Search results for: inlet flow angle.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2811

Search results for: inlet flow angle.

2601 Investigations of Free-to-Roll Motions and its Active Control under Pitch-up Maneuvers

Authors: Tanveer A. Khan, Xue Y. Deng, Yan K. Wang, Xu Si-Wen

Abstract:

Experiments have been carried out at sub-critical Reynolds number to investigate free-to-roll motions induced by forebody and/or wings complex flow on a 30° swept back nonslender wings-slender body-model for static and dynamic (pitch-up) cases. For the dynamic (pitch-up) case it has been observed that roll amplitude decreases and lag increases with increase in pitching speed. Decrease in roll amplitude with increase in pitch rate is attributed to low disturbing rolling moment due to weaker interaction between forebody and wing flow components. Asymmetric forebody vortices dominate and control the roll motion of the model in dynamic case when non-dimensional pitch rate ≥ 1x10-2. Effectiveness of the active control scheme utilizing rotating nose with artificial tip perturbation is observed to be low in the angle of attack region where the complex flow over the wings has contributions from both forebody and wings.

Keywords: Artificial Tip Perturbation, ExperimentalInvestigations, Forebody Asymmetric Vortices, Non-slender Wings-Body Model, Wing Rock

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472
2600 Numerical Simulation on Heat Transfer Enhancement in Channel by Triangular Ribs

Authors: Tuqa Abdulrazzaq, Hussein Togun, M. K. A. Ariffin, S. N. Kazi, NM Adam, S. Masuri

Abstract:

Turbulent heat transfer to fluid flow through channel with triangular ribs of different angles are presented in this paper. Ansys 14 ICEM and Ansys 14 Fluent are used for meshing process and solving Navier stokes equations respectively. In this investigation three angles of triangular ribs with the range of Reynolds number varied from 20000 to 60000 at constant surface temperature are considered. The results show that the Nusselt number increases with the increase of Reynolds number for all cases at constant surface temperature. According to the profile of local Nusselt number on ribs walled of channel, the peak is at the midpoint between the two ribs. The maximum value of average Nusselt number is obtained for triangular ribs of angel 60°and at Reynolds number of 60000 compared to the Nusselt number for the ribs of angel 90° and 45° and at same Reynolds number. The recirculation regions generated by the ribs corresponding to the velocity streamline show the largest recirculation region at triangular ribs of angle 60° which also provides the highest enhancement of heat transfer.

Keywords: Ribs channel, Turbulent flow, Heat transfer enhancement, Recirculation flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3162
2599 Power Flow and Modal Analysis of a Power System Including Unified Power Flow Controller

Authors: Djilani Kobibi Youcef Islam, Hadjeri Samir, Djehaf Mohamed Abdeldjalil

Abstract:

The Flexible AC Transmission System (FACTS) technology is a new advanced solution that increases the reliability and provides more flexibility, controllability, and stability of a power system. The Unified Power Flow Controller (UPFC), as the most versatile FACTS device for regulating power flow, is able to control respectively transmission line real power, reactive power, and node voltage. The main purpose of this paper is to analyze the effect of the UPFC on the load flow, the power losses, and the voltage stability using NEPLAN software modules, Newton-Raphson load flow is used for the power flow analysis and the modal analysis is used for the study of the voltage stability. The simulation was carried out on the IEEE 14-bus test system.

Keywords: FACTS, load flow, modal analysis, UPFC, voltage stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2316
2598 Pressure Angle and Profile Shift Factor Effects on the Natural Frequency of Spur Tooth Design

Authors: Ali Raad Hassan

Abstract:

In this paper, an (irregular) case relating to base circle, root circle, and pressure angle has been discussed and a computer programme has been developed to simulate and plot spur gear tooth profile, including involute and trochoid curves based on the formulation of rack cutter using different values of pressure angle and profile shift factor and it gave the values of all important geometric parameters. The results showed the flexibility of this approach and versatility of the programme to draw many different cases of spur gear teeth of any module, pressure angle, profile shift factor, number of teeth and rack cutter tip radius. The procedure developed can be extended to produce finite element models of heretofore intractable geometrical forms, to exploring fabrication of nonstandard tooth forms also. Finite elements model of these irregular cases have been built using above programme, and modal analysis has been done using ANSYS software, and natural frequencies of these selected cases have been obtained and discussed.

