Search results for: micro sensors.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1118

Search results for: micro sensors.

1058 FPGA Implementation of the “PYRAMIDS“ Block Cipher

Authors: A. AlKalbany, H. Al hassan, M. Saeb

Abstract:

The “PYRAMIDS" Block Cipher is a symmetric encryption algorithm of a 64, 128, 256-bit length, that accepts a variable key length of 128, 192, 256 bits. The algorithm is an iterated cipher consisting of repeated applications of a simple round transformation with different operations and different sequence in each round. The algorithm was previously software implemented in Cµ code. In this paper, a hardware implementation of the algorithm, using Field Programmable Gate Arrays (FPGA), is presented. In this work, we discuss the algorithm, the implemented micro-architecture, and the simulation and implementation results. Moreover, we present a detailed comparison with other implemented standard algorithms. In addition, we include the floor plan as well as the circuit diagrams of the various micro-architecture modules.

Keywords: FPGA, VHDL, micro-architecture, encryption, cryptography, algorithm, data communication security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
1057 Effects of Mold Surface Roughness on Compressible Flow of Micro-Injection Molding

Authors: Nguyen Q. M. P., Chen X., Lam Y. C., Yue C. Y.

Abstract:

Polymer melt compressibility and mold surface roughness, which are generally ignored during the filling stage of the conventional injection molding, may become increasingly significant in micro injection molding where the parts become smaller. By employing the 2.5D generalized Hele-Shaw model, we presented here the effects of polymer compressibility and mold surface roughness on mold-filling in a micro-thickness cavity. To elucidate the effects of surface roughness, numerical investigations were conducted using a cavity flat plate which has two halves with different surface roughness. This allows the comparison of flow field on two different halves under identical processing conditions but with different roughness. Results show that polymer compressibility and mold surface roughness have effects on mold filling in micro injection molding. There is in shrinkage reduction as the density is increased due to polymer melt compressibility during the filling stage.

Keywords: Compressible flow, Micro-injection molding, Polymer, Surface roughness

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020
1056 Abnormality Detection of Persons Living Alone Using Daily Life Patterns Obtained from Sensors

Authors: Ippei Kamihira, Takashi Nakajima, Taiyo Matsumura, Hikaru Miura, Takashi Ono

Abstract:

In this research, the goal was construction of a system by which multiple sensors were used to observe the daily life behavior of persons living alone (while respecting their privacy), using this information to judge such conditions as bad physical condition or falling in the home, etc., so that these abnormal conditions can be made known to relatives and third parties. The daily life patterns of persons living alone are expressed by the number of responses of sensors each time that a set time period has elapsed. By comparing data for the prior two weeks, it was possible to judge a situation as “normal” when the person was in good physical condition or as “abnormal” when the person was in bad physical condition.

Keywords: Sensors, Elderly living alone, Abnormality detection, Lifestyle habit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
1055 Experimental Investigation of Adjacent Hall Structures Parameters

Authors: Ivelina N. Cholakova, Tihomir B. Takov, Radostin Ts. Tsankov, Nicolas Simonne, Slavka S. Tzanova

Abstract:

Adjacent Hall microsensors, comprising a silicon substrate and four contacts, providing simultaneously two supply inputs and two differential outputs, are characterized. The voltage related sensitivity is in the order of 0.11T-1, and a cancellation method for offset compensation is used, achieving residual offset in the micro scale which is also compared to a single Hall plate.

Keywords: Adjacent Hall sensors, offset compensation, voltage related sensitivity, 0.18μm CMOS technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468
1054 Effect of Oxygen and Micro-Cracking on the Flotation of Low Grade Nickel Sulphide Ore

Authors: Edison Muzenda, Ayo S Afolabi

Abstract:

This study investigated the effect of oxygen and micro-cracking on the flotation of low grade nickel sulphide ore. The ore treated contained serpentine minerals which have a history of being difficult to process efficiently. The use of oxygen as a bubbling gas has been noted to be effective because it increases the pulp potential. The desired effect of micro cracking the ore is that the nickel sulphide minerals will become activated and this activation will render these minerals more susceptible to react with potassium amyl xanthate collectors, resulting in a higher recovery of nickel and hinder the recovery of other undesired minerals contained in the ore. Higher nickel recoveries were obtained when pure oxygen was used as a bubbling gas rather than the conventional air. Microwave cracking favored the recovery of nickel.

