Search results for: flow channel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2850

Search results for: flow channel

2820 Application of Homotopy Perturbation Method to Solve Steady Flow of Walter B Fluid A Vertical Channel In Porous Media

Authors: A.Memari

Abstract:

In this article, a simulation method called the Homotopy Perturbation Method (HPM) is employed in the steady flow of a Walter's B' fluid in a vertical channel with porous wall. We employed Homotopy Perturbation Method to derive solution of a nonlinear form of equation obtained from exerting similarity transforming to the ordinary differential equation gained from continuity and momentum equations of this kind of flow. The results obtained from the Homotopy Perturbation Method are then compared with those from the Runge–Kutta method in order to verify the accuracy of the proposed method. The results show that the Homotopy Perturbation Method can achieve good results in predicting the solution of such problems. Ultimately we use this solution to obtain the other terms of velocities and physical discussion about it.

Keywords: Steady flow; Walter's B' Fluid;, vertical channel;porous media, Homotopy Perturbation Method (HPM), Numerical Solution (NS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935
2819 A Finite Volume Procedure on Unstructured Meshes for Fluid-Structure Interaction Problems

Authors: P I Jagad, B P Puranik, A W Date

Abstract:

Flow through micro and mini channels requires relatively high driving pressure due to the large fluid pressure drop through these channels. Consequently the forces acting on the walls of the channel due to the fluid pressure are also large. Due to these forces there are displacement fields set up in the solid substrate containing the channels. If the movement of the substrate is constrained at some points, then stress fields are established in the substrate. On the other hand, if the deformation of the channel shape is sufficiently large then its effect on the fluid flow is important to be calculated. Such coupled fluid-solid systems form a class of problems known as fluidstructure interactions. In the present work a co-located finite volume discretization procedure on unstructured meshes is described for solving fluid-structure interaction type of problems. A linear elastic solid is assumed for which the effect of the channel deformation on the flow is neglected. Thus the governing equations for the fluid and the solid are decoupled and are solved separately. The procedure is validated by solving two benchmark problems, one from fluid mechanics and another from solid mechanics. A fluid-structure interaction problem of flow through a U-shaped channel embedded in a plate is solved.

Keywords: Finite volume method, flow induced stresses, fluidstructureinteraction, unstructured meshes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852
2818 Thermal Analysis on Heat Transfer Enhancement and Fluid Flow for Al2O3 Water-Ethylene Glycol Nanofluid in Single PEMFC Mini Channel

Authors: Irnie Zakaria, W. A. N. W Mohamed, W. H. Azmi

Abstract:

Thermal enhancement of a single mini channel in Proton Exchange Membrane Fuel Cell (PEMFC) cooling plate is numerically investigated. In this study, low concentration of Al2O3 in Water - Ethylene Glycol mixtures is used as coolant in single channel of carbon graphite plate to mimic the mini channels in PEMFC cooling plate. A steady and incompressible flow with constant heat flux is assumed in the channel of 1mm x 5mm x 100mm. Nano particle of Al2O3 used ranges from 0.1, 0.3 and 0.5 vol % concentration and then dispersed in 60:40 (water: Ethylene Glycol) mixture. The effect of different flow rates to fluid flow and heat transfer enhancement in Re number range of 20 to 140 was observed. The result showed that heat transfer coefficient was improved by 18.11%, 9.86% and 5.37% for 0.5, 0.3 and 0.1 vol. % Al2O3 in 60:40 (water: EG) as compared to base fluid of 60:40 (water: EG). It is also showed that the higher vol. % concentration of Al2O3 performed better in term of thermal enhancement but at the expense of higher pumping power required due to increase in pressure drop experienced. Maximum additional pumping power of 0.0012W was required for 0.5 vol % Al2O3 in 60:40 (water: EG) at Re number 140.