Keywords: involute, trochoid, pressure angle, profile shift factor, natural frequency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1321
2597 Coupled Multifield Analysis of Piezoelectrically Actuated Microfluidic Device for Transdermal Drug Delivery Applications

Authors: Muhammad Waseem Ashraf, Shahzadi Tayyaba, Nitin Afzulpurkar, Asim Nisar, Adisorn Tuantranont, Erik L J Bohez

Abstract:

In this paper, design, fabrication and coupled multifield analysis of hollow out-of-plane silicon microneedle array with piezoelectrically actuated microfluidic device for transdermal drug delivery (TDD) applications is presented. The fabrication process of silicon microneedle array is first done by series of combined isotropic and anisotropic etching processes using inductively coupled plasma (ICP) etching technology. Then coupled multifield analysis of MEMS based piezoelectrically actuated device with integrated 2×2 silicon microneedle array is presented. To predict the stress distribution and model fluid flow in coupled field analysis, finite element (FE) and computational fluid dynamic (CFD) analysis using ANSYS rather than analytical systems has been performed. Static analysis and transient CFD analysis were performed to predict the fluid flow through the microneedle array. The inlet pressure from 10 kPa to 150 kPa was considered for static CFD analysis. In the lumen region fluid flow rate 3.2946 μL/min is obtained at 150 V for 2×2 microneedle array. In the present study the authors have performed simulation of structural, piezoelectric and CFD analysis on three dimensional model of the piezoelectrically actuated mcirofluidic device integrated with 2×2 microneedle array.

Keywords: Coupled multifield, finite element analysis, hollow silicon microneedle, transdermal drug delivery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792
2596 Effects of Duct Geometry, Thickness and Types of Liners on Transmission Loss for Absorptive Silencers

Authors: M. Kashfi, K. Jahani

Abstract:

Sound attenuation in absorptive silencers has been analyzed in this paper. The structure of such devices is as follows. When the rigid duct of an expansion chamber has been lined by a packed absorptive material under a perforated membrane, incident sound waves will be dissipated by the absorptive liners. This kind of silencer, usually are applicable for medium to high frequency ranges. Several conditions for different absorptive materials, variety in their thicknesses, and different shapes of the expansion chambers have been studied in this paper. Also, graphs of sound attenuation have been compared between empty expansion chamber and duct of silencer with applying liner. Plane waves have been assumed in inlet and outlet regions of the silencer. Presented results that have been achieved by applying finite element method (FEM), have shown the dependence of the sound attenuation spectrum to flow resistivity and the thicknesses of the absorptive materials, and geometries of the cross section (configuration of the silencer). As flow resistivity and thickness of absorptive materials increase, sound attenuation improves. In this paper, diagrams of the transmission loss (TL) for absorptive silencers in five different cross sections (rectangle, circle, ellipse, square, and rounded rectangle as the main geometry) have been presented. Also, TL graphs for silencers using different absorptive material (glass wool, wood fiber, and kind of spongy materials) as liner with three different thicknesses of 5 mm, 15 mm, and 30 mm for glass wool liner have been exhibited. At first, the effect of substances of the absorptive materials with the specific flow resistivity and densities on the TL spectrum, then the effect of the thicknesses of the glass wool, and at last the efficacy of the shape of the cross section of the silencer have been investigated.

Keywords: Transmission loss, absorptive material, flow resistivity, thickness, frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1084
2595 The Effect of Slow Variation of Base Flow Profile on the Stability of Slightly Curved Mixing Layers

Authors: Irina Eglite, Andrei A. Kolyshkin

Abstract:

The effect of small non-parallelism of the base flow on the stability of slightly curved mixing layers is analyzed in the present paper. Assuming that the instability wavelength is much smaller than the length scale of the variation of the base flow we derive an amplitude evolution equation using the method of multiple scales. The proposed asymptotic model provides connection between parallel flow approximations and takes into account slow longitudinal variation of the base flow.

