Search results for: lumped element modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3217

Search results for: lumped element modeling

3187 Variability of Hydrological Modeling of the Blue Nile

Authors: Abeer Samy, Oliver C. Saavedra Valeriano, Abdelazim Negm

Abstract:

The Blue Nile Basin is the most important tributary of the Nile River. Egypt and Sudan are almost dependent on water originated from the Blue Nile. This multi-dependency creates conflicts among the three countries Egypt, Sudan, and Ethiopia making the management of these conflicts as an international issue. Good assessment of the water resources of the Blue Nile is an important to help in managing such conflicts. Hydrological models are good tool for such assessment. This paper presents a critical review of the nature and variability of the climate and hydrology of the Blue Nile Basin as a first step of using hydrological modeling to assess the water resources of the Blue Nile. Many several attempts are done to develop basin-scale hydrological modeling on the Blue Nile. Lumped and semi distributed models used averages of meteorological inputs and watershed characteristics in hydrological simulation, to analyze runoff for flood control and water resource management. Distributed models include the temporal and spatial variability of catchment conditions and meteorological inputs to allow better representation of the hydrological process. The main challenge of all used models was to assess the water resources of the basin is the shortage of the data needed for models calibration and validation. It is recommended to use distributed model for their higher accuracy to cope with the great variability and complexity of the Blue Nile basin and to collect sufficient data to have more sophisticated and accurate hydrological modeling.

Keywords: Blue Nile Basin, Climate Change, Hydrological Modeling, Watershed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3031
3186 Modeling and Numerical Simulation of Sound Radiation by the Boundary Element Method

Authors: Costa, E.S., Borges, E.N.M., Afonso, M.M.

Abstract:

The modeling of sound radiation is of fundamental importance for understanding the propagation of acoustic waves and, consequently, develop mechanisms for reducing acoustic noise. The propagation of acoustic waves, are involved in various phenomena such as radiation, absorption, transmission and reflection. The radiation is studied through the linear equation of the acoustic wave that is obtained through the equation for the Conservation of Momentum, equation of State and Continuity. From these equations, is the Helmholtz differential equation that describes the problem of acoustic radiation. In this paper we obtained the solution of the Helmholtz differential equation for an infinite cylinder in a pulsating through free and homogeneous. The analytical solution is implemented and the results are compared with the literature. A numerical formulation for this problem is obtained using the Boundary Element Method (BEM). This method has great power for solving certain acoustical problems in open field, compared to differential methods. BEM reduces the size of the problem, thereby simplifying the input data to be worked and reducing the computational time used.

Keywords: Acoustic radiation, boundary element

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1426
3185 Strongly Coupled Finite Element Formulation of Electromechanical Systems with Integrated Mesh Morphing using Radial Basis Functions

Authors: D. Kriebel, J. E. Mehner

Abstract:

The paper introduces a method to efficiently simulate nonlinear changing electrostatic fields occurring in micro-electromechanical systems (MEMS). Large deflections of the capacitor electrodes usually introduce nonlinear electromechanical forces on the mechanical system. Traditional finite element methods require a time-consuming remeshing process to capture exact results for this physical domain interaction. In order to accelerate the simulation process and eliminate the remeshing process, a formulation of a strongly coupled electromechanical transducer element will be introduced which uses a combination of finite-element with an advanced mesh morphing technique using radial basis functions (RBF). The RBF allows large geometrical changes of the electric field domain while retain high element quality of the deformed mesh. Coupling effects between mechanical and electrical domains are directly included within the element formulation. Fringing field effects are described accurate by using traditional arbitrary shape functions.