Keywords: Heat transfer, mini channel, nanofluid, PEMFC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2092
2817 The Role of Periodic Vortex Shedding in Heat Transfer Enhancement for Transient Pulsatile Flow Inside Wavy Channels

Authors: Esam M. Alawadhi, Raed I. Bourisli

Abstract:

Periodic vortex shedding in pulsating flow inside wavy channel and the effect it has on heat transfer are studied using the finite volume method. A sinusoidally-varying component is superimposed on a uniform flow inside a sinusoidal wavy channel and the effects on the Nusselt number is analyzed. It was found that a unique optimum value of the pulsation frequency, represented by the Strouhal number, exists for Reynolds numbers ranging from 125 to 1000. Results suggest that the gain in heat transfer is related to the process of vortex formation, movement about the troughs of the wavy channel, and subsequent ejection/destruction through the converging section. Heat transfer is the highest when the frequencies of the pulsation and vortex formation approach being in-phase. Analysis of Strouhal number effect on Nu over a period of pulsation substantiates the proposed physical mechanism for enhancement. The effect of changing the amplitude of pulsation is also presented over a period of pulsation, showing a monotonic increase in heat transfer with increasing amplitude. The 60% increase in Nusselt number suggests that sinusoidal fluid pulsation can an effective method for enhancing heat transfer in laminar, wavy-channel flows.

Keywords: Vortex shedding, pulsating flow, wavy channel, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869
2816 Simulation of 3D Flow using Numerical Model at Open-channel Confluences

Authors: R.Goudarzizadeh, S.H.Mousavi Jahromi, N.Hedayat

Abstract:

This paper analytically investigates the 3D flow pattern at the confluences of two rectangular channels having 900 angles using Navier-Stokes equations based on Reynolds Stress Turbulence Model (RSM). The equations are solved by the Finite- Volume Method (FVM) and the flow is analyzed in terms of steadystate (single-phased) conditions. The Shumate experimental findings were used to test the validity of data. Comparison of the simulation model with the experimental ones indicated a close proximity between the flow patterns of the two sets. Effects of the discharge ratio on separation zone dimensions created in the main-channel downstream of the confluence indicated an inverse relation, where a decrease in discharge ratio, will entail an increase in the length and width of the separation zone. The study also found the model as a powerful analytical tool in the feasibility study of hydraulic engineering projects.

Keywords: 900 confluence angle, flow separation zone, numerical modeling, turbulent flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808
2815 Effect of Viscous Dissipation and Axial Conduction in Thermally Developing Region of the Channel Partially Filled with a Porous Material Subjected to Constant Wall Heat Flux

Authors: D Bhargavi, J. Sharath Kumar Reddy

Abstract:

The present investigation has been undertaken to assess the effect of viscous dissipation and axial conduction on forced convection heat transfer in the entrance region of a parallel plate channel with the porous insert attached to both walls of the channel. The flow field is unidirectional. Flow in the porous region corresponds to Darcy-Brinkman model and the clear fluid region to that of plane Poiseuille flow. The effects of the parameters Darcy number, Da, Peclet number, Pe, Brinkman number, Br and a porous fraction γp on the local heat transfer coefficient are analyzed graphically. Effects of viscous dissipation employing the Darcy model and the clear fluid compatible model have been studied.

Keywords: Porous material, channel partially filled with a porous material, axial conduction, viscous dissipation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 591
2814 Numerical Analysis of Roughness Effect on Mini and Microchannels: Hydrodynamics and Heat Transfer

Authors: El-Ghalia Filali, Cherif Gadouche, Mohamed Tahar

Abstract:

A three-dimensional numerical simulation of flow through mini and microchannels with designed roughness is conducted here. The effect of the roughness height (surface roughness), geometry, Reynolds number on the friction factor, and Nusselt number is investigated. The study is carried out by employing CFD software, CFX. Our work focuses on a water flow inside a circular mini-channel of 1 mm and microchannels of 500 and 100 m in diameter. The speed entry varies from 0.1 m/s to 20 m/s. The general trend can be observed that bigger sizes of roughness element lead to higher flow resistance. It is found that the friction factor increases in a nonlinear fashion with the increase in obstruction height. Particularly, the effect of roughness can no longer be ignored at relative roughness height higher than 3%. A significant increase in Poiseuille number is detected for all configurations considered. The same observation can be done for Nusselt number. The transition zone between laminar and turbulent flow depends on the channel diameter.