Keywords: shallow water, parallel flow assumption, weaklynonlinear analysis, method of multiple scales

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1432
2594 Aeroacoustics Investigations of Unsteady 3D Airfoil for Different Angle Using Computational Fluid Dynamics Software

Authors: Haydar Kepekçi, Baha Zafer, Hasan Rıza Güven

Abstract:

Noise disturbance is one of the major factors considered in the fast development of aircraft technology. This paper reviews the flow field, which is examined on the 2D NACA0015 and 3D NACA0012 blade profile using SST k-ω turbulence model to compute the unsteady flow field. We inserted the time-dependent flow area variables in Ffowcs-Williams and Hawkings (FW-H) equations as an input and Sound Pressure Level (SPL) values will be computed for different angles of attack (AoA) from the microphone which is positioned in the computational domain to investigate effect of augmentation of unsteady 2D and 3D airfoil region noise level. The computed results will be compared with experimental data which are available in the open literature. As results; one of the calculated Cp is slightly lower than the experimental value. This difference could be due to the higher Reynolds number of the experimental data. The ANSYS Fluent software was used in this study. Fluent includes well-validated physical modeling capabilities to deliver fast, accurate results across the widest range of CFD and multiphysics applications. This paper includes a study which is on external flow over an airfoil. The case of 2D NACA0015 has approximately 7 million elements and solves compressible fluid flow with heat transfer using the SST turbulence model. The other case of 3D NACA0012 has approximately 3 million elements.

Keywords: Aeroacoustics, Ffowcs-Williams and Hawkings equations, SST k-ω turbulence model, Noise Disturbance, 3D Blade Profile, 2D Blade Profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 814
2593 Ignition Time Delay in Swirling Supersonic Flow Combustion

Authors: A. M. Tahsini

Abstract:

Supersonic hydrogen-air cylindrical mixing layer is numerically analyzed to investigate the effect of inlet swirl on ignition time delay in scramjets. Combustion is treated using detail chemical kinetics. One-equation turbulence model of Spalart and Allmaras is chosen to study the problem and advection upstream splitting method is used as computational scheme. The results show that swirling both fuel and oxidizer streams may drastically decrease the ignition distance in supersonic combustion, unlike using the swirl just in fuel stream which has no helpful effect.

Keywords: Ignition delay, Supersonic combustion, Swirl, Numerical simulation, Turbulence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2148
2592 An Investigation into Air Ejector with Pulsating Primary Flow

Authors: Václav Dvořák, Petra Dančová

Abstract:

The article deals with pneumatic and hot wire anemometry measurement on subsonic axi-symmetric air ejector. Performances of the ejector with and without pulsations of primary flow are compared, measuring of characteristic pressures and mass flow rates are performed and ejector efficiency is evaluated. The pulsations of primary flow are produced by a synthetic jet generator, which is placed in the supply line of the primary flow just in front of the primary nozzle. The aim of the pulsation is to intensify the mixing process. In the article we present: Pressure measuring of pulsation on the mixing chamber wall, behind the mixing chamber and behind the diffuser measured by fast pressure transducers and results of hot wire anemometry measurement. It was found out that using of primary flow pulsations yields higher back pressure behind the ejector and higher efficiency. The processes in this ejector and influences of primary flow pulsations on the mixing processes are described.

Keywords: Air ejector, pulsation flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
2591 Improvement of Parallel Compressor Model in Dealing Outlet Unequal Pressure Distribution

Authors: Kewei Xu, Jens Friedrich, Kevin Dwinger, Wei Fan, Xijin Zhang

Abstract:

Parallel Compressor Model (PCM) is a simplified approach to predict compressor performance with inlet distortions. In PCM calculation, it is assumed that the sub-compressors’ outlet static pressure is uniform and therefore simplifies PCM calculation procedure. However, if the compressor’s outlet duct is not long and straight, such assumption frequently induces error ranging from 10% to 15%. This paper provides a revised calculation method of PCM that can correct the error. The revised method employs energy equation, momentum equation and continuity equation to acquire needed parameters and replace the equal static pressure assumption. Based on the revised method, PCM is applied on two compression system with different blades types. The predictions of their performance in non-uniform inlet conditions are yielded through the revised calculation method and are employed to evaluate the method’s efficiency. Validating the results by experimental data, it is found that although little deviation occurs, calculated result agrees well with experiment data whose error ranges from 0.1% to 3%. Therefore, this proves the revised calculation method of PCM possesses great advantages in predicting the performance of the distorted compressor with limited exhaust duct.