Keywords: Flotation, Conventional air, Oven micro-cracking, Recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2155
1053 Essential Micronutrient Biofortification of Sprouts Grown on Mineral Fortified Fiber Mats

Authors: Jacquelyn Nyenhuis, Jaroslaw W. Drelich

Abstract:

Diets high in processed foods have been found to lack essential micro-nutrients for optimum human development and overall health. Some micro-nutrients such as copper (Cu) have been found to enhance the inflammatory response through its oxidative functions, thereby having a role in cardiovascular disease, metabolic syndrome, diabetes and related complications. This research study was designed to determine if food crops could be bio-fortified with micro-nutrients by growing sprouts on mineral fortified fiber mats. In the feasibility study described in this contribution, recycled cellulose fibers and clay, saturated with either micro-nutrient copper ions or copper nanoparticles, were converted to a novel mineral-cellulose fiber carrier of essential micro-nutrient and of antimicrobial properties. Seeds of Medicago sativa (alfalfa), purchased from a commercial, organic supplier were germinated on engineered cellulose fiber mats. After the appearance of the first leaves, the sprouts were dehydrated and analyzed for Cu content. Nutrient analysis showed ~2 increase in Cu of the sprouts grown on the fiber mats with copper particles, and ~4 increase on mats with ionic copper as compared to the control samples. This study illustrates the potential for the use of engineered mats as a viable way to increase the micro-nutrient composition of locally-grown food crops and the need for additional research to determine the uptake, nutritional implications and risks of micro-nutrient bio-fortification.

Keywords: Bio-fortification, copper nutrient uptake, sprout, mineral-fortified mat, micro-nutrient uptake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1949
1052 Hybrid Heat Pump for Micro Heat Network

Authors: J. M. Counsell, Y. Khalid, M. J. Stewart

Abstract:

Achieving nearly zero carbon heating continues to be identified by UK government analysis as an important feature of any lowest cost pathway to reducing greenhouse gas emissions. Heat currently accounts for 48% of UK energy consumption and approximately one third of UK’s greenhouse gas emissions. Heat Networks are being promoted by UK investment policies as one means of supporting hybrid heat pump based solutions. To this effect the RISE (Renewable Integrated and Sustainable Electric) heating system project is investigating how an all-electric heating sourceshybrid configuration could play a key role in long-term decarbonisation of heat.  For the purposes of this study, hybrid systems are defined as systems combining the technologies of an electric driven air source heat pump, electric powered thermal storage, a thermal vessel and micro-heat network as an integrated system.  This hybrid strategy allows for the system to store up energy during periods of low electricity demand from the national grid, turning it into a dynamic supply of low cost heat which is utilized only when required. Currently a prototype of such a system is being tested in a modern house integrated with advanced controls and sensors. This paper presents the virtual performance analysis of the system and its design for a micro heat network with multiple dwelling units. The results show that the RISE system is controllable and can reduce carbon emissions whilst being competitive in running costs with a conventional gas boiler heating system.

Keywords: Gas boilers, heat pumps, hybrid heating and thermal storage, renewable integrated& sustainable electric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1269
1051 Design and Fabrication of Micro-Bubble Oxygenator

Authors: Chiang-Ho Cheng, An-Shik Yang, Hong-Yih Cheng

Abstract:

This paper applies the MEMS technology to design and fabricate a micro-bubble generator by a piezoelectric actuator. Coupled with a nickel nozzle plate, an annular piezoelectric ceramic was utilized as the primary structure of the generator. In operations, the piezoelectric element deforms transversely under an electric field applied across the thickness of the generator. The surface of the nozzle plate can expand or contract because of the induction of radial strain, resulting in the whole structure to bend, and successively transport oxygen micro-bubbles into the blood flow for enhancing the oxygen content in blood. In the tests, a high magnification microscope and a high speed CCD camera were employed to photograph the time evolution of meniscus shape of gaseous bubbles dispensed from the micro-bubble generator for flow visualization. This investigation thus explored the bubble formation process including the influences of inlet gas pressure along with driving voltage and resonance frequency on the formed bubble extent.