Keywords: electromechanical, electric field, transducer, simulation, modeling, finite-element, mesh morphing, radial basis function

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 438
3184 Finite Element Analysis and Feasibility of Simple Stochastic Modeling in the Analysis of Fissuring in Grains during Soaking

Authors: Jonathan H. Perez, Fumihiko Tanaka, Daisuke Hamanaka, Toshitaka Uchino

Abstract:

A finite element analysis was conducted to determine the effect of moisture diffusion and hygroscopic swelling in rice. A parallel simple stochastic modeling was performed to predict the number of grains cracked as a result of moisture absorption and hygroscopic swelling. Rice grains were soaked in thermally (25 oC) controlled water and then tested for compressive stress. The destructive compressive stress tests revealed through compressive stress calculation that the peak force required to cause cracking in grains soaked in water reduced with time as soaking duration was extended. Results of the experiment showed that several grains had their value of the predicted compressive stress below the von Mises stress and were interpreted as grains which become cracked and/or broke during soaking. The technique developed in this experiment will facilitate the approximation of the number of grains which will crack during soaking.

Keywords: Cracking, Finite element analysis, hygroscopic swelling, moisture diffusion, von Mises stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1879
3183 The Shaping of a Triangle Steel Plate into an Equilateral Vertical Steel by Finite-Element Modeling

Authors: Tsung-Chia Chen

Abstract:

The orthogonal processes to shape the triangle steel plate into a equilateral vertical steel are examined by an incremental elasto-plastic finite-element method based on an updated Lagrangian formulation. The highly non-linear problems due to the geometric changes, the inelastic constitutive behavior and the boundary conditions varied with deformation are taken into account in an incremental manner. On the contact boundary, a modified Coulomb friction mode is specially considered. A weighting factor r-minimum is employed to limit the step size of loading increment to linear relation. In particular, selective reduced integration was adopted to formulate the stiffness matrix. The simulated geometries of verticality could clearly demonstrate the vertical processes until unloading. A series of experiments and simulations were performed to validate the formulation in the theory, leading to the development of the computer codes. The whole deformation history and the distribution of stress, strain and thickness during the forming process were obtained by carefully considering the moving boundary condition in the finite-element method. Therefore, this modeling can be used for judging whether a equilateral vertical steel can be shaped successfully. The present work may be expected to improve the understanding of the formation of the equilateral vertical steel.

Keywords: Elasto-plastic, finite element, orthogonal pressing process, vertical steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313
3182 Tension Stiffening Parameter in Composite Concrete Reinforced with Inoxydable Steel: Laboratory and Finite Element Analysis

Authors: S. Alih, A. Khelil

Abstract:

In the present work, behavior of inoxydable steel as reinforcement bar in composite concrete is being investigated. The bar-concrete adherence in reinforced concrete (RC) beam is studied and focus is made on the tension stiffening parameter. This study highlighted an approach to observe this interaction behavior in bending test instead of direct tension as per reported in many references. The approach resembles actual loading condition of the structural RC beam. The tension stiffening properties are then applied to numerical finite element analysis (FEA) to verify their correlation with laboratory results. Comparison with laboratory shows a good correlation between the two. The experimental settings is able to determine tension stiffening parameters in RC beam and the modeling strategies made in ABAQUS can closely represent the actual condition. Tension stiffening model used can represent the interaction properties between inoxydable steel and concrete.

Keywords: Inoxydable steel, Finite element modeling, Reinforced concrete beam, Tension-stiffening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4253
3181 Precision Identification of Nonlinear Damping Parameter for a Miniature Moving-Coil Transducer

Authors: Yu-Ting Tsai, Yu-da Lee, Jin H. Huang

Abstract:

The nonlinear damping behavior is usually ignored in the design of a miniature moving-coil loudspeaker. But when the loudspeaker operated in air, the damping parameter varies with the voice-coil displacement corresponding due to viscous air flow. The present paper presents an identification model as inverse problem to identify the nonlinear damping parameter in the lumped parameter model for the loudspeaker. Theoretical results for the nonlinear damping are verified by using laser displacement measurement scanner. These results indicate that the damping parameter has the greatly different nonlinearity between in air and vacuum. It is believed that the results of the present work can be applied in diagnosis and sound quality improvement of a miniature loudspeaker.