Keywords: Parallel Compressor Model (PCM), Revised Calculation Method, Inlet Distortion, Outlet Unequal Pressure Distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
2590 Study on Rupture of Tube Type Crash Energy Absorber using Finite Element Method

Authors: Won Mok. Choi, Tae Su. Kwon, Hyun Sung. Jung, Jin Sung. Kim

Abstract:

The aim of this paper is to confirm the effect of key design parameters, the punch radius and punch angle, on rupture of the expansion tube using a finite element analysis with a ductile damage model. The results of the finite element analysis indicated that the expansion ratio of the tube was mainly affected by the radius of the punch. However, the rupture was more affected by the punch angle than the radius of the punch. The existence of a specific punch angle, at which rupture did not occur, even if the radius of the punch was increased, was found.

Keywords: Expansion tube, Ductile damage, Shear failure, Stress triaxiality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
2589 A Visual Control Flow Language and Its Termination Properties

Authors: László Lengyel, Tihamér Levendovszky, Hassan Charaf

Abstract:

This paper presents the visual control flow support of Visual Modeling and Transformation System (VMTS), which facilitates composing complex model transformations out of simple transformation steps and executing them. The VMTS Visual Control Flow Language (VCFL) uses stereotyped activity diagrams to specify control flow structures and OCL constraints to choose between different control flow branches. This work discusses the termination properties of VCFL and provides an algorithm to support the termination analysis of VCFL transformations.

Keywords: Control Flow, Metamodel-Based Visual Model Transformation, OCL, Termination Properties, UML.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017
2588 Effect of Impact Angle on Erosive Abrasive Wear of Ductile and Brittle Materials

Authors: Ergin Kosa, Ali Göksenli

Abstract:

Erosion and abrasion are wear mechanisms reducing the lifetime of machine elements like valves, pump and pipe systems. Both wear mechanisms are acting at the same time, causing a “Synergy” effect, which leads to a rapid damage of the surface. Different parameters are effective on erosive abrasive wear rate. In this study effect of particle impact angle on wear rate and wear mechanism of ductile and brittle materials was investigated. A new slurry pot was designed for experimental investigation. As abrasive particle, silica sand was used. Particle size was ranking between 200- 500 μm. All tests were carried out in a sand-water mixture of 20% concentration for four hours. Impact velocities of the particles were 4.76 m/s. As ductile material steel St 37 with Vickers Hardness Number (VHN) of 245 and quenched St 37 with 510 VHN was used as brittle material. After wear tests, morphology of the eroded surfaces were investigated for better understanding of the wear mechanisms acting at different impact angles by using Scanning Electron Microscope. The results indicated that wear rate of ductile material was higher than brittle material. Maximum wear rate was observed by ductile material at a particle impact angle of 300 and decreased further by an increase in attack angle. Maximum wear rate by brittle materials was by impact angle of 450 and decreased further up to 900. Ploughing was the dominant wear mechanism by ductile material. Microcracks on the surface were detected by ductile materials, which are nucleation centers for crater formation. Number of craters decreased and depth of craters increased by ductile materials by attack angle higher than 300. Deformation wear mechanism was observed by brittle materials. Number and depth of pits decreased by brittle materials by impact angles higher than 450. At the end it is concluded that wear rate could not be directly related to impact angle of particles due to the different reaction of ductile and brittle materials.