Keywords: Heat transfer, hydrodynamics, micro-channel, roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
2813 Numerical Simulation of the Flow Channel in the Curved Plane Oil Skimmer

Authors: Xing Feng, Yuanbin Li

Abstract:

Oil spills at sea can cause severe marine environmental damage, including bringing huge hazards to living resources and human beings. In situ burning or chemical dispersant methods can be used to handle the oil spills sometimes, but these approaches will bring secondary pollution and fail in some situations. Oil recovery techniques have also been developed to recover oil using oil skimmer equipment installed on ships, while the hydrodynamic process of the oil flowing through the oil skimmer is very complicated and important for evaluating the recovery efficiency. Based on this, a two-dimensional numerical simulation platform for simulating the hydrodynamic process of the oil flowing through the oil skimmer is established based on the Navier-Stokes equations for viscous, incompressible fluid. Finally, the influence of the design of the flow channel in the curved plane oil skimmer on the hydrodynamic process of the oil flowing through the oil skimmer is investigated based on the established simulation platform.

Keywords: Curved plane oil skimmer, flow channel, CFD, VOF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 859
2812 Experimental Study on Gas-Viscous Liquid Mixture Flow Regimes and Transitions Criteria in Vertical Narrow Rectangular Channels

Authors: F. J. Sowiński, M. Dziubiński

Abstract:

In the study the influence of the physical-chemical properties of a liquid, the width of a channel gap and the superficial liquid and gas velocities on the patterns formed during two phase flows in vertical, narrow mini-channels was investigated. The research was performed in the channels of rectangular cross-section and of dimensions: 15 x 0.65 mm and 7.5 x 0.73 mm. The experimental data were compared with the published criteria of the transitions between the patterns of two-phase flows.

Keywords: Two-phase flow, flow regimes, mini-channel, viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395
2811 Numerical Investigation of the Effect of Flow and Heat Transfer of a Semi-Cylindrical Obstacle Located in a Channel

Authors: Omer F. Can, Nevin Celik

Abstract:

In this study, a semi-cylinder obstacle placed in a channel is handled to determine the effect of flow and heat transfer around the obstacle. Both faces of the semi-cylinder are used in the numerical analysis. First, the front face of the semi-cylinder is stated perpendicular to flow, than the rear face is placed. The study is carried out numerically, by using commercial software ANSYS 11.0. The well-known κ-ε model is applied as the turbulence model. Reynolds number is in the range of 104 to 105 and air is assumed as the flowing fluid. The results showed that, heat transfer increased approximately 15 % in the front faze case, while it enhanced up to 28 % in the rear face case.

Keywords: External flow, semi-cylinder obstacle, heat transfer, friction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3147
2810 Transient Solution of an Incompressible Viscous Flow in a Channel with Sudden Expansion/Contraction

Authors: Durga C. Dalal, Swapan K. Pandit

Abstract:

In this paper, a numerical study has been made to analyze the transient 2-D flows of a viscous incompressible fluid through channels with forward or backward constriction. Problems addressed include flow through sudden contraction and sudden expansion channel geometries with rounded and increasingly sharp reentrant corner. In both the cases, numerical results are presented for the separation and reattachment points, streamlines, vorticity and flow patterns. A fourth order accurate compact scheme has been employed to efficiently capture steady state solutions of the governing equations. It appears from our study that sharpness of the throat in the channel is one of the important parameters to control the strength and size of the separation zone without modifying the general flow patterns. The comparison between the two cases shows that the upstream geometry plays a significant role on vortex growth dynamics.

