Search results for: heat release.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1504

Search results for: heat release.

1324 New Effect of Duct Cross Sectional Shape on the Nanofluid Flow Heat Transfer

Authors: Mohammad R. Salimpour, Amir Dehshiri

Abstract:

In the present article, we investigate experimental laminar forced convective heat transfer specifications of TiO2/water nanofluids through conduits with different cross sections. we check the effects of different parameters such as cross sectional shape, Reynolds number and concentration of nanoparticles in stable suspension on increasing convective heat transfer by designing and assembling of an experimental apparatus. The results demonstrate adding a little amount of nanoparticles to the base fluid, improves heat transfer behavior in conduits. Moreover, conduit with circular cross-section has better performance compared to the square and triangular cross sections. However, conduits with square and triangular cross sections have more relative heat transfer enchantment than conduit with circular cross section.

Keywords: Nanofluid, cross-sectional shape, TiO2, convection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1042
1323 Enhancement of Natural Convection Heat Transfer within Closed Enclosure Using Parallel Fins

Authors: F. A. Gdhaidh, K. Hussain, H. S. Qi

Abstract:

A numerical study of natural convection heat transfer in water filled cavity has been examined in 3-Dfor single phase liquid cooling system by using an array of parallel plate fins mounted to one wall of a cavity. The heat generated by a heat source represents a computer CPU with dimensions of 37.5∗37.5mm mounted on substrate. A cold plate is used as a heat sink installed on the opposite vertical end of the enclosure. The air flow inside the computer case is created by an exhaust fan. A turbulent air flow is assumed and k-ε model is applied. The fins are installed on the substrate to enhance the heat transfer. The applied power energy range used is between 15 - 40W. In order to determine the thermal behaviour of the cooling system, the effect of the heat input and the number of the parallel plate fins are investigated. The results illustrate that as the fin number increases the maximum heat source temperature decreases. However, when the fin number increases to critical value the temperature start to increase due to the fins are too closely spaced and that cause the obstruction of water flow. The introduction of parallel plate fins reduces the maximum heat source temperature by 10% compared to the case without fins. The cooling system maintains the maximum chip temperature at 64.68°C when the heat input was at 40W that is much lower than the recommended computer chips limit temperature of no more than 85°C and hence the performance of the CPU is enhanced.

Keywords: Chips limit temperature, closed enclosure, natural convection, parallel plate, single phase liquid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2919
1322 The Role of Heat Pumps for the Decarbonization of European Regions

Authors: D. M. Mongelli, M. De Carli, L. Carnieletto, F. Busato

Abstract:

This research aims to provide a contribution to the reduction of fossil fuels and the consequent reduction of CO2eq emissions for each European region. Simulations have been carried out to replace fossil fuel fired heating boilers with air-to-water heat pumps, when allowed by favorable environmental conditions (outdoor temperature, water temperature in emission systems, etc.). To estimate the potential coverage of high-temperature heat pumps in European regions, the energy profiles of buildings were considered together with the potential coefficient of performance (COP) of heat pumps operating with flow temperature with variable climatic regulation. The electrification potential for heating buildings was estimated by dividing the 38 European countries examined into 179 territorial units. The yields have been calculated in terms of energy savings and CO2eq reduction.

Keywords: Decarbonization, Space heating, Heat pumps, Energy policies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 112
1321 Influence of Internal Heat Source on Thermal Instability in a Horizontal Porous Layer with Mass Flow and Inclined Temperature Gradient

Authors: Anjanna Matta, P. A. L. Narayana

Abstract:

An investigation has been presented to analyze the effect of internal heat source on the onset of Hadley-Prats flow in a horizontal fluid saturated porous medium. We examine a better understanding of the combined influence of the heat source and mass flow effect by using linear stability analysis. The resultant eigenvalue problem is solved by using shooting and Runga-Kutta methods for evaluate critical thermal Rayleigh number with respect to various flow governing parameters. It is identified that the flow is switch from stabilizing to destabilizing as the horizontal thermal Rayleigh number is enhanced. The heat source and mass flow increases resulting a stronger destabilizing effect.