Keywords: Erosive wear, particle impact angle, silica sand, wear rate, ductile-brittle material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2973
2587 The Effects of Rain and Overland Flow Powers on Agricultural Soil Erodibility

Authors: A. Moussouni, L. Mouzai, M. Bouhadef

Abstract:

The purpose of this investigation is to relate the rain power and the overland flow power to soil erodibility to assess the effects of both parameters on soil erosion using variable rainfall intensity on remoulded agricultural soil. Six rainfall intensities were used to simulate the natural rainfall and are as follows: 12.4mm/h, 20.3mm/h, 28.6mm/h, 52mm/h, 73.5mm/h and 103mm/h. The results have shown that the relationship between overland flow power and rain power is best represented by a linear function (R2=0.99). As regards the relationships between soil erodibility factor and rain and overland flow powers, the evolution of both parameters with the erodibility factor follow a polynomial function with high coefficient of determination. From their coefficients of determination (R2=0.95) for rain power and (R2=0.96) for overland flow power, we can conclude that the flow has more power to detach particles than rain. This could be explained by the fact that the presence of particles, already detached by rain and transported by the flow, give the flow more weight and then contribute to the detachment of particles by collision.

Keywords: Laboratory experiments, soil erosion, flow power, erodibility, rainfall intensity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
2586 Progressive Strategy of Milling by means of Tool Axis Inclination Angle

Authors: Sadílek M., Čep R.

Abstract:

This work deals with problems of tool axis inclination angles in ball-end milling. Tool axis inclination angle contributes to improvement of functional surface properties (surface integrity - surface roughness, residual stress, micro hardness, etc.), decreasing cutting forces and improving production. By milling with ball-end milling tool, using standard way of cutting, when work piece and cutting tool contain right angle, we have zero cutting speed on edge. At this point cutting tool only pushes material into the work piece. Here we can observe the following undesirable effects - chip contraction, increasing of cutting temperature, increasing vibrations or creation of built-up edge. These effects have negative results – low quality of surface and decreasing of tool life (in the worse case even it is pinching out). These effects can be eliminated with the tilt of cutting tool or tilt of work piece.

Keywords: CAD/CAM system, tool axis inclination angle, ballend milling, surface roughness, cutting forces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
2585 On the Steady-State Performance Characteristics of Finite Hydrodynamic Journal Bearing under Micro-Polar Lubrication with Turbulent Effect

Authors: Subrata Das, Sisir Kumar Guha

Abstract:

The objective of the present paper is to theoretically investigate the steady-state performance characteristics of journal bearing of finite width, operating with micropolar lubricant in a turbulent regime. In this analysis, the turbulent shear stress coefficients are used based on the Constantinescu’s turbulent model suggested by Taylor and Dowson with the assumption of parallel and inertia-less flow. The numerical solution of the modified Reynolds equation has yielded the distribution of film pressure which determines the static performance characteristics in terms of load capacity, attitude angle, end flow rate and frictional parameter at various values of eccentricity ratio, non-dimensional characteristics length, coupling number and Reynolds number.

Keywords: Hydrodynamic lubrication, steady-state, micropolar lubricant, turbulent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2695
2584 Experimental Investigations of a Modified Taylor-Couette Flow

Authors: A. Esmael, A. El Shrif

Abstract:

In this study the instability problem of a modified Taylor-Couette flow between two vertical coaxial cylinders of radius R1, R2 is considered. The modification is based on the wavy shape of the inner cylinder surface, where inner cylinders with different surface amplitude and wavelength are used. The study aims to discover the effect of the inner surface geometry on the instability phenomenon that undergoes Taylor-Couette flow. The study reveals that the transition processes depends strongly on the amplitude and wavelength of the inner cylinder surface and resulting in flow instabilities that are strongly different from that encountered in the case of the classical Taylor-Couette flow.

Keywords: Hydrodynamic Instability, Modified Taylor-Couette Flow, Turbulence, Taylor vortices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2431
2583 CFD Simulation of Surge Wave Generated by Flow-Like Landslides

Authors: Liu-Chao Qiu

Abstract:

The damage caused by surge waves generated in water bodies by flow-like landslides can be very high in terms of human lives and economic losses. The complicated phenomena occurred in this highly unsteady process are difficult to model because three interacting phases: air, water and sediment are involved. The problem therefore is challenging since the effects of non-Newtonian fluid describing the rheology of the flow-like landslides, multi-phase flow and free surface have to be included in the simulation. In this work, the commercial computational fluid dynamics (CFD) package FLUENT is used to model the surge waves due to flow-like landslides. The comparison between the numerical results and experimental data reported in the literature confirms the accuracy of the method.