Keywords: Forward and backward constriction, HOC scheme, Incompressible viscous flows, Separation and reattachment points.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
2809 Investigation and Perfection of Centrifugal Compressor Stages by CFD Methods

Authors: Y. Galerkin, L. Marenina

Abstract:

Stator elements «Vane diffuser + crossover + return channel» of stages with different specific speed were investigated by CFD calculations. The regime parameter was introduced to present efficiency and loss coefficient performance of all elements together. Flow structure demonstrated advantages and disadvantages of design. Flow separation in crossovers was eliminated by its shape modification. Efficiency increased visibly. Calculated CFD performances are in acceptable correlation with predicted ones by engineering design method. The information obtained is useful for design method better calibration.

Keywords: Vane diffuser, return channel, crossover, efficiency, loss coefficient, inlet flow angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147
2808 General Formula for Water Surface Profile over Side Weir in the Combined, Trapezoidal and Exponential, Channels

Authors: Abdulrahman Abdulrahman

Abstract:

A side weir is a hydraulic structure set into the side of a channel. This structure is used for water level control in channels, to divert flow from a main channel into a side channel when the water level in the main channel exceeds a specific limit and as storm overflows from urban sewerage system. Computation of water surface over the side weirs is essential to determine the flow rate of the side weir. Analytical solutions for water surface profile along rectangular side weir are available only for the special cases of rectangular and trapezoidal channels considering constant specific energy. In this paper, a rectangular side weir located in a combined (trapezoidal with exponential) channel was considered. Expanding binominal series of integer and fraction powers and the using of reduction formula of cosine function integrals, a general analytical formula was obtained for water surface profile along a side weir in a combined (trapezoidal with exponential) channel. Since triangular, rectangular, trapezoidal and parabolic cross-sections are special cases of the combined cross section, the derived formula, is applicable to triangular, rectangular, trapezoidal cross-sections as analytical solution and semi-analytical solution to parabolic cross-section with maximum relative error smaller than 0.76%. The proposed solution should be a useful engineering tool for the evaluation and design of side weirs in open channel.

Keywords: Analytical solution, combined channel, exponential channel, side weirs, trapezoidal channel, water surface profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 879
2807 A Parametric Study on the Backwater Level Due to a Bridge Constriction

Authors: S. Atabay, T. A. Ali, Md. M. Mortula

Abstract:

This paper presents the results and findings from a parametric study on the water surface elevation at upstream of bridge constriction for subcritical flow. In this study, the influence of Manning's Roughness Coefficient of main channel (nmc) and floodplain (nfp), and bridge opening (b) flow rate (Q), contraction (kcon) and expansion coefficients (kexp) were investigated on backwater level. The DECK bridge models with different span widths and without any pier were investigated within the two stage channel having various roughness conditions. One of the most commonly used commercial one-dimensional HEC-RAS model was used in this parametric study. This study showed that the effects of main channel roughness (nmc) and flow rate (Q) on the backwater level are much higher than those of the floodplain roughness (nfp). Bridge opening (b) with contraction (kcon) and expansion coefficients (kexp) have very little effect on the backwater level within this range of parameters.

Keywords: Bridge backwater, parametric study and waterways.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2449
2806 Three-Dimensional Numerical Simulation of Drops Suspended in Poiseuille Flow: Effect of Reynolds Number

Authors: A. Nourbakhsh

Abstract:

A finite difference/front tracking method is used to study the motion of three-dimensional deformable drops suspended in plane Poiseuille flow at non-zero Reynolds numbers. A parallel version of the code was used to study the behavior of suspension on a reasonable grid resolution (grids). The viscosity and density of drops are assumed to be equal to that of the suspending medium. The effect of the Reynolds number is studied in detail. It is found that drops with small deformation behave like rigid particles and migrate to an equilibrium position about half way between the wall and the centerline (the Segre-Silberberg effect). However, for highly deformable drops there is a tendency for drops to migrate to the middle of the channel, and the maximum concentration occurs at the centerline. The effective viscosity of suspension and the fluctuation energy of the flow across the channel increases with the Reynolds number of the flow.

