Search results for: nonlinear estimation
2026 State Estimation Method Based on Unscented Kalman Filter for Vehicle Nonlinear Dynamics
Authors: Wataru Nakamura, Tomoaki Hashimoto, Liang-Kuang Chen
Abstract:
This paper provides a state estimation method for automatic control systems of nonlinear vehicle dynamics. A nonlinear tire model is employed to represent the realistic behavior of a vehicle. In general, all the state variables of control systems are not precisedly known, because those variables are observed through output sensors and limited parts of them might be only measurable. Hence, automatic control systems must incorporate some type of state estimation. It is needed to establish a state estimation method for nonlinear vehicle dynamics with restricted measurable state variables. For this purpose, unscented Kalman filter method is applied in this study for estimating the state variables of nonlinear vehicle dynamics. The objective of this paper is to propose a state estimation method using unscented Kalman filter for nonlinear vehicle dynamics. The effectiveness of the proposed method is verified by numerical simulations.Keywords: State estimation, control systems, observer systems, unscented Kalman filter, nonlinear vehicle dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6132025 Robust Adaptive Observer Design for Lipschitz Class of Nonlinear Systems
Authors: M. Pourgholi, V.J.Majd
Abstract:
This paper addresses parameter and state estimation problem in the presence of the perturbation of observer gain bounded input disturbances for the Lipschitz systems that are linear in unknown parameters and nonlinear in states. A new nonlinear adaptive resilient observer is designed, and its stability conditions based on Lyapunov technique are derived. The gain for this observer is derived systematically using linear matrix inequality approach. A numerical example is provided in which the nonlinear terms depend on unmeasured states. The simulation results are presented to show the effectiveness of the proposed method.
Keywords: Adaptive observer, linear matrix inequality, nonlinear systems, nonlinear observer, resilient observer, robust estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26132024 Lithium-Ion Battery State of Charge Estimation Using One State Hysteresis Model with Nonlinear Estimation Strategies
Authors: Mohammed Farag, Mina Attari, S. Andrew Gadsden, Saeid R. Habibi
Abstract:
Battery state of charge (SOC) estimation is an important parameter as it measures the total amount of electrical energy stored at a current time. The SOC percentage acts as a fuel gauge if it is compared with a conventional vehicle. Estimating the SOC is, therefore, essential for monitoring the amount of useful life remaining in the battery system. This paper looks at the implementation of three nonlinear estimation strategies for Li-Ion battery SOC estimation. One of the most common behavioral battery models is the one state hysteresis (OSH) model. The extended Kalman filter (EKF), the smooth variable structure filter (SVSF), and the time-varying smoothing boundary layer SVSF are applied on this model, and the results are compared.Keywords: State of charge estimation, battery modeling, one-state hysteresis, filtering and estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17022023 Design of Nonlinear Observer by Using Augmented Linear System based on Formal Linearization of Polynomial Type
Authors: Kazuo Komatsu, Hitoshi Takata
Abstract:
The objective of this study is to propose an observer design for nonlinear systems by using an augmented linear system derived by application of a formal linearization method. A given nonlinear differential equation is linearized by the formal linearization method which is based on Taylor expansion considering up to the higher order terms, and a measurement equation is transformed into an augmented linear one. To this augmented dimensional linear system, a linear estimation theory is applied and a nonlinear observer is derived. As an application of this method, an estimation problem of transient state of electric power systems is studied, and its numerical experiments indicate that this observer design shows remarkable performances for nonlinear systems.