Keywords: Flow-like landslide, surge wave, VOF, non-Newtonian fluids, multi-phase flows, free surface flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360
2582 Performance Comparisons between PID and Adaptive PID Controllers for Travel Angle Control of a Bench-Top Helicopter

Authors: H. Mansor, S. B. Mohd-Noor, T. S. Gunawan, S. Khan, N. I. Othman, N. Tazali, R. B. Islam

Abstract:

This paper provides a comparative study on the performances of standard PID and adaptive PID controllers tested on travel angle of a 3-Degree-of-Freedom (3-DOF) Quanser bench-top helicopter. Quanser, a well-known manufacturer of educational bench-top helicopter has developed Proportional Integration Derivative (PID) controller with Linear Quadratic Regulator (LQR) for all travel, pitch and yaw angle of the bench-top helicopter. The performance of the PID controller is relatively good; however, its performance could also be improved if the controller is combined with adaptive element. The objective of this research is to design adaptive PID controller and then compare the performances of the adaptive PID with the standard PID. The controller design and test is focused on travel angle control only. Adaptive method used in this project is self-tuning controller, which controller’s parameters are updated online. Two adaptive algorithms those are pole-placement and deadbeat have been chosen as the method to achieve optimal controller’s parameters. Performance comparisons have shown that the adaptive (deadbeat) PID controller has produced more desirable performance compared to standard PID and adaptive (poleplacement). The adaptive (deadbeat) PID controller attained very fast settling time (5 seconds) and very small percentage of overshoot (5% to 7.5%) for 10° to 30° step change of travel angle.

Keywords: Adaptive control, bench-top helicopter, deadbeat, pole-placement, self-tuning control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3241
2581 Simulation of Fluid Flow and Heat Transfer in Inclined Cavity using Lattice Boltzmann Method

Authors: Arash Karimipour, A. Hossein Nezhad, E. Shirani, A. Safaei

Abstract:

In this paper, Lattice Boltzmann Method (LBM) is used to study laminar flow with mixed convection heat transfer inside a two-dimensional inclined lid-driven rectangular cavity with aspect ratio AR = 3. Bottom wall of the cavity is maintained at lower temperature than the top lid, and its vertical walls are assumed insulated. Top lid motion results in fluid motion inside the cavity. Inclination of the cavity causes horizontal and vertical components of velocity to be affected by buoyancy force. To include this effect, calculation procedure of macroscopic properties by LBM is changed and collision term of Boltzmann equation is modified. A computer program is developed to simulate this problem using BGK model of lattice Boltzmann method. The effects of the variations of Richardson number and inclination angle on the thermal and flow behavior of the fluid inside the cavity are investigated. The results are presented as velocity and temperature profiles, stream function contours and isotherms. It is concluded that LBM has good potential to simulate mixed convection heat transfer problems.

Keywords: gravity, inclined lid driven cavity, lattice Boltzmannmethod, mixed convection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
2580 Study of MHD Oblique Stagnation Point Assisting Flow on Vertical Plate with Uniform Surface Heat Flux

Authors: Phool Singh, Ashok Jangid, N.S. Tomer, Deepa Sinha

Abstract:

The aim of this paper is to study the oblique stagnation point flow on vertical plate with uniform surface heat flux in presence of magnetic field. Using Stream function, partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations. Numerical solutions of these equations are obtained using Runge-Kutta Fehlberg method with the help of shooting technique. In the present work the effects of striking angle, magnetic field parameter, Grashoff number, the Prandtl number on velocity and heat transfer characteristics have been discussed. Effect of above mentioned parameter on the position of stagnation point are also studied.

Keywords: Heat flux, Oblique stagnation point, Mixedconvection, Magneto hydrodynamics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
2579 CFD of Oscillating Airfoil Pitch Cycle by using PISO Algorithm

Authors: Muhammad Amjad Sohail, Rizwan Ullah

Abstract:

This research paper presents the CFD analysis of oscillating airfoil during pitch cycle. Unsteady subsonic flow is simulated for pitching airfoil at Mach number 0.283 and Reynolds number 3.45 millions. Turbulent effects are also considered for this study by using K-ω SST turbulent model. Two-dimensional unsteady compressible Navier-Stokes code including two-equation turbulence model and PISO pressure velocity coupling is used. Pressure based implicit solver with first order implicit unsteady formulation is used. The simulated pitch cycle results are compared with the available experimental data. The results have a good agreement with the experimental data. Aerodynamic characteristics during pitch cycles have been studied and validated.