Keywords: Suspensions, Poiseuille flow, Effective viscosity, Reynolds number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
2805 Numerical Simulation on Heat Transfer Enhancement in Channel by Triangular Ribs

Authors: Tuqa Abdulrazzaq, Hussein Togun, M. K. A. Ariffin, S. N. Kazi, NM Adam, S. Masuri

Abstract:

Turbulent heat transfer to fluid flow through channel with triangular ribs of different angles are presented in this paper. Ansys 14 ICEM and Ansys 14 Fluent are used for meshing process and solving Navier stokes equations respectively. In this investigation three angles of triangular ribs with the range of Reynolds number varied from 20000 to 60000 at constant surface temperature are considered. The results show that the Nusselt number increases with the increase of Reynolds number for all cases at constant surface temperature. According to the profile of local Nusselt number on ribs walled of channel, the peak is at the midpoint between the two ribs. The maximum value of average Nusselt number is obtained for triangular ribs of angel 60°and at Reynolds number of 60000 compared to the Nusselt number for the ribs of angel 90° and 45° and at same Reynolds number. The recirculation regions generated by the ribs corresponding to the velocity streamline show the largest recirculation region at triangular ribs of angle 60° which also provides the highest enhancement of heat transfer.

Keywords: Ribs channel, Turbulent flow, Heat transfer enhancement, Recirculation flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3162
2804 Turbulent Forced Convection Flow in a Channel over Periodic Grooves Using Nanofluids

Authors: Farshid Fathinia, Mohammad Parsazadeh, Amirhossein Heshmati

Abstract:

Turbulent forced convection flow in a 2-dimensional channel over periodic grooves is numerically investigated. Finite volume method is used to study the effect of turbulence model. The range of Reynolds number varied from 10000 to 30000 for the ribheight to channel-height ratio (B/H) of 2. The downstream wall is heated by a uniform heat flux while the upstream wall is insulated. The investigation is analyzed with different types of nanoparticles such as SiO2, Al2O3, and ZnO, with water as a base fluid are used. The volume fraction is varied from 1% to 4% and the nanoparticle diameter is utilized between 20nm to 50nm. The results revealed 114% heat transfer enhancement compared to the water in a grooved channel by using SiO2 nanoparticle with volume fraction and nanoparticle diameter of 4% and 20nm respectively.

Keywords: Forced convection, Periodic grooves, Nanofluids, Turbulent model, Heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017
2803 Transport of Analytes under Mixed Electroosmotic and Pressure Driven Flow of Power Law Fluid

Authors: Naren Bag, S. Bhattacharyya, Partha P. Gopmandal

Abstract:

In this study, we have analyzed the transport of analytes under a two dimensional steady incompressible flow of power-law fluids through rectangular nanochannel. A mathematical model based on the Cauchy momentum-Nernst-Planck-Poisson equations is considered to study the combined effect of mixed electroosmotic (EO) and pressure driven (PD) flow. The coupled governing equations are solved numerically by finite volume method. We have studied extensively the effect of key parameters, e.g., flow behavior index, concentration of the electrolyte, surface potential, imposed pressure gradient and imposed electric field strength on the net average flow across the channel. In addition to study the effect of mixed EOF and PD on the analyte distribution across the channel, we consider a nonlinear model based on general convective-diffusion-electromigration equation. We have also presented the retention factor for various values of electrolyte concentration and flow behavior index.

Keywords: Electric double layer, finite volume method, flow behavior index, mixed electroosmotic/pressure driven flow, Non-Newtonian power-law fluids, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162
2802 Operation Stability Enhancement in Once-Through Micro Evaporators

Authors: Cor M. Rops, Giaco C. Oosterbaan, Cees W.M. v/d Geld

Abstract:

Equipment miniaturisation offers several opportunities such as an increased surface-to-volume ratio and higher heat transfer coefficients. However, moving towards small-diameter channels demands extra attention to fouling, reliability and stable operation of the system. The present investigation explores possibilities to enhance the stability of the once-through micro evaporator by reducing its flow boiling induced pressure fluctuations. Experimental comparison shows that the measured reduction factor approaches a theoretically derived value. Pressure fluctuations are reduced by a factor of ten in the solid conical channel and a factor of 15 in the porous conical channel. This presumably leads to less backflow and therefore to a better flow control.