Keywords: nonlinear system, augmented linear system, nonlinear observer, formal linearization, electric power system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15802022 Parameter Estimation using Maximum Likelihood Method from Flight Data at High Angles of Attack
Authors: Rakesh Kumar, A. K. Ghosh
Abstract:
The paper presents the modeling of nonlinear longitudinal aerodynamics using flight data of Hansa-3 aircraft at high angles of attack near stall. The Kirchhoff-s quasi-steady stall model has been used to incorporate nonlinear aerodynamic effects in the aerodynamic model used to estimate the parameters, thereby, making the aerodynamic model nonlinear. The Maximum Likelihood method has been applied to the flight data (at high angles of attack) for the estimation of parameters (aerodynamic and stall characteristics) using the nonlinear aerodynamic model. To improve the accuracy level of the estimates, an approach of fixing the strong parameters has also been presented.Keywords: Maximum Likelihood, nonlinear, parameters, stall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22152021 Design of Nonlinear Observer by Using Chebyshev Interpolation based on Formal Linearization
Authors: Kazuo Komatsu, Hitoshi Takata
Abstract:
This paper discusses a design of nonlinear observer by a formal linearization method using an application of Chebyshev Interpolation in order to facilitate processes for synthesizing a nonlinear observer and to improve the precision of linearization. A dynamic nonlinear system is linearized with respect to a linearization function, and a measurement equation is transformed into an augmented linear one by the formal linearization method which is based on Chebyshev interpolation. To the linearized system, a linear estimation theory is applied and a nonlinear observer is derived. To show effectiveness of the observer design, numerical experiments are illustrated and they indicate that the design shows remarkable performances for nonlinear systems.Keywords: nonlinear system, nonlinear observer, formal linearization, Chebyshev interpolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15932020 ML Detection with Symbol Estimation for Nonlinear Distortion of OFDM Signal
Authors: Somkiat Lerkvaranyu, Yoshikazu Miyanaga
Abstract:
In this paper, a new technique of signal detection has been proposed for detecting the orthogonal frequency-division multiplexing (OFDM) signal in the presence of nonlinear distortion.There are several advantages of OFDM communications system.However, one of the existing problems is remain considered as the nonlinear distortion generated by high-power-amplifier at the transmitter end due to the large dynamic range of an OFDM signal. The proposed method is the maximum likelihood detection with the symbol estimation. When the training data are available, the neural network has been used to learn the characteristic of received signal and to estimate the new positions of the transmitted symbol which are provided to the maximum likelihood detector. Resulting in the system performance, the nonlinear distortions of a traveling wave tube amplifier with OFDM signal are considered in this paper.Simulation results of the bit-error-rate performance are obtained with 16-QAM OFDM systems.
Keywords: OFDM, TWTA, nonlinear distortion, detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16772019 Traffic Density Estimation for Multiple Segment Freeways
Authors: Karandeep Singh, Baibing Li
Abstract:
Traffic density, an indicator of traffic conditions, is one of the most critical characteristics to Intelligent Transport Systems (ITS). This paper investigates recursive traffic density estimation using the information provided from inductive loop detectors. On the basis of the phenomenological relationship between speed and density, the existing studies incorporate a state space model and update the density estimate using vehicular speed observations via the extended Kalman filter, where an approximation is made because of the linearization of the nonlinear observation equation. In practice, this may lead to substantial estimation errors. This paper incorporates a suitable transformation to deal with the nonlinear observation equation so that the approximation is avoided when using Kalman filter to estimate the traffic density. A numerical study is conducted. It is shown that the developed method outperforms the existing methods for traffic density estimation.Keywords: Density estimation, Kalman filter, speed-densityrelationship, Traffic surveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18362018 Unscented Grid Filtering and Smoothing for Nonlinear Time Series Analysis
Authors: Nikolay Nikolaev, Evgueni Smirnov
Abstract:
This paper develops an unscented grid-based filter and a smoother for accurate nonlinear modeling and analysis of time series. The filter uses unscented deterministic sampling during both the time and measurement updating phases, to approximate directly the distributions of the latent state variable. A complementary grid smoother is also made to enable computing of the likelihood. This helps us to formulate an expectation maximisation algorithm for maximum likelihood estimation of the state noise and the observation noise. Empirical investigations show that the proposed unscented grid filter/smoother compares favourably to other similar filters on nonlinear estimation tasks. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13302017 On the outlier Detection in Nonlinear Regression
Authors: Hossein Riazoshams, Midi Habshah, Jr., Mohamad Bakri Adam
Abstract:
The detection of outliers is very essential because of their responsibility for producing huge interpretative problem in linear as well as in nonlinear regression analysis. Much work has been accomplished on the identification of outlier in linear regression, but not in nonlinear regression. In this article we propose several outlier detection techniques for nonlinear regression. The main idea is to use the linear approximation of a nonlinear model and consider the gradient as the design matrix. Subsequently, the detection techniques are formulated. Six detection measures are developed that combined with three estimation techniques such as the Least-Squares, M and MM-estimators. The study shows that among the six measures, only the studentized residual and Cook Distance which combined with the MM estimator, consistently capable of identifying the correct outliers.Keywords: Nonlinear Regression, outliers, Gradient, LeastSquare, M-estimate, MM-estimate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31782016 Time-Derivative Estimation of Noisy Movie Data using Adaptive Control Theory
Authors: Soon-Hyun Park, Takami Matsuo
Abstract:
This paper presents an adaptive differentiator of sequential data based on the adaptive control theory. The algorithm is applied to detect moving objects by estimating a temporal gradient of sequential data at a specified pixel. We adopt two nonlinear intensity functions to reduce the influence of noises. The derivatives of the nonlinear intensity functions are estimated by an adaptive observer with σ-modification update law.Keywords: Adaptive estimation, parameter adjustmentlaw, motion detection, temporal gradient, differential filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18722015 Model Predictive Control with Unscented Kalman Filter for Nonlinear Implicit Systems
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
A class of implicit systems is known as a more generalized class of systems than a class of explicit systems. To establish a control method for such a generalized class of systems, we adopt model predictive control method which is a kind of optimal feedback control with a performance index that has a moving initial time and terminal time. However, model predictive control method is inapplicable to systems whose all state variables are not exactly known. In other words, model predictive control method is inapplicable to systems with limited measurable states. In fact, it is usual that the state variables of systems are measured through outputs, hence, only limited parts of them can be used directly. It is also usual that output signals are disturbed by process and sensor noises. Hence, it is important to establish a state estimation method for nonlinear implicit systems with taking the process noise and sensor noise into consideration. To this purpose, we apply the model predictive control method and unscented Kalman filter for solving the optimization and estimation problems of nonlinear implicit systems, respectively. The objective of this study is to establish a model predictive control with unscented Kalman filter for nonlinear implicit systems.Keywords: Model predictive control, unscented Kalman filter, nonlinear systems, implicit systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9482014 State Estimation of a Biotechnological Process Using Extended Kalman Filter and Particle Filter
Authors: R. Simutis, V. Galvanauskas, D. Levisauskas, J. Repsyte, V. Grincas
Abstract:
This paper deals with advanced state estimation algorithms for estimation of biomass concentration and specific growth rate in a typical fed-batch biotechnological process. This biotechnological process was represented by a nonlinear mass-balance based process model. Extended Kalman Filter (EKF) and Particle Filter (PF) was used to estimate the unmeasured state variables from oxygen uptake rate (OUR) and base consumption (BC) measurements. To obtain more general results, a simplified process model was involved in EKF and PF estimation algorithms. This model doesn’t require any special growth kinetic equations and could be applied for state estimation in various bioprocesses. The focus of this investigation was concentrated on the comparison of the estimation quality of the EKF and PF estimators by applying different measurement noises. The simulation results show that Particle Filter algorithm requires significantly more computation time for state estimation but gives lower estimation errors both for biomass concentration and specific growth rate. Also the tuning procedure for Particle Filter is simpler than for EKF. Consequently, Particle Filter should be preferred in real applications, especially for monitoring of industrial bioprocesses where the simplified implementation procedures are always desirable.
Keywords: Biomass concentration, Extended Kalman Filter, Particle Filter, State estimation, Specific growth rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29532013 Continuous Adaptive Robust Control for Nonlinear Uncertain Systems
Authors: Dong Sang Yoo
Abstract:
We consider nonlinear uncertain systems such that a priori information of the uncertainties is not available. For such systems, we assume that the upper bound of the uncertainties is represented as a Fredholm integral equation of the first kind and we propose an adaptation law that is capable of estimating the upper bound and design a continuous robust control which renders nonlinear uncertain systems ultimately bounded.
Keywords: Adaptive Control, Estimation, Fredholm Integral, Uncertain System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16522012 Orthogonal Regression for Nonparametric Estimation of Errors-in-Variables Models
Authors: Anastasiia Yu. Timofeeva
Abstract:
Two new algorithms for nonparametric estimation of errors-in-variables models are proposed. The first algorithm is based on penalized regression spline. The spline is represented as a piecewise-linear function and for each linear portion orthogonal regression is estimated. This algorithm is iterative. The second algorithm involves locally weighted regression estimation. When the independent variable is measured with error such estimation is a complex nonlinear optimization problem. The simulation results have shown the advantage of the second algorithm under the assumption that true smoothing parameters values are known. Nevertheless the use of some indexes of fit to smoothing parameters selection gives the similar results and has an oversmoothing effect.