Keywords: Micro-bubble, nozzle, oxygenator, piezoelectric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290
1050 SWNT Sensors for Monitoring the Oxidation of Edible Oils

Authors: Keun-soo Lee, Kyongsoo Lee, Vincent Lau, Kyeong Shin, Byeong-Kwon Ju

Abstract:

There are several means to measure the oxidation of edible oils, such as the acid value, the peroxide value, and the anisidine value. However, these means require large quantities of reagents and are time-consuming tasks. Therefore, a more convenient and time-saving way to measure the oxidation of edible oils is required. In this report, an edible oil condition sensor was fabricated by using single-walled nanotubes (SWNT). In order to test the sensor, oxidized edible oils, each one at a different acid value, were prepared. The SWNT sensors were immersed into these oxidized oils and the resistance changes in the sensors were measured. It was found that the conductivity of the sensors decreased as the oxidation level of oil increased. This result suggests that a change of the oil components induced by the oxidation process in edible oils is related to the conductivity change in the SWNT sensor.

Keywords: Single-walled carbon nanotubes, edible oil oxidation, chemical sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
1049 Study on the Characteristics of the Measurement System for pH Array Sensors

Authors: Jung-Chuan Chou, Wei-Lun Hsia

Abstract:

A measurement system for pH array sensors is introduced to increase accuracy, and decrease non-ideal effects successfully. An array readout circuit reads eight potentiometric signals at the same time, and obtains an average value. The deviation value or the extreme value is counteracted and the output voltage is a relatively stable value. The errors of measuring pH buffer solutions are decreased obviously with this measurement system, and the non-ideal effects, drift and hysteresis, are lowered to 1.638mV/hr and 1.118mV, respectively. The efficiency and stability are better than single sensor. The whole sensing characteristics are improved.

Keywords: Array sensors, measurement system, non-ideal effects, pH sensor, readout circuit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
1048 Fuzzy Modeling for Micro EDM Parameters Optimization in Drilling of Biomedical Implants Ti-6Al-4V Alloy for Higher Machining Performance

Authors: Ahmed A.D. Sarhan, Lim Siew Fen, Mum Wai Yip, M. Sayuti

Abstract:

Ti6Al4V alloy is highly used in the automotive and aerospace industry due to its good machining characteristics. Micro EDM drilling is commonly used to drill micro hole on extremely hard material with very high depth to diameter ratio. In this study, the parameters of micro-electrical discharge machining (EDM) in drilling of Ti6Al4V alloy is optimized for higher machining accuracy with less hole-dilation and hole taper ratio. The micro-EDM machining parameters includes, peak current and pulse on time. Fuzzy analysis was developed to evaluate the machining accuracy. The analysis shows that hole-dilation and hole-taper ratio are increased with the increasing of peak current and pulse on time. However, the surface quality deteriorates as the peak current and pulse on time increase. The combination that gives the optimum result for hole dilation is medium peak current and short pulse on time. Meanwhile, the optimum result for hole taper ratio is low peak current and short pulse on time.

Keywords: Micro EDM, Ti-6Al-4V alloy, fuzzy logic based analysis, optimization, machining accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2692
1047 Array Signal Processing: DOA Estimation for Missing Sensors

Authors: Lalita Gupta, R. P. Singh

Abstract:

Array signal processing involves signal enumeration and source localization. Array signal processing is centered on the ability to fuse temporal and spatial information captured via sampling signals emitted from a number of sources at the sensors of an array in order to carry out a specific estimation task: source characteristics (mainly localization of the sources) and/or array characteristics (mainly array geometry) estimation. Array signal processing is a part of signal processing that uses sensors organized in patterns or arrays, to detect signals and to determine information about them. Beamforming is a general signal processing technique used to control the directionality of the reception or transmission of a signal. Using Beamforming we can direct the majority of signal energy we receive from a group of array. Multiple signal classification (MUSIC) is a highly popular eigenstructure-based estimation method of direction of arrival (DOA) with high resolution. This Paper enumerates the effect of missing sensors in DOA estimation. The accuracy of the MUSIC-based DOA estimation is degraded significantly both by the effects of the missing sensors among the receiving array elements and the unequal channel gain and phase errors of the receiver.