Keywords: Miniature loudspeaker, non-linear damping, system identification, Lumped parameter model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937
3180 Acoustic Analysis with Consideration of Damping Effects of Air Viscosity in Sound Pathway

Authors: M. Sasajima, M. Watanabe, T. Yamaguchi, Y. Kurosawa, Y. Koike

Abstract:

Sound pathways in the enclosures of small earphones are very narrow. In such narrow pathways, the speed of sound propagation and the phase of sound waves change because of the air viscosity. We have developed a new finite element method that includes the effects of damping due to air viscosity for modeling the sound pathway. This method is developed as an extension of the existing finite element method for porous sound-absorbing materials. The numerical calculation results using the proposed finite element method are validated against the existing calculation methods.

Keywords: Simulation, FEM, air viscosity, damping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154
3179 Mapping of C* Elements in Finite Element Method using Transformation Matrix

Authors: G. H. Majzoob, B. Sharifi Hamadani

Abstract:

Mapping between local and global coordinates is an important issue in finite element method, as all calculations are performed in local coordinates. The concern arises when subparametric are used, in which the shape functions of the field variable and the geometry of the element are not the same. This is particularly the case for C* elements in which the extra degrees of freedoms added to the nodes make the elements sub-parametric. In the present work, transformation matrix for C1* (an 8-noded hexahedron element with 12 degrees of freedom at each node) is obtained using equivalent C0 elements (with the same number of degrees of freedom). The convergence rate of 8-noded C1* element is nearly equal to its equivalent C0 element, while it consumes less CPU time with respect to the C0 element. The existence of derivative degrees of freedom at the nodes of C1* element along with excellent convergence makes it superior compared with it equivalent C0 element.

Keywords: Mapping, Finite element method, C* elements, Convergence, C0 elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3106
3178 Modeling and Simulation of Honeycomb Steel Sandwich Panels under Blast Loading

Authors: Sayed M. Soleimani, Nader H. Ghareeb, Nourhan H. Shaker, Muhammad B. Siddiqui

Abstract:

Honeycomb sandwich panels have been widely used as protective structural elements against blast loading. The main advantages of these panels include their light weight due to the presence of voids, as well as their energy absorption capability. Terrorist activities have imposed new challenges to structural engineers to design protective measures for vital structures. Since blast loading is not usually considered in the load combinations during the design process of a structure, researchers around the world have been motivated to study the behavior of potential elements capable of resisting sudden loads imposed by the detonation of explosive materials. One of the best candidates for this objective is the honeycomb sandwich panel. Studying the effects of explosive materials on the panels requires costly and time-consuming experiments. Moreover, these type of experiments need permission from defense organizations which can become a hurdle. As a result, modeling and simulation using an appropriate tool can be considered as a good alternative. In this research work, the finite element package ABAQUS® is used to study the behavior of hexagonal and squared honeycomb steel sandwich panels under the explosive effects of different amounts of trinitrotoluene (TNT). The results of finite element modeling of a specific honeycomb configuration are initially validated by comparing them with the experimental results from literature. Afterwards, several configurations including different geometrical properties of the honeycomb wall are investigated and the results are compared with the original model. Finally, the effectiveness of the core shape and wall thickness are discussed, and conclusions are made.