Keywords: Angle of attack, Centre of pressure, subsonic flow, pitching moment coefficient, turbulence mode

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2349
2578 Effects of Polymers and Alkaline on Recovery Improvement from Fractured Models

Authors: Payam Parvasi, Mohammad Hossein Sedaghat, Reza Janamiri, Amir Hatampour

Abstract:

In this work, several ASP solutions were flooded into fractured models initially saturated with heavy oil at a constant flow rate and different geometrical characteristics of fracture. The ASP solutions are constituted from 2 polymers i.e. a synthetic polymer, hydrolyzed polyacrylamide as well as a biopolymer, a surfactant and 2types of alkaline. The results showed that using synthetic hydrolyzed polyacrylamide polymer increases ultimate oil recovery; however, type of alkaline does not play a significant rule on oil recovery. In addition, position of the injection well respect to the fracture system has remarkable effects on ASP flooding. For instance increasing angle of fractures with mean flow direction causes more oil recovery and delays breakthrough time. This work can be accounted as a comprehensive survey on ASP flooding which considers most of effective factors in this chemical EOR method.

Keywords: ASP Flooding, Fractured System, Displacement, Heavy Oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
2577 Visual Study on Flow Patterns and Heat Transfer during Convective Boiling Inside Horizontal Smooth and Microfin Tubes

Authors: V.D. Hatamipour, M.A. Akhavan-Behabadi

Abstract:

Evaporator is an important and widely used heat exchanger in air conditioning and refrigeration industries. Different methods have been used by investigators to increase the heat transfer rates in evaporators. One of the passive techniques to enhance heat transfer coefficient is the application of microfin tubes. The mechanism of heat transfer augmentation in microfin tubes is dependent on the flow regime of two-phase flow. Therefore many investigations of the flow patterns for in-tube evaporation have been reported in literatures. The gravitational force, surface tension and the vapor-liquid interfacial shear stress are known as three dominant factors controlling the vapor and liquid distribution inside the tube. A review of the existing literature reveals that the previous investigations were concerned with the two-phase flow pattern for flow boiling in horizontal tubes [12], [9]. Therefore, the objective of the present investigation is to obtain information about the two-phase flow patterns for evaporation of R-134a inside horizontal smooth and microfin tubes. Also Investigation of heat transfer during flow boiling of R-134a inside horizontal microfin and smooth tube have been carried out experimentally The heat transfer coefficients for annular flow in the smooth tube is shown to agree well with Gungor and Winterton-s correlation [4]. All the flow patterns occurred in the test can be divided into three dominant regimes, i.e., stratified-wavy flow, wavy-annular flow and annular flow. Experimental data are plotted in two kinds of flow maps, i.e., Weber number for the vapor versus weber number for the liquid flow map and mass flux versus vapor quality flow map. The transition from wavy-annular flow to annular or stratified-wavy flow is identified in the flow maps.

Keywords: Flow boiling, Flow pattern, Heat transfer, Horizontal, Smooth tube, Microfin tube.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2272
2576 Aspen Plus Simulation of Saponification of Ethyl Acetate in the Presence of Sodium Hydroxide in a Plug Flow Reactor

Authors: U. P. L. Wijayarathne, K. C. Wasalathilake

Abstract:

This work presents the modelling and simulation of saponification of ethyl acetate in the presence of sodium hydroxide in a plug flow reactor using Aspen Plus simulation software. Plug flow reactors are widely used in the industry due to the non-mixing property. The use of plug flow reactors becomes significant when there is a need for continuous large scale reaction or fast reaction. Plug flow reactors have a high volumetric unit conversion as the occurrence for side reactions is minimum. In this research Aspen Plus V8.0 has been successfully used to simulate the plug flow reactor. In order to simulate the process as accurately as possible HYSYS Peng- Robinson EOS package was used as the property method. The results obtained from the simulation were verified by the experiment carried out in the EDIBON plug flow reactor module. The correlation coefficient (r2) was 0.98 and it proved that simulation results satisfactorily fit for the experimental model. The developed model can be used as a guide for understanding the reaction kinetics of a plug flow reactor.