Keywords: Array Signal Processing, Beamforming, ULA, Direction of Arrival, MUSIC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2969
1046 The Experimental Study of the Effect of Flow Pattern Geometry on Performance of Micro Proton Exchange Membrane Fuel Cell

Authors: Tang Yuan Chen, Chang Hsin Chen, Chiun Hsun Chen

Abstract:

In this research, the flow pattern influence on performance of a micro PEMFC was investigated experimentally. The investigation focused on the impacts of bend angels and rib/channel dimensions of serpentine flow channel pattern on the performance and investigated how they improve the performance. The fuel cell employed for these experiments was a micro single PEMFC with a membrane of 1.44 cm2 Nafion NRE-212. The results show that 60° and 120° bend angles can provide the better performances at 20 and 40 sccm inlet flow rates comparing to that the conventional design. Additionally, wider channel with narrower rib spacing gives better performance. These results may be applied to develop universal heuristics for the design of flow pattern of micro PEMFC.

Keywords: Flow pattern, MEMS, PEMFC, Performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
1045 An Experimental Study on the Effect of Operating Parameters during the Micro-Electro-Discharge Machining of Ni Based Alloy

Authors: Asma Perveen, M. P. Jahan

Abstract:

Ni alloys have managed to cover wide range of applications such as automotive industries, oil gas industries, and aerospace industries. However, these alloys impose challenges while using conventional machining technologies. On the other hand, Micro-Electro-Discharge machining (micro-EDM) is a non-conventional machining method that uses controlled sparks energy to remove material irrespective of the materials hardness. There has been always a huge interest from the industries for developing optimum methodology and parameters in order to enhance the productivity of micro-EDM in terms of reducing machining time and tool wear for different alloys. Therefore, the aims of this study are to investigate the effects of the micro-EDM process parameters, in order to find their optimal values. The input process parameters include voltage, capacitance, and electrode rotational speed, whereas the output parameters considered are machining time, entrance diameter of hole, overcut, tool wear, and crater size. The surface morphology and element characterization are also investigated with the use of SEM and EDX analysis. The experimental result indicates the reduction of machining time with the increment of discharge energy. Discharge energy also contributes to the enlargement of entrance diameter as well as overcut. In addition, tool wears show reduction with the increase of discharge energy. Moreover, crater size is found to be increased in size along with the increment of discharge energy.

Keywords: Micro EDM, Ni alloy, discharge energy, micro-holes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1291
1044 Using Ultrasonic and Infrared Sensors for Distance Measurement

Authors: Tarek Mohammad

Abstract:

The amplitude response of infrared (IR) sensors depends on the reflectance properties of the target. Therefore, in order to use IR sensor for measuring distances accurately, prior knowledge of the surface must be known. This paper describes the Phong Illumination Model for determining the properties of a surface and subsequently calculating the distance to the surface. The angular position of the IR sensor is computed as normal to the surface for simplifying the calculation. Ultrasonic (US) sensor can provide the initial information on distance to obtain the parameters for this method. In addition, the experimental results obtained by using LabView are discussed. More care should be taken when placing the objects from the sensors during acquiring data since the small change in angle could show very different distance than the actual one. Since stereo camera vision systems do not perform well under some environmental conditions such as plain wall, glass surfaces, or poor lighting conditions, the IR and US sensors can be used additionally to improve the overall vision systems of mobile robots.