Keywords: Flow boiling, Operation stability, Microfluidics, Microchannels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
2801 Theoretical and Analytical Approaches for Investigating the Relations between Sediment Transport and Channel Shape

Authors: Nidal Hadadin

Abstract:

This study investigated the effect of cross sectional geometry on sediment transport rate. The processes of sediment transport are generally associated to environmental management, such as pollution caused by the forming of suspended sediment in the channel network of a watershed and preserving physical habitats and native vegetations, and engineering applications, such as the influence of sediment transport on hydraulic structures and flood control design. Many equations have been proposed for computing the sediment transport, the influence of many variables on sediment transport has been understood; however, the effect of other variables still requires further research. For open channel flow, sediment transport capacity is recognized to be a function of friction slope, flow velocity, grain size, grain roughness and form roughness, the hydraulic radius of the bed section and the type and quantity of vegetation cover. The effect of cross sectional geometry of the channel on sediment transport is one of the variables that need additional investigation. The width-depth ratio (W/d) is a comparative indicator of the channel shape. The width is the total distance across the channel and the depth is the mean depth of the channel. The mean depth is best calculated as total cross-sectional area divided by the top width. Channels with high W/d ratios tend to be shallow and wide, while channels with low (W/d) ratios tend to be narrow and deep. In this study, the effects of the width-depth ratio on sediment transport was demonstrated theoretically by inserting the shape factor in sediment continuity equation and analytically by utilizing the field data sets for Yalobusha River. It was found by utilizing the two approaches as a width-depth ratio increases the sediment transport decreases.

Keywords: Sediment transport, shape factor, hydraulicgeometry, flow discharge, width depth ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1356
2800 A Study of Various Numerical Turbulence Modeling Methods in Boundary Layer Excitation of a Square Ribbed Channel

Authors: Hojjat Saberinejad, Adel Hashiehbaf, Ehsan Afrasiabian

Abstract:

Among the various cooling processes in industrial applications such as: electronic devices, heat exchangers, gas turbines, etc. Gas turbine blades cooling is the most challenging one. One of the most common practices is using ribbed wall because of the boundary layer excitation and therefore making the ultimate cooling. Vortex formation between rib and channel wall will result in a complicated behavior of flow regime. At the other hand, selecting the most efficient method for capturing the best results comparing to experimental works would be a fascinating issue. In this paper 4 common methods in turbulence modeling: standard k-e, rationalized k-e with enhanced wall boundary layer treatment, k-w and RSM (Reynolds stress model) are employed to a square ribbed channel to investigate the separation and thermal behavior of the flow in the channel. Finally all results from different methods which are used in this paper will be compared with experimental data available in literature to ensure the numerical method accuracy.

Keywords: boundary layer, turbulence, numerical method, rib cooling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
2799 Electroviscous Effects in Low Reynolds Number Flow through a Microfluidic Contraction with Rectangular Cross-Section

Authors: Malcolm R Davidson, Ram P. Bharti, Petar Liovic, Dalton J.E. Harvie

Abstract:

The electrokinetic flow resistance (electroviscous effect) is predicted for steady state, pressure-driven liquid flow at low Reynolds number in a microfluidic contraction of rectangular cross-section. Calculations of the three dimensional flow are performed in parallel using a finite volume numerical method. The channel walls are assumed to carry a uniform charge density and the liquid is taken to be a symmetric 1:1 electrolyte. Predictions are presented for a single set of flow and electrokinetic parameters. It is shown that the magnitude of the streaming potential gradient and the charge density of counter-ions in the liquid is greater than that in corresponding two-dimensional slit-like contraction geometry. The apparent viscosity is found to be very close to the value for a rectangular channel of uniform cross-section at the chosen Reynolds number (Re = 0.1). It is speculated that the apparent viscosity for the contraction geometry will increase as the Reynolds number is reduced.

