Search results for: field study
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14192

Search results for: field study

14072 Region Based Hidden Markov Random Field Model for Brain MR Image Segmentation

Authors: Terrence Chen, Thomas S. Huang

Abstract:

In this paper, we present the region based hidden Markov random field model (RBHMRF), which encodes the characteristics of different brain regions into a probabilistic framework for brain MR image segmentation. The recently proposed TV+L1 model is used for region extraction. By utilizing different spatial characteristics in different brain regions, the RMHMRF model performs beyond the current state-of-the-art method, the hidden Markov random field model (HMRF), which uses identical spatial information throughout the whole brain. Experiments on both real and synthetic 3D MR images show that the segmentation result of the proposed method has higher accuracy compared to existing algorithms.

Keywords: Finite Gaussian mixture model, Hidden Markov random field model, image segmentation, MRI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052
14071 Combined Effect of Moving and Open Boundary Conditions in the Simulation of Inland Inundation Due to Far Field Tsunami

Authors: M. Ashaque Meah, Md. Fazlul Karim, M. Shah Noor, Nazmun Nahar Papri, M. Khalid Hossen, M. Ismoen

Abstract:

Tsunami and inundation modelling due to far field tsunami propagation in a limited area is a very challenging numerical task because it involves many aspects such as the formation of various types of waves and the irregularities of coastal boundaries. To compute the effect of far field tsunami and extent of inland inundation due to far field tsunami along the coastal belts of west coast of Malaysia and Southern Thailand, a formulated boundary condition and a moving boundary condition are simultaneously used. In this study, a boundary fitted curvilinear grid system is used in order to incorporate the coastal and island boundaries accurately as the boundaries of the model domain are curvilinear in nature and the bending is high. The tsunami response of the event 26 December 2004 along the west open boundary of the model domain is computed to simulate the effect of far field tsunami. Based on the data of the tsunami source at the west open boundary of the model domain, a boundary condition is formulated and applied to simulate the tsunami response along the coastal and island boundaries. During the simulation process, a moving boundary condition is initiated instead of fixed vertical seaside wall. The extent of inland inundation and tsunami propagation pattern are computed. Some comparisons are carried out to test the validation of the simultaneous use of the two boundary conditions. All simulations show excellent agreement with the data of observation.

Keywords: Open boundary condition, moving boundary condition, boundary-fitted curvilinear grids, far field tsunami, Shallow Water Equations, tsunami source, Indonesian tsunami of 2004.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1999
14070 Simulation of Piezoelectric Laminated Smart Structure under Strong Electric Field

Authors: Shun-Qi Zhang, Shu-Yang Zhang, Min Chen

Abstract:

Applying strong electric field on piezoelectric actuators, on one hand very significant electroelastic material nonlinear effects will occur, on the other hand piezo plates and shells may undergo large displacements and rotations. In order to give a precise prediction of piezolaminated smart structures under large electric field, this paper develops a finite element (FE) model accounting for both electroelastic material nonlinearity and geometric nonlinearity with large rotations based on the first order shear deformation (FSOD) hypothesis. The proposed FE model is applied to analyze a piezolaminated semicircular shell structure.

Keywords: Smart structures, piezolamintes, material nonlinearity, geometric nonlinearity, strong electric field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 976
14069 Design and Implementation of Reed Solomon Encoder on FPGA

Authors: Amandeep Singh, Mandeep Kaur

Abstract:

Error correcting codes are used for detection and correction of errors in digital communication system. Error correcting coding is based on appending of redundancy to the information message according to a prescribed algorithm. Reed Solomon codes are part of channel coding and withstand the effect of noise, interference and fading. Galois field arithmetic is used for encoding and decoding reed Solomon codes. Galois field multipliers and linear feedback shift registers are used for encoding the information data block. The design of Reed Solomon encoder is complex because of use of LFSR and Galois field arithmetic. The purpose of this paper is to design and implement Reed Solomon (255, 239) encoder with optimized and lesser number of Galois Field multipliers. Symmetric generator polynomial is used to reduce the number of GF multipliers. To increase the capability toward error correction, convolution interleaving will be used with RS encoder. The Design will be implemented on Xilinx FPGA Spartan II.