Keywords: Distance Measurement, Infrared sensor, Surface properties, Ultrasonic sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14947
1043 Autonomic Sonar Sensor Fault Manager for Mobile Robots

Authors: Martin Doran, Roy Sterritt, George Wilkie

Abstract:

NASA, ESA, and NSSC space agencies have plans to put planetary rovers on Mars in 2020. For these future planetary rovers to succeed, they will heavily depend on sensors to detect obstacles. This will also become of vital importance in the future, if rovers become less dependent on commands received from earth-based control and more dependent on self-configuration and self-decision making. These planetary rovers will face harsh environments and the possibility of hardware failure is high, as seen in missions from the past. In this paper, we focus on using Autonomic principles where self-healing, self-optimization, and self-adaption are explored using the MAPE-K model and expanding this model to encapsulate the attributes such as Awareness, Analysis, and Adjustment (AAA-3). In the experimentation, a Pioneer P3-DX research robot is used to simulate a planetary rover. The sonar sensors on the P3-DX robot are used to simulate the sensors on a planetary rover (even though in reality, sonar sensors cannot operate in a vacuum). Experiments using the P3-DX robot focus on how our software system can be adapted with the loss of sonar sensor functionality. The autonomic manager system is responsible for the decision making on how to make use of remaining ‘enabled’ sonars sensors to compensate for those sonar sensors that are ‘disabled’. The key to this research is that the robot can still detect objects even with reduced sonar sensor capability.

Keywords: Autonomic, self-adaption, self-healing, self-optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 958
1042 Shear Buckling of a Large Pultruded Composite I-Section under Asymmetric Loading

Authors: Jin Y. Park, Jeong Wan Lee

Abstract:

An experimental and analytical research on shear buckling of a comparably large polymer composite I-section is presented. It is known that shear buckling load of a large span composite beam is difficult to determine experimentally. In order to sensitively detect shear buckling of the tested I-section, twenty strain rosettes and eight displacement sensors were applied and attached on the web and flange surfaces. The tested specimen was a pultruded composite beam made of vinylester resin, E-glass, carbon fibers and micro-fillers. Various coupon tests were performed before the shear buckling test to obtain fundamental material properties of the Isection. An asymmetric four-point bending loading scheme was utilized for the shear test. The loading scheme resulted in a high shear and almost zero moment condition at the center of the web panel. The shear buckling load was successfully determined after analyzing the obtained test data from strain rosettes and displacement sensors. An analytical approach was also performed to verify the experimental results and to support the discussed experimental program.

Keywords: Strain sensor, displacement sensor, shear buckling, polymer composite I-section, asymmetric loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1914
1041 Predictive Model of Sensor Readings for a Mobile Robot

Authors: Krzysztof Fujarewicz

Abstract:

This paper presents a predictive model of sensor readings for mobile robot. The model predicts sensor readings for given time horizon based on current sensor readings and velocities of wheels assumed for this horizon. Similar models for such anticipation have been proposed in the literature. The novelty of the model presented in the paper comes from the fact that its structure takes into account physical phenomena and is not just a black box, for example a neural network. From this point of view it may be regarded as a semi-phenomenological model. The model is developed for the Khepera robot, but after certain modifications, it may be applied for any robot with distance sensors such as infrared or ultrasonic sensors.

Keywords: Mobile robot, sensors, prediction, anticipation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400
1040 Interaction Effect of Feed Rate and Cutting Speed in CNC-Turning on Chip Micro-Hardness of 304- Austenitic Stainless Steel

Authors: G. H. Senussi

Abstract:

The present work is concerned with the effect of turning process parameters (cutting speed, feed rate, and depth of cut) and distance from the center of work piece as input variables on the chip micro-hardness as response or output. Three experiments were conducted; they were used to investigate the chip micro-hardness behavior at diameter of work piece for 30[mm], 40[mm], and 50[mm]. Response surface methodology (R.S.M) is used to determine and present the cause and effect of the relationship between true mean response and input control variables influencing the response as a two or three dimensional hyper surface. R.S.M has been used for designing a three factor with five level central composite rotatable factors design in order to construct statistical models capable of accurate prediction of responses. The results obtained showed that the application of R.S.M can predict the effect of machining parameters on chip micro-hardness. The five level factorial designs can be employed easily for developing statistical models to predict chip micro-hardness by controllable machining parameters. Results obtained showed that the combined effect of cutting speed at it?s lower level, feed rate and depth of cut at their higher values, and larger work piece diameter can result increasing chi micro-hardness.