Keywords: Blast loading, finite element modeling, steel honeycomb sandwich panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
3177 Two Dimensionnal Model for Extraction Packed Column Simulation using Finite Element Method

Authors: N. Outili, A-H. Meniai

Abstract:

Modeling transfer phenomena in several chemical engineering operations leads to the resolution of partial differential equations systems. According to the complexity of the operations mechanisms, the equations present a nonlinear form and analytical solution became difficult, we have then to use numerical methods which are based on approximations in order to transform a differential system to an algebraic one.Finite element method is one of numerical methods which can be used to obtain an accurate solution in many complex cases of chemical engineering.The packed columns find a large application like contactor for liquid-liquid systems such solvent extraction. In the literature, the modeling of this type of equipment received less attention in comparison with the plate columns.A mathematical bidimensionnal model with radial and axial dispersion, simulating packed tower extraction behavior was developed and a partial differential equation was solved using the finite element method by adopting the Galerkine model. We developed a Mathcad program, which can be used for a similar equations and concentration profiles are obtained along the column. The influence of radial dispersion was prooved and it can-t be neglected, the results were compared with experimental concentration at the top of the column in the extraction system: acetone/toluene/water.

Keywords: finite element method, Galerkine method, liquidliquid extraction modelling, packed column simulation, two dimensional model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
3176 Nonlinear Modeling and Analysis of AAC infilled Sandwich Panels for out of Plane Loads

Authors: Al-Kashif M., Abdel-Mooty M., Fahmy E., Abou Zeid M., Haroun M.

Abstract:

Sandwich panels are widely used in the construction industry for their ease of assembly, light weight and efficient thermal performance. They are composed of two RC thin outer layers separated by an insulating inner layer. In this research the inner insulating layer is made of lightweight Autoclaved Aerated Concrete (AAC) blocks which has good thermal insulation properties and yet possess reasonable mechanical strength. The shear strength of the AAC infill is relied upon to replace the traditionally used insulating foam and to provide the shear capacity of the panel. A comprehensive experimental program was conducted on full scale sandwich panels subjected to bending. In this paper, detailed numerical modeling of the tested sandwich panels is reported. Nonlinear 3-D finite element modeling of the composite action of the sandwich panel is developed using ANSYS. Solid elements with different crashing and cracking capabilities and different constitutive laws were selected for the concrete and the AAC. Contact interface elements are used in this research to adequately model the shear transfer at the interface between the different layers. The numerical results showed good correlation with the experimental ones indicating the adequacy of the model in estimating the loading capacity of panels.

Keywords: Autoclaved Aerated Concrete, Concrete Sandwich Panels, Finite Element Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3040
3175 Electromagnetic Field Modeling in Human Tissue

Authors: Iliana Marinova, Valentin Mateev

Abstract:

For investigations of electromagnetic field distributions in biological structures by Finite Element Method (FEM), a method for automatic 3D model building of human anatomical objects is developed. Models are made by meshed structures and specific electromagnetic material properties for each tissue type. Mesh is built according to specific FEM criteria for achieving good solution accuracy. Several FEM models of anatomical objects are built. Formulation using magnetic vector potential and scalar electric potential (A-V, A) is used for modeling of electromagnetic fields in human tissue objects. The developed models are suitable for investigations of electromagnetic field distributions in human tissues exposed in external fields during magnetic stimulation, defibrillation, impedance tomography etc.

Keywords: electromagnetic field, finite element method, humantissue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5249
3174 High Efficiency Class-F Power Amplifier Design

Authors: Abdalla Mohamed Eblabla

Abstract:

Due to the high increase in and demand for a wide assortment of applications that require low-cost, high-efficiency, and compact systems, RF power amplifiers are considered the most critical design blocks and power consuming components in wireless communication, TV transmission, radar, and RF heating. Therefore, much research has been carried out in order to improve the performance of power amplifiers. Classes-A, B, C, D, E and F are the main techniques for realizing power amplifiers.

An implementation of high efficiency class-F power amplifier with Gallium Nitride (GaN) High Electron Mobility Transistor (HEMT) was realized in this paper. The simulation and optimization of the class-F power amplifier circuit model was undertaken using Agilent’s Advanced Design system (ADS). The circuit was designed using lumped elements.