Keywords: Linear stability analysis, heat source, porous medium, mass flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
1320 Numerical Heat Transfer Performance of Water-Based Graphene Nanoplatelets

Authors: Ahmad Amiri, Hamed K. Arzani, S. N. Kazi, B. T. Chew

Abstract:

Since graphene nanoplatelet (GNP) is a promising material due to desirable thermal properties, this paper is related to the thermophysical and heat transfer performance of covalently functionalized GNP-based water/ethylene glycol nanofluid through an annular channel. After experimentally measuring thermophysical properties of prepared samples, a computational fluid dynamics study has been carried out to examine the heat transfer and pressure drop of well-dispersed and stabilized nanofluids. The effect of concentration of GNP and Reynolds number at constant wall temperature boundary condition under turbulent flow regime on convective heat transfer coefficient has been investigated. Based on the results, for different Reynolds numbers, the convective heat transfer coefficient of the prepared nanofluid is higher than that of the base fluid. Also, the enhancement of convective heat transfer coefficient and thermal conductivity increase with the increase of GNP concentration in base-fluid. Based on the results of this investigation, there is a significant enhancement on the heat transfer rate associated with loading well-dispersed GNP in base-fluid.

Keywords: Nanofluid, turbulent flow, forced convection flow, graphene, annular, annulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
1319 Comparative Study of Experimental and Theoretical Convective, Evaporative for Two Model Distiller

Authors: Khaoula Hidouri, Ali Benhmidene, Bechir Chouachi

Abstract:

The purification of brackish seawater becomes a necessity and not a choice against demographic and industrial growth especially in third world countries. Two models can be used in this work: simple solar still and simple solar still coupled with a heat pump. In this research, the productivity of water by Simple Solar Distiller (SSD) and Simple Solar Distiller Hybrid Heat Pump (SSDHP) was determined by the orientation, the use of heat pump, the simple or double glass cover. The productivity can exceed 1.2 L/m²h for the SSDHP and 0.5 L/m²h for SSD model. The result of the global efficiency is determined for two models SSD and SSDHP give respectively 30%, 50%. The internal efficiency attained 35% for SSD and 60% of the SSDHP models. Convective heat coefficient can be determined by attained 2.5 W/m²°C and 0.5 W/m²°C respectively for SSDHP and SSD models.

Keywords: Productivity, efficiency, convective heat coefficient, SSD model, SSDHP model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 750
1318 From Experiments to Numerical Modeling: A Tool for Teaching Heat Transfer in Mechanical Engineering

Authors: D. Zabala, Y. Cárdenas, G. Núñez

Abstract:

In this work the numerical simulation of transient heat transfer in a cylindrical probe is done. An experiment was conducted introducing a steel cylinder in a heating chamber and registering its surface temperature along the time during one hour. In parallel, a mathematical model was solved for one dimension transient heat transfer in cylindrical coordinates, considering the boundary conditions of the test. The model was solved using finite difference method, because the thermal conductivity in the cylindrical steel bar and the convection heat transfer coefficient used in the model are considered temperature dependant functions, and both conditions prevent the use of the analytical solution. The comparison between theoretical and experimental results showed the average deviation is below 2%. It was concluded that numerical methods are useful in order to solve engineering complex problems. For constant k and h, the experimental methodology used here can be used as a tool for teaching heat transfer in mechanical engineering, using mathematical simplified models with analytical solutions.

Keywords: Heat transfer experiment, thermal conductivity, finite difference, engineering education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
1317 Design and Development of Graphene Oxide Modified by Chitosan Nanosheets Showing pH-Sensitive Surface as a Smart Drug Delivery System for Controlled Release of Doxorubicin

Authors: Parisa Shirzadeh

Abstract:

Drug delivery systems in which drugs are traditionally used, multi-stage and at specified intervals by patients, do not meet the needs of the world's up-to-date drug delivery. In today's world, we are dealing with a huge number of recombinant peptide and protean drugs and analogues of hormones in the body, most of which are made with genetic engineering techniques. Most of these drugs are used to treat critical diseases such as cancer. Due to the limitations of the traditional method, researchers sought to find ways to solve the problems of the traditional method to a large extent. Following these efforts, controlled drug release systems were introduced, which have many advantages. Using controlled release of the drug in the body, the concentration of the drug is kept at a certain level, and in a short time, it is done at a higher rate. Graphene is a natural material that is biodegradable, non-toxic, natural and wide surfaces of graphene plates makes it more effective to modify graphene than carbon nanotubes. Graphene oxide is often synthesized using concentrated oxidizers such as sulfuric acid, nitric acid, and potassium permanganate based on Hummer method. graphene oxide is very hydrophilic and easily dissolves in water and creates a stable solution. Graphene oxide (GO) has been modified by chitosan (CS) covalently, developed for control release of doxorubicin (DOX). In this study, GO is produced by the hummer method under acidic conditions. Then, it is chlorinated by oxalyl chloride to increase its reactivity against amine. After that, in the presence of CS, the amino reaction was performed to form amide transplantation, and the DOX was connected to the carrier surface by π-π interaction in buffer phosphate. GO, GO-CS, and GO-CS-DOX were characterized by FT-IR and TGA to recognize new functional groups which show the new bonding of CS to GO, RAMA and SEM to recognize size of layers that show changing in size and number of layers. The ability to load and release is determined by UV-Visible spectroscopy. The loading result showed a high capacity of DOX absorption (99%) and pH dependence identified as a result of DOX release from GO-CS nanosheet at pH 5.3 and 7.4, which show a fast release rate in acidic conditions.

Keywords: Graphene oxide, chitosan, nanosheet, controlled drug release, doxorubicin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162
1316 Numerical Investigation of the Effect of Geometrical Shape of Plate Heat Exchangers on Heat Transfer Efficiency

Authors: Hamed Sanei, Mohammad Bagher Ayani

Abstract:

Optimizations of Plate Heat Exchangers (PHS) have received great attention in the past decade. In this study, heat transfer and pressure drop coefficients are compared for rectangular and circular PHS employing numerical simulations. Plates are designed to have equivalent areas. Simulations were implemented to investigate the efficiency of PHSs considering heat transfer, friction factor and pressure drop. Amount of heat transfer and pressure drop was obtained for different range of Reynolds numbers. These two parameters were compared with aim of F "weighting factor correlation". In this comparison, the minimum amount of F indicates higher efficiency. Results reveal that the F value for rectangular shape is less than circular plate, and hence using rectangular shape of PHS is more efficient than circular one. It was observed that, the amount of friction factor is correlated to the Reynolds numbers, such that friction factor decreased in both rectangular and circular plates with an increase in Reynolds number. Furthermore, such simulations revealed that the amount of heat transfer in rectangular plate is more than circular plate for different range of Reynolds numbers. The difference is more distinct for higher Reynolds number. However, amount of pressure drop in circular plate is less than rectangular plate for the same range of Reynolds numbers which is considered as a negative point for rectangular plate efficiency. It can be concluded that, while rectangular PHSs occupy more space than circular plate, the efficiency of rectangular plate is higher.

Keywords: Chevron corrugated-plate heat exchanger, heat transfer, friction factor, Reynolds numbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2796
1315 Maxwell-Cattaneo Regularization of Heat Equation

Authors: F. Ekoue, A. Fouache d'Halloy, D. Gigon, G Plantamp, E. Zajdman

Abstract:

This work focuses on analysis of classical heat transfer equation regularized with Maxwell-Cattaneo transfer law. Computer simulations are performed in MATLAB environment. Numerical experiments are first developed on classical Fourier equation, then Maxwell-Cattaneo law is considered. Corresponding equation is regularized with a balancing diffusion term to stabilize discretizing scheme with adjusted time and space numerical steps. Several cases including a convective term in model equations are discussed, and results are given. It is shown that limiting conditions on regularizing parameters have to be satisfied in convective case for Maxwell-Cattaneo regularization to give physically acceptable solutions. In all valid cases, uniform convergence to solution of initial heat equation with Fourier law is observed, even in nonlinear case.