Keywords: Galois Field, Generator polynomial, LFSR, Reed Solomon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4797
14068 Efficient Hardware Implementation of an Elliptic Curve Cryptographic Processor Over GF (2 163)

Authors: Massoud Masoumi, Hosseyn Mahdizadeh

Abstract:

A new and highly efficient architecture for elliptic curve scalar point multiplication which is optimized for a binary field recommended by NIST and is well-suited for elliptic curve cryptographic (ECC) applications is presented. To achieve the maximum architectural and timing improvements we have reorganized and reordered the critical path of the Lopez-Dahab scalar point multiplication architecture such that logic structures are implemented in parallel and operations in the critical path are diverted to noncritical paths. With G=41, the proposed design is capable of performing a field multiplication over the extension field with degree 163 in 11.92 s with the maximum achievable frequency of 251 MHz on Xilinx Virtex-4 (XC4VLX200) while 22% of the chip area is occupied, where G is the digit size of the underlying digit-serial finite field multiplier.

Keywords: Elliptic curve cryptography, FPGA implementation, scalar point multiplication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2504
14067 Image Modeling Using Gibbs-Markov Random Field and Support Vector Machines Algorithm

Authors: Refaat M Mohamed, Ayman El-Baz, Aly A. Farag

Abstract:

This paper introduces a novel approach to estimate the clique potentials of Gibbs Markov random field (GMRF) models using the Support Vector Machines (SVM) algorithm and the Mean Field (MF) theory. The proposed approach is based on modeling the potential function associated with each clique shape of the GMRF model as a Gaussian-shaped kernel. In turn, the energy function of the GMRF will be in the form of a weighted sum of Gaussian kernels. This formulation of the GMRF model urges the use of the SVM with the Mean Field theory applied for its learning for estimating the energy function. The approach has been tested on synthetic texture images and is shown to provide satisfactory results in retrieving the synthesizing parameters.

Keywords: Image Modeling, MRF, Parameters Estimation, SVM Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
14066 Multipurpose Agricultural Robot Platform: Conceptual Design of Control System Software for Autonomous Driving and Agricultural Operations Using Programmable Logic Controller

Authors: P. Abhishesh, B. S. Ryuh, Y. S. Oh, H. J. Moon, R. Akanksha

Abstract:

This paper discusses about the conceptual design and development of the control system software using Programmable logic controller (PLC) for autonomous driving and agricultural operations of Multipurpose Agricultural Robot Platform (MARP). Based on given initial conditions by field analysis and desired agricultural operations, the structural design development of MARP is done using modelling and analysis tool. PLC, being robust and easy to use, has been used to design the autonomous control system of robot platform for desired parameters. The robot is capable of performing autonomous driving and three automatic agricultural operations, viz. hilling, mulching, and sowing of seeds in the respective order. The input received from various sensors on the field is later transmitted to the controller via ZigBee network to make the changes in the control program to get desired field output. The research is conducted to provide assistance to farmers by reducing labor hours for agricultural activities by implementing automation. This study will provide an alternative to the existing systems with machineries attached behind tractors and rigorous manual operations on agricultural field at effective cost.

Keywords: Agricultural operations, autonomous driving, MARP, PLC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126
14065 Investigation on the Effectiveness of Zinc Sulphate and Biofertilizer on Mustard Plant

Authors: Khin S. Aye

Abstract:

The present work was conducted to find out the effect of biofertilizer formulated with four species of bacteria (two species of Azotobacter and two species of Lysobacter) and zinc sulphate. Field experiments with mustard plant were conducted to study the effectiveness of soil application of zinc sulphate and biofertilizer at 0, 10, 20, 30, 40, 50 days after sowing. Plant height and condition of plant was found to be increased significantly using a mixture of biofertilizer and zinc sulphate than other treatments after 40 days sowing. Three treatments were also used in this field experiment such as bacteria only, zinc sulphate only and mixture of biofertilizer and zinc sulphate. The treatment using a mixture of zinc sulphate and biofertilizer had the best yield (4688.008 kg/ha) within 50 days of sowing and performed better than other treatments. Field experiment using zinc sulphate only was second best yield (3380.75Kg/ha) and biofertilizer only treatment gave (2639.04kg/ha).