Keywords: Power Amplifier (PA), Gallium Nitride (GaN), Agilent’s Advanced Design system (ADS) and lumped elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4109
3173 Finite Element Investigation of Transmission Conditions for Non-Monotonic Temperature Interphases

Authors: Hamid Mozafari, Andreas Öchsner, Amran Alias

Abstract:

Imperfect transmission conditions modeling a thin reactive 2D interphases layer between two dissimilar bonded strips have been extracted. In this paper, the soundness of these transmission conditions for heat conduction problems are examined by the finite element method for a strong temperature-dependent source or sink and non-monotonic temperature distributions around the faces..

Keywords: Imperfect interface, Transmission conditions, Finiteelement analysis, Interphase

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
3172 Development of an Artificial Ear for Bone-Conducted Objective Occlusion Measurement

Authors: Yu Luan

Abstract:

The bone-conducted objective occlusion effect (OE) is characterized by a discomforting sensation of fullness experienced in an occluded ear. This phenomenon arises from various external stimuli, such as human speech, chewing, and walking, which generate vibrations transmitted through the body to the ear canal walls. The bone-conducted OE occurs due to the pressure build-up inside the occluded ear caused by sound radiating into the ear canal cavity from its walls. In the hearing aid industry, artificial ears are utilized as a tool for developing hearing aids. However, the currently available commercial artificial ears primarily focus on pure acoustics measurements, neglecting the bone-conducted vibration aspect. This research endeavors to develop an artificial ear specifically designed for bone-conducted occlusion measurements. Finite Element Analysis (FEA) modeling has been employed to gain insights into the behavior of the artificial ear.

Keywords: Artificial ear, bone conducted vibration, occlusion measurement, Finite Element Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56
3171 An Implicit Methodology for the Numerical Modeling of Locally Inextensible Membranes

Authors: Aymen Laadhari

Abstract:

We present in this paper a fully implicit finite element method tailored for the numerical modeling of inextensible fluidic membranes in a surrounding Newtonian fluid. We consider a highly simplified version of the Canham-Helfrich model for phospholipid membranes, in which the bending force and spontaneous curvature are disregarded. The coupled problem is formulated in a fully Eulerian framework and the membrane motion is tracked using the level set method. The resulting nonlinear problem is solved by a Newton-Raphson strategy, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the proposed method. We show that stability is maintained for significantly larger time steps with respect to an explicit decoupling method.

Keywords: Finite element method, Newton method, level set, Navier-Stokes, inextensible membrane, liquid drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1257
3170 Modeling and Simulation of Ship Structures Using Finite Element Method

Authors: Javid Iqbal, Zhu Shifan

Abstract:

The development in the construction of unconventional ships and the implementation of lightweight materials have shown a large impulse towards finite element (FE) method, making it a general tool for ship design. This paper briefly presents the modeling and analysis techniques of ship structures using FE method for complex boundary conditions which are difficult to analyze by existing Ship Classification Societies rules. During operation, all ships experience complex loading conditions. These loads are general categories into thermal loads, linear static, dynamic and non-linear loads. General strength of the ship structure is analyzed using static FE analysis. FE method is also suitable to consider the local loads generated by ballast tanks and cargo in addition to hydrostatic and hydrodynamic loads. Vibration analysis of a ship structure and its components can be performed using FE method which helps in obtaining the dynamic stability of the ship. FE method has developed better techniques for calculation of natural frequencies and different mode shapes of ship structure to avoid resonance both globally and locally. There is a lot of development towards the ideal design in ship industry over the past few years for solving complex engineering problems by employing the data stored in the FE model. This paper provides an overview of ship modeling methodology for FE analysis and its general application. Historical background, the basic concept of FE, advantages, and disadvantages of FE analysis are also reported along with examples related to hull strength and structural components.

