**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31575

##### Implicit Two Step Continuous Hybrid Block Methods with Four Off-Steps Points for Solving Stiff Ordinary Differential Equation

**Authors:**
O. A. Akinfenwa,
N.M. Yao,
S. N. Jator

**Abstract:**

**Keywords:**
Collocation and Interpolation,
Continuous HybridBlock Formulae,
Off-Step Points,
Stability,
Stiff ODEs.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1071614

**References:**

[1] K. E. Atkinson, An introduction to numerical analysis, 2nd edition John Wiley and Sons, New York, 1989.

[2] L. Brugnano and D. Trigiante, Solving Differential Problems by Multitep Initial and Boundary Value Methods, Gordon and Breach Science Publishers, Amsterdam, 1998.

[3] J. C. Butcher, A modified multistep method for the numerical integration of ordinary differential equations, J. Assoc. Comput. Mach. 12 (1965),pp. 124-135.

[4] M.T. Chu & H. Hamilton, Parallel solution of ODE-s by multi-block methods, SIAM J. Sci. Stat. Comput. 8, 342-353, (1987).

[5] Dahlquist, G. A Special Stability Problem for Linear Multistep Methods, BIT, 3,1963, pp.27-43.

[6] S. O. Fatunla, Block methods for second order IVPs, Intern. J. Comput. Math. 41 (1991), pp. 55 - 63.

[7] C. W. Gear, Hybrid methods for initial value problems in ordinary differential equations, SIAM J. Numer. Anal. 2 (1965), pp. 69-86.

[8] I. Gladwell and D. K. Sayers, Eds. Computational techniques for ordinary differential equations, Academic Press, New York, 1976.

[9] W. Gragg and H. J. Stetter, Generalized multistep predictor-corrector methods, J.Assoc. Comput. Mach., 11 (1964), pp. 188-209.

[10] G. K. Gupta, Implementing second-derivative multistep methods using Nordsieck polynomial representation, Math. Comp. 32 (1978), pp.13-18.

[11] P. Henrici, Discrete Variable Methods in ODEs, John Wiley, New York, 1962.

[12] S.N Jator, On The Hybrid Method With Three-off Step Points For Initial Value Problems, International Journal Of Mathematics Education in Science and Technology ,1464- 5211,Volume 41 Issue 1(2010) , pp.110-118.

[13] J. J. Kohfeld and G. T. Thompson, Multistep methods with modified predictors and correctors, J. Assoc. Comput. Mach., 14 (1967), pp. 155- 166.

[14] J. D. Lambert Computational methods in ordinary differential equations, John Wiley, New York, 1973.

[15] I. Lie and S. P. Norsett,1989, Superconvergence for Multistep Collocation, Math Comp. 52 (1989) pp. 65 79.

[16] W. E. Milne, Numerical solution of differential equations, John Wiley and Sons, 1953.

[17] P. Onumanyi, D. O. Awoyemi, S. N. Jator, and U. W. Sirisena, 1994,New linear mutlistep methods with continuous coefficients for firstorder initial value problems, J. Nig. Math. Soc. 13 (1994), pp. 37- 51.

[18] J. D. Rosser, A Runge-kutta for all seasons, SIAM, Rev., 9 (1967), pp.417-452.

[19] D. Sarafyan Multistep methods for the numerical solution of ordinary differential equations made self-starting, Tech. Report 495, Math. Res. Center, Madison (1965).

[20] L. F. Shampine and Watts, H. A., "Block Implicit One-Step Methods", Math. Comp. 23, 1969, pp. 731-740.