ikn
)i(vkΦ −=

⎩
⎨
⎧

≥−++−+

<−+−++
=  

and i = 0, 1,…, n-1.  

Similarly in Y, ( ) ( ) ( )CCCC
n

′′′′
−
2

4
2 ...,,,, βββ  is a 

Hamilton cycle decomposition where C ′  is the cycle 

n1
2

3n
2

3n2
2

3n4n22n3n12n2n1nn vvv...vvvvvvvv
++

+−+−++  and β  

is the permutation (vn)(vn+1vn+2 ….. v2n-1). Let )(vΦ ik
′ denote 

vertex vi in the kth Hamilton cycle ′
kΦ = ( )Ck 1−β  of Y where 

k = 1, 2, …,
2

2−n . Append the pendant edges using the 

labeling scheme as 

 1-n...,1,,0i,
nikifni)mod(k

nikifik
)in(vkΦ =

⎩
⎨
⎧

≥++
<++

=+
′ .  

Since every even order complete graph has a perfect 
matching left out in the Hamilton cycle decomposition, we 
could find the perfect matching of X: {(vi, vj)} and Y: {(vn+i, 
vn+j)}. This forms a perfect matching of K2n 

where
⎪⎩

⎪
⎨
⎧

>−

=
=

0iifi,n

0iif,j 2
n

 and i = 0, 1,…, 2
2n− . The remaining 

edges form a Hamilton cycle whose labeled structure is shown 
in Fig. 5.  

 
Fig. 5 The Hamilton cycle structure in the n-sun decomposition of 

K2n, n even. 
 
By the same line of reasoning for odd case, K2n has t = n–2 

isomorphic copies of n-suns, a perfect matching and a 
Hamilton cycle when n is even. The number of n-suns in the 
n-sun decomposition is n-2 which is one less than the number 
of Hamilton cycles of K2n. 

A decomposition of K12 into four 6-suns, a perfect matching 
and a Hamilton cycle is shown in Fig. 8 of Appendix. 

Corollary 3.6: Let K2n – I denote the subgraph of K2n with 
a perfect matching removed. Then (K2n – I) + 2Cn can be 
decomposed into n n-suns. 

 Add two sets of n multi edges (v0, v1), (v1, v2), (v2, v3), 
…, (vn-1, v0) to K2n. These multi edges forming two n-cycles 
are added to the Hamilton cycle in the n-sun decomposition. 
Since a Hamilton cycle is the union of two perfect matchings, 
append one matching each to the two n-cycles to obtain the 
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required decomposition. 
In the case of odd order complete graphs K2n + 1, n-sun 

decomposition is not possible, since the maximum matching is 
2n. 

Corollary 3.7: K2n+1 - K1, 2n has an n-sun decomposition.  
Proof: In K2n+1, removal of a star subgraph K1, 2n, results in 

a complete graph of even order which has n-sun 
decomposition.  

In the next section we discuss about the n-sun 
decomposition of complete bipartite graphs Kn, n, for n even. 
Since the minimum cycle length in bipartite graphs is four and 
to append pendants, n ≥  4. Kn, n is split into two complete 
bipartite subgraphs Kn/2, n/2 and n/2n/2,K ′ ; the remaining edges 

forming an edge cut of Kn, n. Any r-partite graph can be 
decomposed into edge-disjoint Hamilton cycles [7]. We find 
Hamilton cycles in each of the subgraphs Kn/2, n/2 and n/2n/2,K ′  

and append edges from the edge cut for the pendants of the n-
sun.  

We brief now the procedure to find edge-disjoint Hamilton 
cycles in Km, m which uses consecutive perfect matchings (1-
factors). Let the vertex bipartition of Km, m be {u0, u1,…, um-1} 
and {v0, v1, …, vm-1}. Let the set of perfect matching be {Fj 

= 1- jii
1-m vu
0i +=

∪ , j = 1, 2,…, m}, the suffices of v are taken 

modulo m. When m is even, {F2k-1 ∪ F2k, k = 1, 2,…, m/2} 
gives the set of m/2 edge disjoint Hamilton cycles of Km, m. 
For odd m, the decomposition is (m-1)/2 Hamilton cycles plus 
the perfect matching {Fm}. 

The next two theorems give the labeling scheme for the n- 
sun decomposition for Kn, n, n ≥  4.  

Theorem 3.8: The complete bipartite graph Kn, n has n-sun 
decomposition for all n/2 even. 

Proof: To simplify the labeling scheme, let the vertices of 
Kn, n be partitioned into P, Q, R and S where 

P = }...,,,{ 2)/2-(n10 uuu , Q = },...,,{ 2)/2-(n10 uuu ′′′ , 

     R = }...,,,{ 2)/2-(n10 vvv and S = }v,...,v,v{ 2)/2-(n10 ′′′ . 

Let n/2n/2,K  and n/2n/2,K ′  be the induced subgraphs formed by 

P ∪ R and Q ∪ S respectively as shown in Fig. 6.   
 

 
Fig. 6 Diagram representing the vertex partitioning of Kn, n. 

 
The maximum number of n-suns possible in the 

decomposition of Kn, n is n/2 since the maximum number of 

Hamilton cycles in n/2n/2,K  and n/2n/2,K ′  put together is n/2. 

Let {Fj = 1-jii

2)/2-(n

0i
vu +=

∪ , j = 1, 2,…, n/2}, be the set of edge 

disjoint collection of perfect matchings of  n/2n/2,K , the suffix 

of v being taken modulo n/2. Let Hk = F2k-1 ∪ F2k, k = 1, 2,…, 
n/4 be a Hamilton cycle decomposition of n/2n/2,K . For each 

cycle Hk, append edges for the pendants from the edge cut as 
follows: Hk(ui) = pv′ , Hk(vi) = pu ′ , p = k+i-1 is taken modulo 
n/2, i = 0, 1, 2, … (n-2)/2 and k = 1, 2, …, n/4.  