Keywords: Machining Parameters, Chip Micro-Hardness, CNCMachining, 304-Austenic Stainless Steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3231
1039 Analysis of Pharmaceuticals in Influents of Municipal Wastewater Treatment Plants in Jordan

Authors: O. A. Al-Mashaqbeh, A. M. Ghrair, D. Alsafadi, S. S. Dalahmeh, S. L. Bartelt-Hunt, D. D. Snow

Abstract:

Grab samples were collected in the summer to characterize selected pharmaceuticals and personal care products (PPCPs) in the influent of two wastewater treatment plants (WWTPs) in Jordan. Liquid chromatography tandem mass spectrometry (LC–MS/MS) was utilized to determine the concentrations of 18 compounds of PPCPs. Among all of the PPCPs analyzed, eight compounds were detected in the influent samples (1,7-dimethylxanthine, acetaminophen, caffeine, carbamazepine, cotinine, morphine, sulfamethoxazole and trimethoprim). However, five compounds (amphetamine, cimetidine, diphenhydramine, methylenedioxyamphetamine (MDA) and sulfachloropyridazine) were not detected in collected samples (below the detection limits <0.005 ng/l). Moreover, the results indicated that the highest concentration levels detected in collected samples were caffeine, acetaminophen, 1,7-dimethylxanthine, cotinine and carbamazepine at concentration of 182.5 µg/L, 28.7 µg/l, 7.47 µg/l, 4.67 µg/l and 1.54 µg/L, respectively. In general, most of compounds concentrations measured in wastewater in Jordan are within the range for wastewater previously reported in India wastewater except caffeine.

Keywords: Pharmaceuticals and personal care products, wastewater, Jordan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1201
1038 Processing the Medical Sensors Signals Using Fuzzy Inference System

Authors: S. Bouharati, I. Bouharati, C. Benzidane, F. Alleg, M. Belmahdi

Abstract:

Sensors possess several properties of physical measures. Whether devices that convert a sensed signal into an electrical signal, chemical sensors and biosensors, thus all these sensors can be considered as an interface between the physical and electrical equipment. The problem is the analysis of the multitudes of saved settings as input variables. However, they do not all have the same level of influence on the outputs. In order to identify the most sensitive parameters, those that can guide users in gathering information on the ground and in the process of model calibration and sensitivity analysis for the effect of each change made. Mathematical models used for processing become very complex. In this paper a fuzzy rule-based system is proposed as a solution for this problem. The system collects the available signals information from sensors. Moreover, the system allows the study of the influence of the various factors that take part in the decision system. Since its inception fuzzy set theory has been regarded as a formalism suitable to deal with the imprecision intrinsic to many problems. At the same time, fuzzy sets allow to use symbolic models. In this study an example was applied for resolving variety of physiological parameters that define human health state. The application system was done for medical diagnosis help. The inputs are the signals expressed the cardiovascular system parameters, blood pressure, Respiratory system paramsystem was done, it will be able to predict the state of patient according any input values.

Keywords: Sensors, Sensivity, fuzzy logic, analysis, physiological parameters, medical diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922
1037 Peak Data Rate Enhancement Using Switched Micro-Macro Diversity in Cellular Multiple-Input-Multiple-Output Systems

Authors: Jihad S. Daba, J. P. Dubois, Yvette Antar

Abstract:

With the exponential growth of cellular users, a new generation of cellular networks is needed to enhance the required peak data rates. The co-channel interference between neighboring base stations inhibits peak data rate increase. To overcome this interference, multi-cell cooperation known as coordinated multipoint transmission is proposed. Such a solution makes use of multiple-input-multiple-output (MIMO) systems under two different structures: Micro- and macro-diversity. In this paper, we study the capacity and bit error rate in cellular networks using MIMO technology. We analyse both micro- and macro-diversity schemes and develop a hybrid model that switches between macro- and micro-diversity in the case of hard handoff based on a cut-off range of signal-to-noise ratio values. We conclude that our hybrid switched micro-macro MIMO system outperforms classical MIMO systems at the cost of increased hardware and software complexity.