Keywords: biofertilizer, zinc sulphate, mustard plant, bacteria

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277
14064 A Comparison Study of a Symmetry Solution of Magneto-Elastico-Viscous Fluid along a Semi- Infinite Plate with Homotopy Perturbation Method and4th Order Runge–Kutta Method

Authors: Mohamed M. Mousa, Aidarkhan Kaltayev

Abstract:

The equations governing the flow of an electrically conducting, incompressible viscous fluid over an infinite flat plate in the presence of a magnetic field are investigated using the homotopy perturbation method (HPM) with Padé approximants (PA) and 4th order Runge–Kutta method (4RKM). Approximate analytical and numerical solutions for the velocity field and heat transfer are obtained and compared with each other, showing excellent agreement. The effects of the magnetic parameter and Prandtl number on velocity field, shear stress, temperature and heat transfer are discussed as well.

Keywords: Electrically conducting elastico-viscous fluid, symmetry solution, Homotopy perturbation method, Padé approximation, 4th order Runge–Kutta, Maple

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421
14063 Collective Oscillations in a Magnetized Plasma Subjected to a Radiation Field

Authors: Daniel Santos, Bruno Ribeiro, Marco Amato, Antonio Fonseca

Abstract:

In this paper we discuss the behaviour of the longitudinal modes of a magnetized non collisional plasma subjected to an external electromagnetic field. We apply a semiclassical formalism, with the electrons being studied in a quantum mechanical viewpoint whereas the electromagnetic field in the classical context. We calculate the dielectric function in order to obtains the modes and found that, unlike the Bernstein modes, the presence of radiation induces oscillations around the cyclotron harmonics, which are smoothed as the energy stored in the radiation field becomes small compared to the thermal energy of the electrons. We analyze the influence of the number of photon involved in the electronic transitions between the Landau levels and how the parameters such as the external fields strength, plasma density and temperature affect the dispersion relation

Keywords: Collective oscillations, External fields, Dispersion relation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1309
14062 Community Innovation in Sustainable Development: A Cross Case Study

Authors: Tingan Tang, Kimmo Karhu, Matti Hamalainen

Abstract:

Although in sustainable development field, innovative solutions have been sought worldwide by environmental groups, academia, governments and companies for many years, recently, citizens and communities have emerged as a new group and taken more and more active role in this field. Many scholars call for more research on the role of community and community innovation in sustainable development. This paper is to respond to the calls. In this paper, we first summarize a comprehensive set of innovation principles. Then, we do a qualitative cross case study by comparing three community innovation cases in three different areas of sustainable development according to the innovation principles. Finally, we summarize the case comparison and discuss the implications to sustainable development. A unified role model and innovation distribution map of community innovation are developed to better understand community innovation in sustainable development..

Keywords: Community innovation, grassroots innovation, sustainable development, sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
14061 Effects of Mobile Phone Generated High Frequency Electromagnetic Field on the Viability and Biofilm Formation of Staphylococcus aureus

Authors: Zaini Mohd-Zain, Mohd-Saufee A.F. Mohd-Ismail, Norlida Buniyamin

Abstract:

Staphylococcus aureus, one of the microflora in a human external auditory canal (EAC) is frequently exposed to highfrequency electromagnetic field (HF-EMF) generated by mobile phones. It is normally non-pathogenic but in certain circumstances, it can cause infections. This study investigates the changes in the physiology of S. aureus when exposed to HF-EMF of a mobile phone. Exponentially grown S. aureus were exposed to two conditions of EMF irradiation (standby-mode and on-call mode) at four durations; 15, 30, 45 and 60 min. Changes in the viability and biofilm production of the S. aureus were compared between the two conditions of exposure. EMF from the standby-mode has enhanced the growth of S. aureus but during on-call, the growth was suppressed. No significant difference in the amount of biofilm produced in both modes of exposure was observed. Thus, HF-EMF of mobile phone affects the viability of S. aureus but not its ability to produce biofilm.