Keywords: Maxwell-Cattaneo heat transfers equations, fourierlaw, heat conduction, numerical solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5001
1314 Effective Scheduling of Semiconductor Manufacturing using Simulation

Authors: Ingy A. El-Khouly, Khaled S. El-Kilany, Aziz E. El-Sayed

Abstract:

The process of wafer fabrication is arguably the most technologically complex and capital intensive stage in semiconductor manufacturing. This large-scale discrete-event process is highly reentrant, and involves hundreds of machines, restrictions, and processing steps. Therefore, production control of wafer fabrication facilities (fab), specifically scheduling, is one of the most challenging problems that this industry faces. Dispatching rules have been extensively applied to the scheduling problems in semiconductor manufacturing. Moreover, lot release policies are commonly used in this manufacturing setting to further improve the performance of such systems and reduce its inherent variability. In this work, simulation is used in the scheduling of re-entrant flow shop manufacturing systems with an application in semiconductor wafer fabrication; where, a simulation model has been developed for the Intel Five-Machine Six Step Mini-Fab using the ExtendTM simulation environment. The Mini-Fab has been selected as it captures the challenges involved in scheduling the highly re-entrant semiconductor manufacturing lines. A number of scenarios have been developed and have been used to evaluate the effect of different dispatching rules and lot release policies on the selected performance measures. Results of simulation showed that the performance of the Mini-Fab can be drastically improved using a combination of dispatching rules and lot release policy.

Keywords: Dispatching rules, lot release policy, re-entrant flowshop, semiconductor manufacturing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2496
1313 The Effect of Granule Size on the Digestibility of Wheat Starch Using an in vitro Model

Authors: Mee-Lin Lim Chai Teo, Darryl M. Small

Abstract:

Wheat has a bimodal starch granule population and the dependency of the rate of enzymatic hydrolysis on particle size has been investigated. Ungelatinised wheaten starch granules were separated into two populations by sedimentation and decantation. Particle size was analysed by laser diffraction and morphological characteristics were viewed using SEM. The sedimentation technique though lengthy, gave satisfactory separation of the granules. Samples (<10μm, >10μm and original) were digested with a-amylase using a dialysis model. Granules of <10μm showed significantly higher rate of reducing sugar release than those >10μm (p<0.05). In contrast, the rate was not significantly different between the original sample and granules >10μm. Moreover, the digestion rate was dependent on particle size whereby smaller granules produced higher rate of release. The methodology and results reported here can be used as a basis for further evaluations designed to delay the release of glucose during the digestion of native starches.

Keywords: in vitro Digestion, a-amylase, wheat starch, granule size.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2805
1312 Optimization of Copper-Water Negative Inclination Heat Pipe with Internal Composite Wick Structure

Authors: I. Brandys, M. Levy, K. Harush, Y. Haim, M. Korngold

Abstract:

Theoretical optimization of a copper-water negative inclination heat pipe with internal composite wick structure had been performed, regarding a new introduced parameter: the ratio between the coarse mesh wraps and the fine mesh wraps of the composite wick. Since in many cases, the design of a heat pipe matches specific thermal requirements and physical limitations, this work demonstrates the optimization of a 1m length, 8mm internal diameter heat pipe without an adiabatic section, at a negative inclination angle of -10º. The optimization is based on a new introduced parameter, LR: the ratio between the coarse mesh wraps and the fine mesh wraps.

Keywords: Heat pipe, inclination, optimization, ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2244
1311 Unsteady Flow and Heat Transfer of Nanofluid from Circular Tube in Cross-Flow

Authors: H. Bayat, M. Majidi, M. Bolhasani, A. Karbalaie Alilou, A. Mirabdolah Lavasani

Abstract:

Unsteady flow and heat transfer from a circular cylinder in cross-flow is studied numerically. The governing equations are solved by using finite volume method. Reynolds number varies in range of 50 to 200; in this range flow is considered to be laminar and unsteady. Al2O3 nanoparticle with volume fraction in range of 5% to 20% is added to pure water. Effects of adding nanoparticle to pure water on lift and drag coefficient and Nusselt number is presented. Addition of Al2O3 has inconsiderable effect on the value of drags and lift coefficient. However, it has significant effect on heat transfer; results show that heat transfer of Al2O3 nanofluid is about 9% to 36% higher than pure water.

Keywords: Nanofluid, heat transfer, unsteady flow, forced convection, cross-flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2478
1310 Numerical Investigation of Heat Transfer in a Channel with Delta Winglet Vortex Generators at Different Reynolds Numbers

Authors: N. K. Singh

Abstract:

In this study the augmentation of heat transfer in a rectangular channel with triangular vortex generators is evaluated. The span wise averaged Nusselt number, mean temperature and total heat flux are compared with and without vortex generators in the channel at a blade angle of 30° for Reynolds numbers 800, 1200, 1600, and 2000. The use of vortex generators increases the span wise averaged Nusselt number compared to the case without vortex generators considerably. At a particular blade angle, increasing the Reynolds number results in an enhancement in the overall performance and span wise averaged Nusselt number was found to be greater at particular location for larger Reynolds number. The total heat flux from the bottom wall with vortex generators was found to be greater than that without vortex generators and the difference increases with increase in Reynolds number.