Keywords: Dynamic analysis, finite element methods, ship structure, vibration analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2369
3169 Modified Plastic-Damage Model for Fiber Reinforced Polymer-Confined Repaired Concrete Columns

Authors: I. A Tijani, Y. F Wu, C.W. Lim

Abstract:

Concrete Damaged Plasticity Model (CDPM) is capable of modeling the stress-strain behavior of confined concrete. Nevertheless, the accuracy of the model largely depends on its parameters. To date, most research works mainly focus on the identification and modification of the parameters for fiber reinforced polymer (FRP) confined concrete prior to damage. And, it has been established that the FRP-strengthened concrete behaves differently to FRP-repaired concrete. This paper presents a modified plastic damage model within the context of the CDPM in ABAQUS for modelling of a uniformly FRP-confined repaired concrete under monotonic loading. The proposed model includes infliction damage, elastic stiffness, yield criterion and strain hardening rule. The distinct feature of damaged concrete is elastic stiffness reduction; this is included in the model. Meanwhile, the test results were obtained from a physical testing of repaired concrete. The dilation model is expressed as a function of the lateral stiffness of the FRP-jacket. The finite element predictions are shown to be in close agreement with the obtained test results of the repaired concrete. It was observed from the study that with necessary modifications, finite element method is capable of modeling FRP-repaired concrete structures.

Keywords: Concrete, FRP, damage, repairing, plasticity, and finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 869
3168 Acoustic Finite Element Analysis of a Slit Model with Consideration of Air Viscosity

Authors: M. Sasajima, M. Watanabe, T. Yamaguchi Y. Kurosawa, Y. Koike

Abstract:

In very narrow pathways, the speed of sound propagation and the phase of sound waves change due to the air viscosity. We have developed a new finite element method (FEM) that includes the effects of air viscosity for modeling a narrow sound pathway. This method is developed as an extension of the existing FEM for porous sound-absorbing materials. The numerical calculation results for several three-dimensional slit models using the proposed FEM are validated against existing calculation methods.

Keywords: Simulation, FEM, air viscosity, slit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
3167 Structural Analysis of Stiffened FGM Thick Walled Cylinders by Application of a New Cylindrical Super Element

Authors: S. A. Moeini, M. T.Ahmadian

Abstract:

Structural behavior of ring stiffened thick walled cylinders made of functionally graded materials (FGMs) is investigated in this paper. Functionally graded materials are inhomogeneous composites which are usually made from a mixture of metal and ceramic. The gradient compositional variation of the constituents from one surface to the other provides an elegant solution to the problem of high transverse shear stresses that are induced when two dissimilar materials with large differences in material properties are bonded. FGM formation of the cylinder is modeled by power-law exponent and the variation of characteristics is supposed to be in radial direction. A finite element formulation is derived for the analysis. According to the property variation of the constituent materials in the radial direction of the wall, it is not convenient to use conventional elements to model and analyze the structure of the stiffened FGM cylinders. In this paper a new cylindrical super-element is used to model the finite element formulation and analyze the static and modal behavior of stiffened FGM thick walled cylinders. By using this super-element the number of elements, which are needed for modeling, will reduce significantly and the process time is less in comparison with conventional finite element formulations. Results for static and modal analysis are evaluated and verified by comparison to finite element formulation with conventional elements. Comparison indicates a good conformity between results.

Keywords: FGMs, Modal analysis, Static analysis, Stiffened cylinders.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262
3166 Accurate Time Domain Method for Simulation of Microstructured Electromagnetic and Photonic Structures

Authors: Vijay Janyani, Trevor M. Benson, Ana Vukovic

Abstract:

A time-domain numerical model within the framework of transmission line modeling (TLM) is developed to simulate electromagnetic pulse propagation inside multiple microcavities forming photonic crystal (PhC) structures. The model developed is quite general and is capable of simulating complex electromagnetic problems accurately. The field quantities can be mapped onto a passive electrical circuit equivalent what ensures that TLM is provably stable and conservative at a local level. Furthermore, the circuit representation allows a high level of hybridization of TLM with other techniques and lumped circuit models of components and devices. A photonic crystal structure formed by rods (or blocks) of high-permittivity dieletric material embedded in a low-dielectric background medium is simulated as an example. The model developed gives vital spatio-temporal information about the signal, and also gives spectral information over a wide frequency range in a single run. The model has wide applications in microwave communication systems, optical waveguides and electromagnetic materials simulations.