Keywords: Cooperative multipoint transmission, ergodic capacity, hard handoff, macro-diversity, micro-diversity, multiple-input-multiple-output systems, MIMO, orthogonal frequency division multiplexing, OFDM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1053
1036 Power Generation from Sewage by a Micro-Hydraulic Turbine

Authors: Tomomi Uchiyama, Tomoko Okayama, Yukio Ide

Abstract:

This study is concerned with the development of a micro-hydraulic turbine for power generation installed in sewer pipes. The runner has a circular hollow around the central (rotating) axis so that solid materials included in water can be easily flow through the runner without blocking the turbine. The laboratory experiments are also conducted. The hollow is very effective to make polyester fibers pass through the turbine. The guide vane is useful to heighten the turbine performance. But it is easily blocked by the fibers, making the turbine lose the function.

Keywords: Generation of electricity, micro-hydraulic turbine, sewage, sewer pipe.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506
1035 Numerical Simulation of Wall Treatment Effects on the Micro-Scale Combustion

Authors: R. Kamali, A. R. Binesh, S. Hossainpour

Abstract:

To understand working features of a micro combustor, a computer code has been developed to study combustion of hydrogen–air mixture in a series of chambers with same shape aspect ratio but various dimensions from millimeter to micrometer level. The prepared algorithm and the computer code are capable of modeling mixture effects in different fluid flows including chemical reactions, viscous and mass diffusion effects. The effect of various heat transfer conditions at chamber wall, e.g. adiabatic wall, with heat loss and heat conduction within the wall, on the combustion is analyzed. These thermal conditions have strong effects on the combustion especially when the chamber dimension goes smaller and the ratio of surface area to volume becomes larger. Both factors, such as larger heat loss through the chamber wall and smaller chamber dimension size, may lead to the thermal quenching of micro-scale combustion. Through such systematic numerical analysis, a proper operation space for the micro-combustor is suggested, which may be used as the guideline for microcombustor design. In addition, the results reported in this paper illustrate that the numerical simulation can be one of the most powerful and beneficial tools for the micro-combustor design, optimization and performance analysis.

Keywords: Numerical simulation, Micro-combustion, MEMS, CFD, Chemical reaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1761
1034 An Energy Efficient Protocol for Target Localization in Wireless Sensor Networks

Authors: Shun-Kai Yang, Kuo-Feng Ssu

Abstract:

Target tracking and localization are important applications in wireless sensor networks. In these applications, sensor nodes collectively monitor and track the movement of a target. They have limited energy supplied by batteries, so energy efficiency is essential for sensor networks. Most existing target tracking protocols need to wake up sensors periodically to perform tracking. Some unnecessary energy waste is thus introduced. In this paper, an energy efficient protocol for target localization is proposed. In order to preserve energy, the protocol fixes the number of sensors for target tracking, but it retains the quality of target localization in an acceptable level. By selecting a set of sensors for target localization, the other sensors can sleep rather than periodically wake up to track the target. Simulation results show that the proposed protocol saves a significant amount of energy and also prolongs the network lifetime.

Keywords: Coverage, energy efficiency, target localization, wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563
1033 Highly Flexible Modularized Sensor Platform

Authors: Kai-Chao Yang, Chun-Ming Huang, Chih-Chiao Yang, Chien-Ming Wu

Abstract:

Sensors have been used in various kinds of academic fields and applications. In this article, we propose the idea of modularized sensors that combine multiple sensor modules into a unique sensor. We divide a sensor into several units according to functionalities. Each unit has different sensor modules, which share the same type of connectors and can be serially and arbitrarily connected each other. A user can combine different sensor modules into a sensor platform according to requirements. Compared with current modularized sensors, the proposed sensor platform is highly flexible and reusable. We have implemented the prototype of the proposed sensor platform, and the experimental results show the proposed platform can work correctly.