Keywords: Heat transfer, channel with vortex generators, numerical simulation, effect of Reynolds number on heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2398
1309 Numerical Simulation of R410a-R23 and R404A-R508B Cascade Refrigeration System

Authors: A. D. Parekh, P. R. Tailor, Tejendra Patel

Abstract:

Capacity and efficiency of any refrigerating system diminish rapidly as the difference between the evaporating and condensing temperature is increased by a reduction in the evaporator temperature. The single stage vapour compression refrigeration system using various refrigerants are limited to an evaporator temperature of -40 0C. Below temperature of -40 0C the either cascade refrigeration system or multi stage vapour compression system is employed. Present work describes thermal design of condenser (HTS), cascade condenser and evaporator (LTS) of R404A-R508B and R410A-R23 cascade refrigeration system. Heat transfer area of condenser, cascade condenser and evaporator for both systems are compared and the effect of condenser and evaporator temperature on heat-transfer area for both systems is studied under same operating condition. The results shows that the required heat-transfer area of condenser and cascade condenser for R410A-R23 cascade system is lower than the R404A-R508B cascade system but heat transfer area of evaporator is similar for both the system. The heat transfer area of condenser and cascade condenser decreases with increase in condenser temperature (Tc), whereas the heat transfer area of cascade condenser and evaporator increases with increase in evaporator temperature (Te).

Keywords: Heat-transfer area, R410A, R404A, R508B, R23, Refrigeration system, Thermal design

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4517
1308 Optimum Design of an Absorption Heat Pump Integrated with a Kraft Industry using Genetic Algorithm

Authors: B. Jabbari, N. Tahouni, M. H. Panjeshahi

Abstract:

In this study the integration of an absorption heat pump (AHP) with the concentration section of an industrial pulp and paper process is investigated using pinch technology. The optimum design of the proposed water-lithium bromide AHP is then achieved by minimizing the total annual cost. A comprehensive optimization is carried out by relaxation of all stream pressure drops as well as heat exchanger areas involving in AHP structure. It is shown that by applying genetic algorithm optimizer, the total annual cost of the proposed AHP is decreased by 18% compared to one resulted from simulation.

Keywords: Absorption Heat Pump, Genetic Algorithm, Kraft Industry, Pinch Technology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
1307 Numerical Simulation of a Conventional Heat Pipe

Authors: Shoeib Mahjoub, Ali Mahtabroshan

Abstract:

The steady incompressible flow has been solved in cylindrical coordinates in both vapour region and wick structure. The governing equations in vapour region are continuity, Navier-Stokes and energy equations. These equations have been solved using SIMPLE algorithm. For study of parameters variation on heat pipe operation, a benchmark has been chosen and the effect of changing one parameter has been analyzed when the others have been fixed.

Keywords: Vapour region, conventional heat pipe, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4122
1306 Numerical Study of Heat Transfer and Laminar Flow over a Backward Facing Step with and without Obstacle

Authors: Hussein Togun, Tuqa Abdulrazzaq, S. N. Kazi, A. Badarudin, M. K. A. Ariffin, M. N. M. Zubir

Abstract:

Heat transfer and laminar fluid flow over backward facing step with and without obstacle numerically studied in this paper. The finite volume method adopted to solve continuity, momentum and energy equations in two dimensions. Backward facing step without obstacle and with different dimension of obstacle were presented. The step height and expansion ratio of channel were 4.8mm and 2 respectively, the range of Reynolds number varied from 75 to 225, constant heat flux subjected on downstream of wall was 2000W/m2, and length of obstacle was 1.5, 3, and 4.5mm with width 1.5mm. The separation length noticed increase with increase Reynolds number and height of obstacle. The result shows increase of heat transfer coefficient for backward facing step with obstacle in compared to those without obstacle. The maximum enhancement of heat transfer observed at 4.5mm of height obstacle due to increase recirculation flow after the obstacle in addition that at backward. Streamline of velocity showing the increase of recirculation region with used obstacle in compared without obstacle and highest recirculation region observed at obstacle height 4.5mm. The amount of enhancement heat transfer was varied between 3-5% compared to backward without obstacle.