Keywords: Computational Electromagnetics, Numerical Simulation, Transmission Line Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
3165 On Convergence of Affine Thin Plate Bending Element

Authors: Rado Flajs, Miran Saje

Abstract:

In the present paper the displacement-based nonconforming quadrilateral affine thin plate bending finite element ARPQ4 is presented, derived directly from non-conforming quadrilateral thin plate bending finite element RPQ4 proposed by Wanji and Cheung [19]. It is found, however, that element RPQ4 is only conditionally unisolvent. The new element is shown to be inherently unisolvent. This convenient property results in the element ARPQ4 being more robust and thus better suited for computations than its predecessor. The convergence is proved and the rate of convergence estimated. The mathematically rigorous proof of convergence presented in the paper is based on Stummel-s generalized patch test and the consideration of the element approximability condition, which are both necessary and sufficient for convergence.

Keywords: Quadrilateral thin plate bending element, convergence, generalized patch test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1343
3164 Numerical Analysis of Cold-Formed Steel Shear Wall Panels Subjected to Cyclic Loading

Authors: H. Meddah, M. Berediaf-Bourahla, B. El-Djouzi, N. Bourahla

Abstract:

Shear walls made of cold formed steel are used as lateral force resisting components in residential and low-rise commercial and industrial constructions. The seismic design analysis of such structures is often complex due to the slenderness of members and their instability prevalence. In this context, a simplified modeling technique across the panel is proposed by using the finite element method. The approach is based on idealizing the whole panel by a nonlinear shear link element which reflects its shear behavior connected to rigid body elements which transmit the forces to the end elements (studs) that resist the tension and the compression. The numerical model of the shear wall panel was subjected to cyclic loads in order to evaluate the seismic performance of the structure in terms of lateral displacement and energy dissipation capacity. In order to validate this model, the numerical results were compared with those from literature tests. This modeling technique is particularly useful for the design of cold formed steel structures where the shear forces in each panel and the axial forces in the studs can be obtained using spectrum analysis.

Keywords: Cold-formed steel, cyclic loading, modeling technique, nonlinear analysis, shear wall panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1220
3163 Application of Neural Networks to Predict Changing the Diameters of Bubbles in Pool Boiling Distilled Water

Authors: V. Nikkhah Rashidabad, M. Manteghian, M. Masoumi, S. Mousavian, D. Ashouri

Abstract:

In this research, the capability of neural networks in  modeling and learning complicated and nonlinear relations has been  used to develop a model for the prediction of changes in the diameter  of bubbles in pool boiling distilled water. The input parameters used  in the development of this network include element temperature, heat  flux, and retention time of bubbles. The test data obtained from the  experiment of the pool boiling of distilled water, and the  measurement of the bubbles form on the cylindrical element. The  model was developed based on training algorithm, which is  typologically of back-propagation type. Considering the correlation  coefficient obtained from this model is 0.9633. This shows that this  model can be trusted for the simulation and modeling of the size of  bubble and thermal transfer of boiling.

Keywords: Bubble Diameter, Heat Flux, Neural Network, Training Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1416
3162 A Study on Crashworhiness Assessment and Improvement of Tilting Train Made of Sandwich Composites

Authors: Hyung-Jin Jang, Kwang-Bok Shin, Sung-Ho Han

Abstract:

This paper describes the crashworthiness assessment and improvement of tlting train made of sandwich composites. The crashworhiness assessment of tilting train was conducted according to four collision scenarios of the Korean railway safety law. Collision analysis was carried out using explicit finite element analysis code LS-DYNA 3D. The finite element model consists of 3-D finite element model and 1-D equivalent model to save the finite element modeling and calculation time. It found that the crashworthiness analysis results were satisfied with the performance requirements except the crash scenario-2. In order to meet the crashworthiness requirements for crash scenario-2, the stiffness reinforcement for the laminate composite cover and metal frames of cabmask structure were proposed. Consequentially, it has satisfied the requirement for crash scenario-2.