Keywords: Contraction, Electroviscous, Microfluidic, Numerical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
2798 Quantitative Study for Exchange of Gases from Open Sewer Channel to Atmosphere

Authors: Asif Mansoor, Nasiruddin Khan, Noreen Jamil

Abstract:

In this communication a quantitative modeling approach is applied to construct model for the exchange of gases from open sewer channel to the atmosphere. The data for the exchange of gases of the open sewer channel for the year January 1979 to December 2006 is utilized for the construction of the model. The study reveals that stream flow of the open sewer channel exchanges the toxic gases continuously with time varying scale. We find that the quantitative modeling approach is more parsimonious model for these exchanges. The usual diagnostic tests are applied for the model adequacy. This model is beneficial for planner and managerial bodies for the improvement of implemented policies to overcome future environmental problems.

Keywords: Open sewer channel, Industrial waste, Municipalwaste, Gases exchange, Atmosphere, Stochastic models, Diagnosticschecks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
2797 BER Performance of UWB Modulations through S-V Channel Model

Authors: Risanuri Hidayat

Abstract:

BER analysis of Impulse Radio Ultra Wideband (IRUWB) pulse modulations over S-V channel model is proposed in this paper. The UWB pulse is Gaussian monocycle pulse modulated using Pulse Amplitude Modulation (PAM) and Pulse Position Modulation (PPM). The channel model is generated from a modified S-V model. Bit-error rate (BER) is measured over several of bit rates. The result shows that all modulation are appropriate for both LOS and NLOS channel, but PAM gives better performance in bit rates and SNR. Moreover, as standard of speed has been given for UWB, the communication is appropriate with high bit rates in LOS channel.

Keywords: IR-UWB, S-V Channel Model, LOS NLOS, PAM, PPM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2293
2796 Analysis of Joint Source Channel LDPC Coding for Correlated Sources Transmission over Noisy Channels

Authors: Marwa Ben Abdessalem, Amin Zribi, Ammar Bouallègue

Abstract:

In this paper, a Joint Source Channel coding scheme based on LDPC codes is investigated. We consider two concatenated LDPC codes, one allows to compress a correlated source and the second to protect it against channel degradations. The original information can be reconstructed at the receiver by a joint decoder, where the source decoder and the channel decoder run in parallel by transferring extrinsic information. We investigate the performance of the JSC LDPC code in terms of Bit-Error Rate (BER) in the case of transmission over an Additive White Gaussian Noise (AWGN) channel, and for different source and channel rate parameters. We emphasize how JSC LDPC presents a performance tradeoff depending on the channel state and on the source correlation. We show that, the JSC LDPC is an efficient solution for a relatively low Signal-to-Noise Ratio (SNR) channel, especially with highly correlated sources. Finally, a source-channel rate optimization has to be applied to guarantee the best JSC LDPC system performance for a given channel.

Keywords: AWGN channel, belief propagation, joint source channel coding, LDPC codes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 930
2795 Thermal Performance of a Pair of Synthetic Jets Equipped in Microchannel

Authors: J. Mohammadpour, G. E. Lau, S. Cheng, A. Lee

Abstract:

Numerical study was conducted using two synthetic jet actuators attached underneath a micro-channel. By fixing the oscillating frequency and diaphragm amplitude, the effects on the heat transfer within the micro-channel were investigated with two synthetic jets being in-phase and 180° out-of-phase at different orifice spacing. There was a significant benefit identified with two jets being 180° out-of-phase with each other at the orifice spacing of 2 mm. By having this configuration, there was a distinct pattern of vortex forming which disrupts the main channel flow as well as promoting thermal mixing at high velocity within the channel. Therefore, this configuration achieved higher cooling performance compared to the other cases studied in terms of the reduction in the maximum temperature and cooling uniformity in the silicon wafer.