Keywords: Separation flow, Backward facing step, Heat transfer, Laminar flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4262
1305 Transient Combined Conduction and Radiation in a Two-Dimensional Participating Cylinder in Presence of Heat Generation

Authors: Raoudha Chaabane, Faouzi Askri, Sassi Ben Nasrallah

Abstract:

Simultaneous transient conduction and radiation heat transfer with heat generation is investigated. Analysis is carried out for both steady and unsteady situations. two-dimensional gray cylindrical enclosure with an absorbing, emitting, and isotropically scattering medium is considered. Enclosure boundaries are assumed at specified temperatures. The heat generation rate is considered uniform and constant throughout the medium. The lattice Boltzmann method (LBM) was used to solve the energy equation of a transient conduction-radiation heat transfer problem. The control volume finite element method (CVFEM) was used to compute the radiative information. To study the compatibility of the LBM for the energy equation and the CVFEM for the radiative transfer equation, transient conduction and radiation heat transfer problems in 2-D cylindrical geometries were considered. In order to establish the suitability of the LBM, the energy equation of the present problem was also solved using the the finite difference method (FDM) of the computational fluid dynamics. The CVFEM used in the radiative heat transfer was employed to compute the radiative information required for the solution of the energy equation using the LBM or the FDM (of the CFD). To study the compatibility and suitability of the LBM for the solution of energy equation and the CVFEM for the radiative information, results were analyzed for the effects of various parameters such as the boundary emissivity. The results of the LBMCVFEM combination were found to be in excellent agreement with the FDM-CVFEM combination. The number of iterations and the steady state temperature in both of the combinations were found comparable. Results are found for situations with and without heat generation. Heat generation is found to have significant bearing on temperature distribution.

Keywords: heat generation, cylindrical coordinates; RTE;transient; coupled conduction radiation; heat transfer; CVFEM; LBM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2162
1304 Heat Flux Reduction Research in Hypersonic Flow with Opposing Jet

Authors: Yisheng Rong, Jian Sun, Weiqiang Liu, Renjun Zhan

Abstract:

A CFD study on heat flux reduction in hypersonic flow with opposing jet has been conducted. Flowfield parameters, reattachment point position, surface pressure distributions and heat flux distributions are obtained and validated with experiments. The physical mechanism of heat reduction has been analyzed. When the opposing jet blows, the freestream is blocked off, flows to the edges and not interacts with the surface to form aerodynamic heating. At the same time, the jet flows back to form cool recirculation region, which reduces the difference in temperature between the surface and the nearby gas, and then reduces the heat flux. As the pressure ratio increases, the interface between jet and freestream is gradually pushed away from the surface. Larger the total pressure ratio is, lower the heat flux is. To study the effect of the intensity of opposing jet more reasonably, a new parameter RPA has been introduced by combining the flux and the total pressure ratio. The study shows that the same shock wave position and total heat load can be obtained with the same RPA with different fluxes and the total pressures, which means the new parameter could stand for the intensity of opposing jet and could be used to analyze the influence of opposing jet on flow field and aerodynamic heating.

Keywords: opposing jet, aerodynamic heating, total pressure ratio, thermal protection system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013
1303 Investigation of Increasing the Heat Transfer from Flat Surfaces Using Boundary Layer Excitation

Authors: M.H.Ghaffari

Abstract:

The present study is concerned with effect of exciting boundary layer on increase in heat transfer from flat surfaces. As any increase in heat transfer between a fluid inside a face and another one outside of it can cause an increase in some equipment's efficiency, so at this present we have tried to increase the wall's heat transfer coefficient by exciting the fluid boundary layer. By a collision between flow and the placed block at the fluid way, the flow pattern and the boundary layer stability will change. The flow way inside the channel is simulated as a 2&3-dimensional channel by Gambit TM software. With studying the achieved results by this simulation for the flow way inside the channel with a block coordinating with Fluent TM software, it's determined that the figure and dimensions of the exciter are too important for exciting the boundary layer so that any increase in block dimensions in vertical side against the flow and any reduction in its dimensions at the flow side can increase the average heat transfer coefficient from flat surface and increase the flow pressure loss. Using 2&3-dimensional analysis on exciting the flow at the flow way inside a channel by cylindrical block at the same time with the external flow, we came to this conclusion that the heat flux transferred from the surface, is increased considerably in terms of the condition without excitation. Also, the k-e turbulence model is used.