Keywords: Sensor device, sensor fusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
1032 The Impact of HIV/AIDS on Micro-enterprise Development in Kenya: A Study of Obunga Slum in Kisumu

Authors: C. A. Oloo, C. Ojwang

Abstract:

The performances of small and medium enterprises have stagnated in the last two decades. This has mainly been due to the emergence of HIV / Aids. The disease has had a detrimental effect on the general economy of the country leading to morbidity and mortality of the Kenyan workforce in their primary age. The present study sought to establish the economic impact of HIV / Aids on the micro-enterprise development in Obunga slum – Kisumu, in terms of production loss, increasing labor related cost and to establish possible strategies to address the impact of HIV / Aids on microenterprises. The study was necessitated by the observation that most micro-enterprises in the slum are facing severe economic and social crisis due to the impact of HIV / Aids, they get depleted and close down within a short time due to death of skilled and experience workforce. The study was carried out between June 2008 and June 2009 in Obunga slum. Data was subjected to computer aided statistical analysis that included descriptive statistic, chi-squared and ANOVA techniques. Chi-squared analysis on the micro-enterprise owners opinion on the impact of HIV / Aids on depletion of microenterprise compared to other diseases indicated high levels of the negative effects of the disease at significance levels of P<0.01. Analysis of variance on the impact of HIV / Aids on the performance and productivity of micro-enterprises also indicated a negative effect on the general performance of micro-enterprise at significance levels of P<0.01. Therefore reducing the negative impacts of HIV/Aids on micro-enterprise development, there is need to improve the socioeconomic environment, mobilize donors and stake holders in training and funding, and review the current strategies for addressing the disease. Further conclusive research should also be conducted on a bigger scale.

Keywords: Entrepreneurship, HIV-AIDS, Micro-enterprise, Poverty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2355
1031 Coverage and Connectivity Problem in Sensor Networks

Authors: Meenakshi Bansal, Iqbal Singh, Parvinder S. Sandhu

Abstract:

In over deployed sensor networks, one approach to Conserve energy is to keep only a small subset of sensors active at Any instant. For the coverage problems, the monitoring area in a set of points that require sensing, called demand points, and consider that the node coverage area is a circle of range R, where R is the sensing range, If the Distance between a demand point and a sensor node is less than R, the node is able to cover this point. We consider a wireless sensor network consisting of a set of sensors deployed randomly. A point in the monitored area is covered if it is within the sensing range of a sensor. In some applications, when the network is sufficiently dense, area coverage can be approximated by guaranteeing point coverage. In this case, all the points of wireless devices could be used to represent the whole area, and the working sensors are supposed to cover all the sensors. We also introduce Hybrid Algorithm and challenges related to coverage in sensor networks.

Keywords: Wireless sensor networks, network coverage, Energy conservation, Hybrid Algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
1030 A Human Activity Recognition System Based On Sensory Data Related to Object Usage

Authors: M. Abdullah-Al-Wadud

Abstract:

Sensor-based Activity Recognition systems usually accounts which sensors have been activated to perform an activity. The system then combines the conditional probabilities of those sensors to represent different activities and takes the decision based on that. However, the information about the sensors which are not activated may also be of great help in deciding which activity has been performed. This paper proposes an approach where the sensory data related to both usage and non-usage of objects are utilized to make the classification of activities. Experimental results also show the promising performance of the proposed method.

Keywords: Naïve Bayesian-based classification, Activity recognition, sensor data, object-usage model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773
1029 Sensor Fusion Based Discrete Kalman Filter for Outdoor Robot Navigation

Authors: Mbaitiga Zacharie

Abstract:

The objective of the presented work is to implement the Kalman Filter into an application that reduces the influence of the environmental changes over the robot expected to navigate over a terrain of varying friction properties. The Discrete Kalman Filter is used to estimate the robot position, project the estimated current state ahead at time through time update and adjust the projected estimated state by an actual measurement at that time via the measurement update using the data coming from the infrared sensors, ultrasonic sensors and the visual sensor respectively. The navigation test has been performed in a real world environment and has been found to be robust.

Keywords: Kalman filter, sensors fusion, robot navigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063