Keywords: Aspen Plus, Modelling, Plug Flow Reactor, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9334
2575 Flow Properties of Commercial Infant Formula Powders

Authors: Maja Benkovic, Ingrid Bauman

Abstract:

The objective of this work was to investigate flow properties of powdered infant formula samples. Samples were purchased at a local pharmacy and differed in composition. Lactose free infant formula, gluten free infant formula and infant formulas containing dietary fibers and probiotics were tested and compared with a regular infant formula sample which did not contain any of these supplements. Particle size and bulk density were determined and their influence on flow properties was discussed. There were no significant differences in bulk densities of the samples, therefore the connection between flow properties and bulk density could not be determined. Lactose free infant formula showed flow properties different to standard supplement-free sample. Gluten free infant formula with addition of probiotic microorganisms and dietary fiber had the narrowest particle size distribution range and exhibited the best flow properties. All the other samples exhibited the same tendency of decreasing compaction coefficient with increasing flow speed, which means they all become freer flowing with higher flow speeds.

Keywords: flow properties, infant formula, powderedmaterial

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3052
2574 Effect of Oxygen Annealing on the Surface Defects and Photoconductivity of Vertically Aligned ZnO Nanowire Array

Authors: Ajay Kushwaha, Hemen Kalita, M. Aslam

Abstract:

Post growth annealing of solution grown ZnO nanowire array is performed under controlled oxygen ambience. The role of annealing over surface defects and their consequence on dark/photo-conductivity and photosensitivity of nanowire array is investigated. Surface defect properties are explored using various measurement tools such as contact angle, photoluminescence, Raman spectroscopy and XPS measurements. The contact angle of the NW films reduces due to oxygen annealing and nanowire film surface changes from hydrophobic (96°) to hydrophilic (16°). Raman and XPS spectroscopy reveal that oxygen annealing improves the crystal quality of the nanowire films. The defect band emission intensity (relative to band edge emission, ID/IUV) reduces from 1.3 to 0.2 after annealing at 600 °C at 10 SCCM flow of oxygen. An order enhancement in dark conductivity is observed in O2 annealed samples, while photoconductivity is found to be slightly reduced due to lower concentration of surface related oxygen defects.

Keywords: Zinc Oxide, Surface defects, Photoluminescence, Photoconductivity, Photosensor and Nanowire thin film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3506
2573 Unsteady Reversed Stagnation-Point Flow over a Flat Plate

Authors: Vai Kuong Sin, Chon Kit Chio

Abstract:

This paper investigates the nature of the development of two-dimensional laminar flow of an incompressible fluid at the reversed stagnation-point. ". In this study, we revisit the problem of reversed stagnation-point flow over a flat plate. Proudman and Johnson (1962) first studied the flow and obtained an asymptotic solution by neglecting the viscous terms. This is no true in neglecting the viscous terms within the total flow field. In particular it is pointed out that for a plate impulsively accelerated from rest to a constant velocity V0 that a similarity solution to the self-similar ODE is obtained which is noteworthy completely analytical.

Keywords: reversed stagnation-point flow, similarity solutions, analytical solution, numerical solution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414
2572 3D Numerical Simulation on Annular Diffuser Temperature Distribution Enhancement by Different Twist Arrangement

Authors: Ehan Sabah Shukri, Wirachman Wisnoe

Abstract:

The influence of twist arrangement on the temperature distribution in an annular diffuser fitted with twisted rectangular hub is investigated. Different pitches (Y = 120 mm, 100 mm, 80 mm, and 60 mm) for the twist arrangements are simulated to be compared. The geometry of the annular diffuser and the inlet condition for the hub arrangements are kept constant. The result reveals that using twisted rectangular hub insert with different pitches will force the temperature to distribute in a circular direction. However, temperature distribution will be enhanced with the length pitch increases.

Keywords: Numerical simulation, twist arrangement, annular diffuser, temperature distribution, swirl flow, pitches.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431