Keywords: Grade point average, orthogonal regression, penalized regression spline, locally weighted regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21322011 A New Nonlinear PID Controller and its Parameter Design
Authors: Yongping Ren, Zongli Li, Fan Zhang
Abstract:
A new nonlinear PID controller and its stability analysis are presented in this paper. A nonlinear function is deduced from the similarities between the control effort and the electric-field effect of a capacitor. The conventional linear PID controller can be modified into a nonlinear one by this function. To analyze the stability of the nonlinear PID controlled system, an idea of energy equivalence is adapted to avoid the conservativeness which is usually arisen from some traditional theorems and Criterions. The energy equivalence is naturally related with the conceptions of Passivity and T-Passivity. As a result, an engineering guideline for the parameter design of the nonlinear PID controller is obtained. An inverted pendulum system is tested to verify the nonlinear PID control scheme.Keywords: Nonlinear PID controller, stability, gain equivalence, dissipative, T-Passivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31762010 On Best Estimation for Parameter Weibull Distribution
Authors: Hadeel Salim Alkutubi
Abstract:
The objective of this study is to introduce estimators to the parameters and survival function for Weibull distribution using three different methods, Maximum Likelihood estimation, Standard Bayes estimation and Modified Bayes estimation. We will then compared the three methods using simulation study to find the best one base on MPE and MSE.
Keywords: Maximum Likelihood estimation , Bayes estimation, Jeffery prior information, Simulation study
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12642009 Application of an Analytical Model to Obtain Daily Flow Duration Curves for Different Hydrological Regimes in Switzerland
Authors: Ana Clara Santos, Maria Manuela Portela, Bettina Schaefli
Abstract:
This work assesses the performance of an analytical model framework to generate daily flow duration curves, FDCs, based on climatic characteristics of the catchments and on their streamflow recession coefficients. According to the analytical model framework, precipitation is considered to be a stochastic process, modeled as a marked Poisson process, and recession is considered to be deterministic, with parameters that can be computed based on different models. The analytical model framework was tested for three case studies with different hydrological regimes located in Switzerland: pluvial, snow-dominated and glacier. For that purpose, five time intervals were analyzed (the four meteorological seasons and the civil year) and two developments of the model were tested: one considering a linear recession model and the other adopting a nonlinear recession model. Those developments were combined with recession coefficients obtained from two different approaches: forward and inverse estimation. The performance of the analytical framework when considering forward parameter estimation is poor in comparison with the inverse estimation for both, linear and nonlinear models. For the pluvial catchment, the inverse estimation shows exceptional good results, especially for the nonlinear model, clearing suggesting that the model has the ability to describe FDCs. For the snow-dominated and glacier catchments the seasonal results are better than the annual ones suggesting that the model can describe streamflows in those conditions and that future efforts should focus on improving and combining seasonal curves instead of considering single annual ones.Keywords: Analytical streamflow distribution, stochastic process, linear and non-linear recession, hydrological modelling, daily discharges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6462008 Design of a Non-linear Observer for VSI Fed Synchronous Motor
Authors: P. Ramana , K. Alice Mary, M. Surya Kalavathi, M. Phani Kumar
Abstract:
This paper discusses two observers, which are used for the estimation of parameters of PMSM. Former one, reduced order observer, which is used to estimate the inaccessible parameters of PMSM. Later one, full order observer, which is used to estimate all the parameters of PMSM even though some of the parameters are directly available for measurement, so as to meet with the insensitivity to the parameter variation. However, the state space model contains some nonlinear terms i.e. the product of different state variables. The asymptotic state observer, which approximately reconstructs the state vector for linear systems without uncertainties, was presented by Luenberger. In this work, a modified form of such an observer is used by including a non-linear term involving the speed. So, both the observers are designed in the framework of nonlinear control; their stability and rate of convergence is discussed.Keywords: Permanent magnet synchronous motor, Mathematicalmodelling, Rotor reference frame, parameter estimation, Luenbergerobserver, reduced order observer, full order observer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18652007 EML-Estimation of Multivariate t Copulas with Heuristic Optimization
Authors: Jin Zhang, Wing Lon Ng
Abstract:
In recent years, copulas have become very popular in financial research and actuarial science as they are more flexible in modelling the co-movements and relationships of risk factors as compared to the conventional linear correlation coefficient by Pearson. However, a precise estimation of the copula parameters is vital in order to correctly capture the (possibly nonlinear) dependence structure and joint tail events. In this study, we employ two optimization heuristics, namely Differential Evolution and Threshold Accepting to tackle the parameter estimation of multivariate t distribution models in the EML approach. Since the evolutionary optimizer does not rely on gradient search, the EML approach can be applied to estimation of more complicated copula models such as high-dimensional copulas. Our experimental study shows that the proposed method provides more robust and more accurate estimates as compared to the IFM approach.Keywords: Copula Models, Student t Copula, Parameter Inference, Differential Evolution, Threshold Accepting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15592006 Frequency Estimation Using Analytic Signal via Wavelet Transform
Authors: Sudipta Majumdar, Akansha Singh
Abstract:
Frequency estimation of a sinusoid in white noise using maximum entropy power spectral estimation has been shown to be very sensitive to initial sinusoidal phase. This paper presents use of wavelet transform to find an analytic signal for frequency estimation using maximum entropy method (MEM) and compared the results with frequency estimation using analytic signal by Hilbert transform method and frequency estimation using real data together with MEM. The presented method shows the improved estimation precision and antinoise performance.Keywords: Frequency estimation, analytic signal, maximum entropy method, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17372005 Parameter Estimation of Diode Circuit Using Extended Kalman Filter
Authors: Amit Kumar Gautam, Sudipta Majumdar
Abstract:
This paper presents parameter estimation of a single-phase rectifier using extended Kalman filter (EKF). The state space model has been obtained using Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law (KVL). The capacitor voltage and diode current of the circuit have been estimated using EKF. Simulation results validate the better accuracy of the proposed method as compared to the least mean square method (LMS). Further, EKF has the advantage that it can be used for nonlinear systems.Keywords: Extended Kalman filter, parameter estimation, single phase rectifier, state space modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9032004 On the Modeling and State Estimation for Dynamic Power System
Authors: A. Thabet, M. Boutayeb, M. N. Abdelkrim
Abstract:
This paper investigates a method for the state estimation of nonlinear systems described by a class of differential-algebraic equation (DAE) models using the extended Kalman filter. The method involves the use of a transformation from a DAE to ordinary differential equation (ODE). A relevant dynamic power system model using decoupled techniques will be proposed. The estimation technique consists of a state estimator based on the EKF technique as well as the local stability analysis. High performances are illustrated through a simulation study applied on IEEE 13 buses test system.
Keywords: Power system, Dynamic decoupled model, Extended Kalman Filter, Convergence analysis, Time computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27372003 Frequency-Variation Based Method for Parameter Estimation of Transistor Amplifier
Authors: Akash Rathee, Harish Parthasarathy
Abstract:
In this paper, a frequency-variation based method has been proposed for transistor parameter estimation in a commonemitter transistor amplifier circuit. We design an algorithm to estimate the transistor parameters, based on noisy measurements of the output voltage when the input voltage is a sine wave of variable frequency and constant amplitude. The common emitter amplifier circuit has been modelled using the transistor Ebers-Moll equations and the perturbation technique has been used for separating the linear and nonlinear parts of the Ebers-Moll equations. This model of the amplifier has been used to determine the amplitude of the output sinusoid as a function of the frequency and the parameter vector. Then, applying the proposed method to the frequency components, the transistor parameters have been estimated. As compared to the conventional time-domain least squares method, the proposed method requires much less data storage and it results in more accurate parameter estimation, as it exploits the information in the time and frequency domain, simultaneously. The proposed method can be utilized for parameter estimation of an analog device in its operating range of frequencies, as it uses data collected from different frequencies output signals for parameter estimation.Keywords: Perturbation Technique, Parameter estimation, frequency-variation based method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17552002 Performances Comparison of Neural Architectures for On-Line Speed Estimation in Sensorless IM Drives
Authors: K.Sedhuraman, S.Himavathi, A.Muthuramalingam
Abstract:
The performance of sensor-less controlled induction motor drive depends on the accuracy of the estimated speed. Conventional estimation techniques being mathematically complex require more execution time resulting in poor dynamic response. The nonlinear mapping capability and powerful learning algorithms of neural network provides a promising alternative for on-line speed estimation. The on-line speed estimator requires the NN model to be accurate, simpler in design, structurally compact and computationally less complex to ensure faster execution and effective control in real time implementation. This in turn to a large extent depends on the type of Neural Architecture. This paper investigates three types of neural architectures for on-line speed estimation and their performance is compared in terms of accuracy, structural compactness, computational complexity and execution time. The suitable neural architecture for on-line speed estimation is identified and the promising results obtained are presented.Keywords: Sensorless IM drives, rotor speed estimators, artificial neural network, feed- forward architecture, single neuron cascaded architecture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14582001 Non-Linear Control Based on State Estimation for the Convoy of Autonomous Vehicles
Authors: M-M. Mohamed Ahmed, Nacer K. M’Sirdi, Aziz Naamane
Abstract:
In this paper, a longitudinal and lateral control approach based on a nonlinear observer is proposed for a convoy of autonomous vehicles to follow a desired trajectory. To authors best knowledge, this topic has not yet been sufficiently addressed in the literature for the control of multi vehicles. The modeling of the convoy of the vehicles is revisited using a robotic method for simulation purposes and control design. With these models, a sliding mode observer is proposed to estimate the states of each vehicle in the convoy from the available sensors, then a sliding mode control based on this observer is used to control the longitudinal and lateral movement. The validation and performance evaluation are done using the well-known driving simulator Scanner-Studio. The results are presented for different maneuvers of 5 vehicles.Keywords: Autonomous vehicles, convoy, nonlinear control, nonlinear observer, sliding mode.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7262000 A Hybrid Scheme for on-Line Diagnostic Decision Making Using Optimal Data Representation and Filtering Technique
Authors: Hyun-Woo Cho
Abstract:
The early diagnostic decision making in industrial processes is absolutely necessary to produce high quality final products. It helps to provide early warning for a special event in a process, and finding its assignable cause can be obtained. This work presents a hybrid diagnostic schmes for batch processes. Nonlinear representation of raw process data is combined with classification tree techniques. The nonlinear kernel-based dimension reduction is executed for nonlinear classification decision boundaries for fault classes. In order to enhance diagnosis performance for batch processes, filtering of the data is performed to get rid of the irrelevant information of the process data. For the diagnosis performance of several representation, filtering, and future observation estimation methods, four diagnostic schemes are evaluated. In this work, the performance of the presented diagnosis schemes is demonstrated using batch process data.
Keywords: Diagnostics, batch process, nonlinear representation, data filtering, multivariate statistical approach
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13161999 A NonLinear Observer of an Electrical Transformer: A Bond Graph Approach
Authors: Gilberto Gonzalez-A , Israel Nuñez
Abstract:
A bond graph model of an electrical transformer including the nonlinear saturation is presented. A nonlinear observer for the transformer based on multivariable circle criterion in the physical domain is proposed. In order to show the saturation and hysteresis effects on the electrical transformer, simulation results are obtained. Finally, the paper describes that convergence of the estimates to the true states is achieved.Keywords: Bond graph, nonlinear observer, electrical transformer, nonlinear saturation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16161998 Design and Instrumentation of a Benchmark Multivariable Nonlinear Control Laboratory
Authors: S. H. Teh, S. Malawaraarachci, W. P. Chan, A. Nassirharand
Abstract:
The purpose of this paper is to present the design and instrumentation of a new benchmark multivariable nonlinear control laboratory. The mathematical model of this system may be used to test the applicability and performance of various nonlinear control procedures. The system is a two degree-of-freedom robotic arm with soft and hard (discontinuous) nonlinear terms. Two novel mechanisms are designed to allow the implementation of adjustable Coulomb friction and backlash.Keywords: Nonlinear control, describing functions, AdjustableCoulomb friction, Adjustable backlash.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18551997 Modeling and Identification of Hammerstein System by using Triangular Basis Functions
Authors: K. Elleuch, A. Chaari
Abstract:
This paper deals with modeling and parameter identification of nonlinear systems described by Hammerstein model having Piecewise nonlinear characteristics such as Dead-zone nonlinearity characteristic. The simultaneous use of both an easy decomposition technique and the triangular basis functions leads to a particular form of Hammerstein model. The approximation by using Triangular basis functions for the description of the static nonlinear block conducts to a linear regressor model, so that least squares techniques can be used for the parameter estimation. Singular Values Decomposition (SVD) technique has been applied to separate the coupled parameters. The proposed approach has been efficiently tested on academic examples of simulation.Keywords: Identification, Hammerstein model, Piecewisenonlinear characteristic, Dead-zone nonlinearity, Triangular basisfunctions, Singular Values Decomposition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919