Keywords: Electromagnetic field, mobile phone, biofilm, Staphylococcus aureus

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1949
14060 Magnetohydrodynamic Free Convection in a Square Cavity Heated from Below and Cooled from Other Walls

Authors: S. Jani, M. Mahmoodi, M. Amini

Abstract:

Magnetohydrodynamic free convection fluid flow and heat transfer in a square cavity filled with an electric conductive fluid with Prandtl number of 0.7 has been investigated numerically. The horizontal bottom wall of the cavity was kept at Th while the side and the top walls of the cavity were maintained at a constant temperature Tc with Th>Tc. The governing equations written in terms of the primitive variables were solved numerically using the finite volume method while the SIMPLER algorithm was used to couple the velocity and pressure fields. Using the developed code, a parametric study was performed, and the effects of the Rayleigh number and the Hartman number on the fluid flow and heat transfer inside the cavity were investigated. The obtained results showed that temperature distribution and flow pattern inside the cavity depended on both strength of the magnetic field and Rayleigh number. For all cases two counter rotating eddies were formed inside the cavity. The magnetic field decreased the intensity of free convection and flow velocity. Also it was found that for higher Rayleigh numbers a relatively stronger magnetic field was needed to decrease the heat transfer through free convection.

Keywords: Free Convection, Magnetic Field, Square Cavity, Numerical Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2253
14059 High-Intensity Nanosecond Pulsed Electric Field effects on Early Physiological Development in Arabidopsis thaliana

Authors: Wisuwat Songnuan, Phumin Kirawanich

Abstract:

The influences of pulsed electric fields on early physiological development in Arabidopsis thaliana were studied. Inside a 4-mm electroporation cuvette, pre-germination seeds were subjected to high-intensity, nanosecond electrical pulses generated using laboratory-assembled pulsed electric field system. The field strength was varied from 5 to 20 kV.cm-1 and the pulse width and the pulse number were maintained at 10 ns and 100, respectively, corresponding to the specific treatment energy from 300 J.kg-1 to 4.5 kJ.kg-1. Statistical analyses on the average leaf area 5 and 15 days following pulsed electric field treatment showed that the effects appear significant the second week after treatments with a maximum increase of 80% compared to the control (P < 0.01).

Keywords: Arabidopsis thaliana, full-wave analysis, leaf area, high-intensity nanosecond pulsed electric fields

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2143
14058 Numerical Investigation of Baffle Effect on the Flow in a Rectangular Primary Sedimentation Tank

Authors: M. Shahrokhi, F. Rostami, M.A. Md Said, S. Syafalni

Abstract:

It is essential to have a uniform and calm flow field for a settling tank to have high performance. In general, the recirculation zones always occurred in sedimentation tanks. The presence of these regions may have different effects. The nonuniformity of the velocity field, the short-circuiting at the surface and the motion of the jet at the bed of the tank that occurs because of the recirculation in the sedimentation layer, are affected by the geometry of the tank. There are some ways to decrease the size of these dead zones, which would increase the performance. One of the ways is to use a suitable baffle configuration. In this study, the presence of baffle with different position has been investigated by a finite volume method, with VOF (Volume of Fluid) model. Besides, the k-ε turbulence model is used in the numerical calculations. The results indicate that the best position of the baffle is obtained when the volume of the recirculation region is minimized or is divided to smaller part and the flow field trend to be uniform in the settling zone.

Keywords: Sedimentation tanks, Baffle, Numerical Modeling, VOF, Circulation Zone

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2676
14057 A Survey on Hyperbolic Cooling Towers

Authors: E. Asadzadeh, M. Alam

Abstract:

This study offers a comprehensive review of the research papers published in the field of cooling towers and gives an insight into the latest developments of the natural draught cooling towers. Different modeling, analysis and design techniques are summarized and the challenges are discussed. The 118 references included in this paper are mostly concentrated on the review of the published papers after 2005. The present paper represents a complete collection of the studies done for cooling towers and would give an updated material for the researchers and design engineers in the field of hyperbolic cooling towers.