Keywords: Crashworthiness, collision scenario, Korean railway safety law, sandwich composite, tilting train.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2597
3161 2D Numerical Analysis of Sao Paulo Tunnel

Authors: A.H. Akhaveissy

Abstract:

Nonlinear finite element method and Serendipity eight nodes element are used for determining of ground surface settlement due to tunneling. Linear element with elastic behavior is used for modeling of lining. Modified Generalized plasticity model with nonassociated flow rule is applied for analysis of a tunnel in Sao Paulo – Brazil. The tunnel had analyzed by Lades- model with 16 parameters. In this work modified Generalized Plasticity is used with 10 parameters, also Mohr-Coulomb model is used to analysis the tunnel. The results show good agreement with observed results of field data by modified Generalized Plasticity model than other models. The obtained result by Mohr-Coulomb model shows less settlement than other model due to excavation.

Keywords: Non-associated flow rule, Generalized plasticity, tunnel excavation, Excavation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2584
3160 Using FEM for Prediction of Thermal Post-Buckling Behavior of Thin Plates During Welding Process

Authors: Amin Esmaeilzadeh, Mohammad Sadeghi, Farhad Kolahan

Abstract:

Arc welding is an important joining process widely used in many industrial applications including production of automobile, ships structures and metal tanks. In welding process, the moving electrode causes highly non-uniform temperature distribution that leads to residual stresses and different deviations, especially buckling distortions in thin plates. In order to control the deviations and increase the quality of welded plates, a fixture can be used as a practical and low cost method with high efficiency. In this study, a coupled thermo-mechanical finite element model is coded in the software ANSYS to simulate the behavior of thin plates located by a 3-2-1 positioning system during the welding process. Computational results are compared with recent similar works to validate the finite element models. The agreement between the result of proposed model and other reported data proves that finite element modeling can accurately predict the behavior of welded thin plates.

Keywords: Welding, thin plate, buckling distortion, fixture locators, finite element modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2369
3159 A Rapid and Cost-Effective Approach to Manufacturing Modeling Platform for Fused Deposition Modeling

Authors: Chil-Chyuan Kuo, Chen-Hsuan Tsai

Abstract:

This study presents a cost-effective approach for rapid fabricating modeling platforms utilized in fused deposition modeling system. A small-batch production of modeling platforms about 20 pieces can be obtained economically through silicone rubber mold using vacuum casting without applying the plastic injection molding. The air venting systems is crucial for fabricating modeling platform using vacuum casting. Modeling platforms fabricated can be used for building rapid prototyping model after sandblasting. This study offers industrial value because it has both time-effectiveness and cost-effectiveness.

Keywords: Vacuum casting, fused deposition modeling, modeling platform, sandblasting, surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2366
3158 Electromagnetic Assessment of Submarine Power Cable Degradation Using Finite Element Method and Sensitivity Analysis

Authors: N. Boutra, N. Ravot, J. Benoit, O. Picon

Abstract:

Submarine power cables used for offshore wind farms electric energy distribution and transmission are subject to numerous threats. Some of the risks are associated with transport, installation and operating in harsh marine environment. This paper describes the feasibility of an electromagnetic low frequency sensing technique for submarine power cable failure prediction. The impact of a structural damage shape and material variability on the induced electric field is evaluated. The analysis is performed by modeling the cable using the finite element method, we use sensitivity analysis in order to identify the main damage characteristics affecting electric field variation. Lastly, we discuss the results obtained.

Keywords: Electromagnetism, defect, finite element method, sensitivity analysis, submarine power cables.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1038