Similarly let { jF′ = 1-jii

2)/2-n(

0i
vu +=

′′∪ , j = 1, 2,…, n/2}, be the 

perfect matchings of n/2n/2,K ′ , the suffix of v being taken 

modulo n/2. Let 2k1-2kk FFH ′∪′=′ , k = 1, 2,…, n/4 be a 

Hamilton cycle  decomposition of n/2n/2,K ′ . Append edges for 

the pendants of n-sun as qk v)iu(H =′′  and qik u)v(H =′′  where 
i = 0, 1,…, (n-2)/2, k = 1, 2, …, n/4 and q = k+i-1+(n/4) is 
taken modulo n/2. The Hamilton cycles with the appended 
edges form n-suns. Since every edge is in exactly one n-sun, 
Kn, n has a total n-sun decomposition. 

Theorem 3.9: The complete bipartite graph Kn, n has n-sun 
decomposition for all n/2 odd. 

Proof: Let the notations be as in Theorem 3.8 where n/2 is 
odd and k = 1, 2,…, (n-2)/2. The proof is similar to that of 
even n/2 but the maximum number of n-suns possible in this 
case is (n-2)/2. By the construction, two sets of perfect 
matching of Kn, n are left out after the n-suns are constructed. 
They are Fn/2 ∪ n/2F′  and }v{u ri ′ ∪ }rviu{ ′ , i = 0, 1,…, (n-2)/2 

and r = i+(n-2)/4 is taken modulo n/2. These two matching 
forms a Hamilton cycle.  

Examples of n-sun decompositions of K4, 4 and K6, 6 are 
shown in Fig. 9 and Fig. 10 respectively of Appendix. 
 The following theorem is on the n-sun decomposition of 
certain type of even order Harary graphs Hk, 2n, k < 2n.  

Theorem 3.10: If the Harary graph Hk, 2n has total n-sun 
decomposition, then Hk+1, 2n has n-sun decomposition for all n. 

Proof: If Hk, 2n has total n-sun decomposition, then every 
edge is in some n-sun of the decomposition. By construction 
of the Harary graphs, Hk+1, 2n is Hk, 2n plus a perfect matching 
formed by the edges with diametrically opposite vertices as 
end vertices. The n-suns of Hk, 2n and the perfect matching 
decompose Hk+1,  2n. 

Theorem 3.11: The Harary graph H4, 2n has total n-sun 
decomposition for all n. 

Proof: By construction of Harary graphs, every vertex vi is 
adjacent to vi-1, vi-2, vi+1 and vi+2, the suffices being taken 
modulo 2n. Thus there exists cycles C1: v1v3v5…v2n-1v1 and 
C2: v0v2v4…v2n-2v2 and perfect matchings M1: {v0v1, v2v3, 
v4v5, …, v2n-2v2n-1} and M2: {v1v2, v3v4, v5v6, …, v2n-1v0} 
mutually disjoint to each other. The subgraphs C1 ∪ M1 and 
C2 ∪ M2 form n-suns of H4, 2n. 

P 
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Corollary 3.12: The Harary graph H5, 2n has an n-sun 
decomposition. 

It can be easily seen that the Harary graphs Hk, k+2 (k even) 
is nothing but the complete graphs Kk+2 with a perfect 
matching removed. Hence it has a total (k+2)-sun 
decomposition when (k+2)/2 is odd and a (k+2)-sun 
decomposition when (k+2)/2 is even. The n-sun 
decomposition of other Harary graphs need attention. 

An example of 5-sun decomposition of H5, 10 is shown in 
Fig. 11 of Appendix. 

IV. CONCLUSION AND FUTURE STUDIES 
The aim of this communication has been to present a new 

kind of decomposition of K2n, Kn, n and H4, n. It is hoped that 
this decomposition may stimulate further studies on n-sun 
decompositions. The n-suns and the Hamilton cycles of an 
even order graph have close association since both are 
spanning subgraphs containing perfect matching (one in n-sun 
and two in Hamilton cycle) and exactly one cycle. Also the 
deletion of any one edge of the cycle in the n-sun or Hamilton 
cycle results in a spanning tree where the tree contains a 
perfect matching. Since the maximum degree of a vertex in 
the n-sun is three, the spanning trees obtained from n-suns 
also have the same maximum degree. The important feature of 
the spanning trees using n-sun is that the diameter is (n/2)+1.  

The definition of n-sun has wide scope in finding such 
decomposition for graphs in general. The labeling procedure 
used for complete graphs and complete bipartite graphs can be 
used to decompose product graphs into n-suns. In the case of 
Harary graphs, we have found a labeling scheme for four and 
five regular graphs. Any possible extension or a generalized 
labeling scheme for n-sun decomposition of Harary graphs 
can be found out. Finding a necessary and sufficient condition 
for the existence of n-sun and total n-sun decomposition will 
be well appreciated. Tree decomposition for Kn, n and Harary 
graphs using n-suns can be studied. By suitably choosing the 
labels one may try to obtain a graceful labeling for the n-sun 
graphs discussed in the paper. 

APPENDIX 

 
Fig. 7 A 7-sun decomposition of K14 
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Fig. 8 A 6-sun decomposition of K12 
 

 
Fig. 9 A 4-sun decomposition of K4, 4 

 

 
Fig. 10 A 6-sun decomposition of K6, 6 

 

Fig. 11 A 4-sun decomposition of H5, 8 
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