Keywords: Synthetic jets, microchannel, electronic cooling, computational fluid dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 743
2794 Density Wave Instability of Supercritical Kerosene in Active Cooling Channels of Scramjets

Authors: N. Wang, Y. Pan, J. Zhou, J. Lei, X. Z. Yang

Abstract:

Experimental investigations were made on the instability of supercritical kerosene flowing in active cooling channels. Two approaches were used to control the pressure in the channel. One is the back-pressure valve while the other is the venturi. In both conditions, a kind of low-frequency oscillation of pressure and temperature is observed. And the oscillation periods are calculated. By comparison with the flow time, it is concluded that the instability occurred in active cooling channels is probably one kind of density wave instability. And its period has no relationship with the cooling channel geometry, nor the pressure, but only depends on the flow time of kerosene in active cooling channels. When the mass flow rate, density and pressure drop couple with each other, the density wave instability will appear.

Keywords: scramjets, active cooling, instability, density wave

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499
2793 Numerical Analysis of Laminar Mixed Convection within a Complex Geometry

Authors: Y. Lasbet, A. L. Boukhalkhal, K. Loubar

Abstract:

The study of mixed convection is, usually, focused on the straight channels in which the onset of the mixed convection is well defined as function of the ratio between Grashof number and Reynolds number, Gr/Re. This is not the case for a complex channel wherein the mixed convection is not sufficiently examined in the literature. Our paper focuses on the study of the mixed convection in a complex geometry in which our main contribution reveals that the critical value of the ratio Gr/Re for the onset of the mixed convection increases highly in the type of geometry contrary to the straight channel. Furthermore, the accentuated secondary flow in this geometry prevents the thermal stratification in the flow and consequently the buoyancy driven becomes negligible. To perform these objectives, a numerical study in complex geometry for several values of the ratio Gr/Re with prescribed wall heat flux (H2), was realized by using the CFD code.

Keywords: Complex geometry, heat transfer, laminar flow, mixed convection, Nusselt number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710
2792 Mean Velocity Modeling of Open-Channel Flow with Submerged Rigid Vegetation

Authors: M. Morri, A. Soualmia, P. Belleudy

Abstract:

Vegetation affects the mean and turbulent flow structure. It may increase flood risks and sediment transport. Therefore, it is important to develop analytical approaches for the bed shear stress on vegetated bed, to predict resistance caused by vegetation. In the recent years, experimental and numerical models have both been developed to model the effects of submerged vegetation on open-channel flow. In this paper, different analytic models are compared and tested using the criteria of deviation, to explore their capacity for predicting the mean velocity and select the suitable one that will be applied in real case of rivers. The comparison between the measured data in vegetated flume and simulated mean velocities indicated, a good performance, in the case of rigid vegetation, whereas, Huthoff model shows the best agreement with a high coefficient of determination (R2=80%) and the smallest error in the prediction of the average velocities.

Keywords: Analytic Models, Comparison, Mean Velocity, Vegetation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2502
2791 Variation of Streamwise and Vertical Turbulence Intensity in a Smooth and Rough Bed Open Channel Flow

Authors: Md Abdullah Al Faruque, Ram Balachandar

Abstract:

An experimental study with four different types of bed conditions was carried out to understand the effect of roughness in open channel flow at two different Reynolds numbers. The bed conditions include a smooth surface and three different roughness conditions, which were generated using sand grains with a median diameter of 2.46 mm. The three rough conditions include a surface with distributed roughness, a surface with continuously distributed roughness and a sand bed with a permeable interface. A commercial two-component fibre-optic LDA system was used to conduct the velocity measurements. The variables of interest include the mean velocity, turbulence intensity, correlation between the streamwise and the wall normal turbulence, Reynolds shear stress and velocity triple products. Quadrant decomposition was used to extract the magnitude of the Reynolds shear stress of the turbulent bursting events. The effect of roughness was evident throughout the flow depth. The results show that distributed roughness has the greatest roughness effect followed by the sand bed and the continuous roughness. Compared to the smooth bed, the streamwise turbulence intensity reduces but the vertical turbulence intensity increases at a location very close to the bed due to the introduction of roughness. Although the same sand grain is used to create the three different rough bed conditions, the difference in the turbulence intensity is an indication that the specific geometry of the roughness has an influence on turbulence structure.

Keywords: Open channel flow, smooth bed, rough bed, Reynolds number, turbulence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2194