Keywords: Cooling, Heat transfer, Turbulence, Excitingboundary layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1163
1302 Effect of Heat Input on the Weld Metal Toughness of Chromium-Molybdenum Steel

Authors: M. S. Kaiser

Abstract:

An attempt has been made to determine the strength and impact properties of Cr-Mo steel weld and base materials by varying the current during manual metal arc welding. Toughness over a temperature range from -32 to 100°C of base, heat affected zone (HAZ) and weld zones at three current settings are made. It is observed that the deterioration in notch toughness at any zone with the temperature decreases. The values of notch toughness for all zones at -32°C are almost same for any current settings. The values of notch toughness at HAZ area are higher than that of weld area due to the coarsening of ferrite grain of HAZ occurs with higher heat input. From microhardness and microstructure result, it can be concluded that large inclusion content in weld deposit is the cause of lower notch toughness value.

Keywords: Chromium-Molybdenum steel, post-weld heat treatment, heat affected zone, microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3603
1301 Numerical Investigation on Latent Heat Storage Unit of Different Configurations

Authors: Manish K Rathod, Jyotirmay Banerjee

Abstract:

The storage of thermal energy as a latent heat of phase change material (PCM) has created considerable interest among researchers in recent times. Here, an attempt is made to carry out numerical investigations to analyze the performance of latent heat storage units (LHSU) employing phase change material. The mathematical model developed is based on an enthalpy formulation. Freezing time of PCM packed in three different shaped containers viz. rectangular, cylindrical and cylindrical shell is compared. The model is validated with the results available in the literature. Results show that for the same mass of PCM and surface area of heat transfer, cylindrical shell container takes the least time for freezing the PCM and this geometric effect is more pronounced with an increase in the thickness of the shell than that of length of the shell.

Keywords: Enthalpy Formulation, Latent heat storage unit(LHSU), Numerical Model, Phase change material (PCM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2465
1300 Decay Heat Contribution Analyses of Curium Isotopes in the Mixed Oxide Nuclear Fuel

Authors: S. S. Nafee, A. K. Al-Ramady, S. A. Shaheen

Abstract:

The mixed oxide nuclear fuel (MOX) of U and Pu contains several percent of fission products and minor actinides, such as neptunium, americium and curium. It is important to determine accurately the decay heat from Curium isotopes as they contribute significantly in the MOX fuel. This heat generation can cause samples to melt very quickly if excessive quantities of curium are present. In the present paper, we introduce a new approach that can predict the decay heat from curium isotopes. This work is a part of the project funded by King Abdulaziz City of Science and Technology (KASCT), Long-Term Comprehensive National Plan for Science, Technology and Innovations, and take place in King Abdulaziz University (KAU), Saudi Arabia. The approach is based on the numerical solution of coupled linear differential equations that describe decays and buildups of many nuclides to calculate the decay heat produced after shutdown. Results show the consistency and reliability of the approach applied.

Keywords: Decay heat, Mixed oxide nuclear fuel, Numerical Solution of Linear Differential Equations, and Curium isotopes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838
1299 A Boundary Backstepping Control Design for 2-D, 3-D and N-D Heat Equation

Authors: Aziz Sezgin

Abstract:

We consider the problem of stabilization of an unstable heat equation in a 2-D, 3-D and generally n-D domain by deriving a generalized backstepping boundary control design methodology. To stabilize the systems, we design boundary backstepping controllers inspired by the 1-D unstable heat equation stabilization procedure. We assume that one side of the boundary is hinged and the other side is controlled for each direction of the domain. Thus, controllers act on two boundaries for 2-D domain, three boundaries for 3-D domain and ”n” boundaries for n-D domain. The main idea of the design is to derive ”n” controllers for each of the dimensions by using ”n” kernel functions. Thus, we obtain ”n” controllers for the ”n” dimensional case. We use a transformation to change the system into an exponentially stable ”n” dimensional heat equation. The transformation used in this paper is a generalized Volterra/Fredholm type with ”n” kernel functions for n-D domain instead of the one kernel function of 1-D design.

Keywords: Backstepping, boundary control, 2-D, 3-D, n-D heat equation, distributed parameter systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
1298 Cogeneration Unit for Small Stove

Authors: Michal Spilacek, Marian Brazdil, Otakar Stelcl, Jiri Pospisil

Abstract:

This paper shows an experimental testing of a small unit for combustion of solid fuels, such as charcoal and wood logs, that can provide electricity. One of the concepts is that the unit does not require qualified personnel for its operation. The unit itself is composed of two main parts. The design requires a heat producing stove and electricity producing thermoelectric generator. After the construction the unit was tested and the results show that the emission release is within the legislative requirements for emission production and environmental protection. That qualifies such unit for indoor application.

Keywords: Micro-cogeneration, thermoelectric generator, biomass combustion, wood stove.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2397
1297 Numerical Investigation of Non Fourier Heat Conduction in a Semi-infinite Body due to a Moving Concentrated Heat Source Composed with Radiational Boundary Condition

Authors: M. Akbari, S. Sadodin

Abstract:

In this paper, the melting of a semi-infinite body as a result of a moving laser beam has been studied. Because the Fourier heat transfer equation at short times and large dimensions does not have sufficient accuracy; a non-Fourier form of heat transfer equation has been used. Due to the fact that the beam is moving in x direction, the temperature distribution and the melting pool shape are not asymmetric. As a result, the problem is a transient threedimensional problem. Therefore, thermophysical properties such as heat conductivity coefficient, density and heat capacity are functions of temperature and material states. The enthalpy technique, used for the solution of phase change problems, has been used in an explicit finite volume form for the hyperbolic heat transfer equation. This technique has been used to calculate the transient temperature distribution in the semi-infinite body and the growth rate of the melt pool. In order to validate the numerical results, comparisons were made with experimental data. Finally, the results of this paper were compared with similar problem that has used the Fourier theory. The comparison shows the influence of infinite speed of heat propagation in Fourier theory on the temperature distribution and the melt pool size.

Keywords: Non-Fourier, Enthalpy technique, Melt pool, Radiational boundary condition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
1296 Finite Element Modeling of Heat and Moisture Transfer in Porous Material

Authors: V. D. Thi, M. Li, M. Khelifa, M. El Ganaoui, Y. Rogaume

Abstract:

This paper presents a two-dimensional model to study the heat and moisture transfer through porous building materials. Dynamic and static coupled models of heat and moisture transfer in porous material under low temperature are presented and the coupled models together with variable initial and boundary conditions have been considered in an analytical way and using the finite element method. The resulting coupled model is converted to two nonlinear partial differential equations, which is then numerically solved by an implicit iterative scheme. The numerical results of temperature and moisture potential changes are compared with the experimental measurements available in the literature. Predicted results demonstrate validation of the theoretical model and effectiveness of the developed numerical algorithms. It is expected to provide useful information for the porous building material design based on heat and moisture transfer model.

Keywords: Finite element method, heat transfer, moisture transfer, porous materials, wood.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1217
1295 Impact of Viscous and Heat Relaxation Loss on the Critical Temperature Gradients of Thermoacoustic Stacks

Authors: Zhibin Yu, Artur J. Jaworski, Abdulrahman S. Abduljalil

Abstract:

A stack with a small critical temperature gradient is desirable for a standing wave thermoacoustic engine to obtain a low onset temperature difference (the minimum temperature difference to start engine-s self-oscillation). The viscous and heat relaxation loss in the stack determines the critical temperature gradient. In this work, a dimensionless critical temperature gradient factor is obtained based on the linear thermoacoustic theory. It is indicated that the impedance determines the proportion between the viscous loss, heat relaxation losses and the power production from the heat energy. It reveals the effects of the channel dimensions, geometrical configuration and the local acoustic impedance on the critical temperature gradient in stacks. The numerical analysis shows that there exists a possible optimum combination of these parameters which leads to the lowest critical temperature gradient. Furthermore, several different geometries have been tested and compared numerically.

Keywords: Critical temperature gradient, heat relaxation, stack, viscous effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1766