Keywords: Hyperbolic cooling towers, earthquakes, wind, nonlinear behavior, buckling, collapse, interference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3923
14056 Spectral Investigation for Boundary Layer Flow over a Permeable Wall in the Presence of Transverse Magnetic Field

Authors: Saeed Sarabadan, Mehran Nikarya, Kouroah Parand

Abstract:

The magnetohydrodynamic (MHD) Falkner-Skan equations appear in study of laminar boundary layers flow over a wedge in presence of a transverse magnetic field. The partial differential equations of boundary layer problems in presence of a transverse magnetic field are reduced to MHD Falkner-Skan equation by similarity solution methods. This is a nonlinear ordinary differential equation. In this paper, we solve this equation via spectral collocation method based on Bessel functions of the first kind. In this approach, we reduce the solution of the nonlinear MHD Falkner-Skan equation to a solution of a nonlinear algebraic equations system. Then, the resulting system is solved by Newton method. We discuss obtained solution by studying the behavior of boundary layer flow in terms of skin friction, velocity, various amounts of magnetic field and angle of wedge. Finally, the results are compared with other methods mentioned in literature. We can conclude that the presented method has better accuracy than others.

Keywords: MHD Falkner-Skan, nonlinear ODE, spectral collocation method, Bessel functions, skin friction, velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1124
14055 Simulating Pathogen Transport with in a Naturally Ventilated Hospital Ward

Authors: C. A. Gilkeson, C. J. Noakes, P. A. Sleigh, M. A. I. Khan, M. A. Camargo-Valero

Abstract:

Understanding how airborne pathogens are transported through hospital wards is essential for determining the infection risk to patients and healthcare workers. This study utilizes Computational Fluid Dynamics (CFD) simulations to explore possible pathogen transport within a six-bed partitioned Nightingalestyle hospital ward. Grid independence of a ward model was addressed using the Grid Convergence Index (GCI) from solutions obtained using three fullystructured grids. Pathogens were simulated using source terms in conjunction with a scalar transport equation and a RANS turbulence model. Errors were found to be less than 4% in the calculation of air velocities but an average of 13% was seen in the scalar field. A parametric study of variations in the pathogen release point illustrated that its distribution is strongly influenced by the local velocity field and the degree of air mixing present.

Keywords: Natural, Ventilation, Pathogen, Transport

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435
14054 Newtonian Mechanics Descriptions for General Relativity Experimental Tests, Dark Matter and Dark Energy

Authors: Jing-Gang Xie

Abstract:

As the continuation to the previous studies of gravitational frequency shift, gravitational time dilation, gravitational light bending, gravitational waves, dark matter, and dark energy are explained in the context of Newtonian mechanics. The photon is treated as the particle with mass of hν/C2 under the gravitational field of much larger mass of M. Hence the quantum mechanics theory could be applied to gravitational field on cosmology scale. The obtained results are the same as those obtained by general relativity considering weak gravitational field approximation; however, the results are different when the gravitational field is substantially strong.

Keywords: Gravitational time dilation, gravitational light bending, gravitational waves, dark matter, dark energy, General Relativity, gravitational frequency shift.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 994
14053 Effect of Changing Iron Content and Excitation Frequency on Magnetic Particle Imaging Signal: A Comparative Study of Synomag® Nanoparticles

Authors: Kalthoum Riahi, Max T. Rietberg, Javier Perez y Perez, Corné Dijkstra, Bennie ten Haken, Lejla Alic

Abstract:

Magnetic nanoparticles (MNPs) are widely used to facilitate magnetic particle imaging (MPI) which has the potential to become the leading diagnostic instrument for biomedical imaging. This comparative study assesses the effects of changing iron content and excitation frequency on point-spread function (PSF) representing the effect of magnetization reversal. PSF is quantified by features of interest for MPI: i.e., drive field amplitude and full-width-at-half-maximum (FWHM). A superparamagnetic quantifier (SPaQ) is used to assess differential magnetic susceptibility of two commercially available MNPs: Synomag®-D50 and Synomag®-D70. For both MNPs, the signal output depends on increase in drive field frequency and amount of iron-oxide, which might be hampering the sensitivity of MPI systems that perform on higher frequencies. Nevertheless, there is a clear potential of Synomag®-D for a stable MPI resolution, especially in case of 70 nm version, that is independent of either drive field frequency or amount of iron-oxide.

Keywords: Magnetic nanoparticles, MNPs, Differential magnetic susceptibility, DMS, Magnetic particle imaging, MPI, magnetic relaxation, Synomag®-D.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 615
14052 Dispersion of a Solute in Peristaltic Motion of a Couple Stress Fluid in the Presence of Magnetic Field

Authors: Habtu Alemayehu, G. Radhakrishnamacharya

Abstract:

An analytical solution for dispersion of a solute in the peristaltic motion of a couple stress fluid in the presence of magnetic field with both homogeneous and heterogeneous chemical reactions is presented. The average effective dispersion coefficient has been found using Taylor-s limiting condition and long wavelength approximation. The effects of various relevant parameters on the average effective coefficient of dispersion have been studied. The average effective dispersion coefficient tends to decrease with magnetic field parameter, homogeneous chemical reaction rate parameter and amplitude ratio but tends to increase with heterogeneous chemical reaction rate parameter.

Keywords: Dispersion, Peristalsis, Couple stress fluid, Chemicalreaction, Magnetic field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
14051 Magnetohydrodynamic Mixed Convective Flow in a Cavity

Authors: R.YadollahiFarsani, B. Ghasemi

Abstract:

A magnetohydrodynamic mixed convective flow in a cavity was studied in this paper. The lower surface of cavity was heated from below whereas other walls of the cavity were thermally isolated. The governing two-dimensional flow equations have been solved by using finite volume code. The effects of magnetic field were studied on flow and temperature field and heat transfer performance at a wide range of parameters, Such as Hartmann (0≤Ha≤100) and Reynolds (1≤Re≤100) numbers. The results showed that as Hartman number increases the Nusselt number, representing heat transfer from the cavity decreases.

Keywords: Cavity, Magnetic Field, Mixed Convection, Magnetohydrodynamic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
14050 Near Field Focusing Behaviour of Airborne Ultrasonic Phased Arrays Influenced by Airflows

Authors: D. Sun, T. F. Lu, A. Zander, M. Trinkle

Abstract:

This paper investigates the potential use of airborne ultrasonic phased arrays for imaging in outdoor environments as a means of overcoming the limitations experienced by kinect sensors, which may fail to work in the outdoor environments due to the oversaturation of the infrared photo diodes. Ultrasonic phased arrays have been well studied for static media, yet there appears to be no comparable examination in the literature of the impact of a flowing medium on the focusing behaviour of near field focused ultrasonic arrays. This paper presents a method for predicting the sound pressure fields produced by a single ultrasound element or an ultrasonic phased array influenced by airflows. The approach can be used to determine the actual focal point location of an array exposed in a known flow field. From the presented simulation results based upon this model, it can be concluded that uniform flows in the direction orthogonal to the acoustic propagation have a noticeable influence on the sound pressure field, which is reflected in the twisting of the steering angle of the array. Uniform flows in the same direction as the acoustic propagation have negligible influence on the array. For an array impacted by a turbulent flow, determining the location of the focused sound field becomes difficult due to the irregularity and continuously changing direction and the speed of the turbulent flow. In some circumstances, ultrasonic phased arrays impacted by turbulent flows may not be capable of producing a focused sound field.

Keywords: Airborne, airflow, focused sound field, ultrasonic phased array.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
14049 Electromagnetic Field Modeling in Human Tissue

Authors: Iliana Marinova, Valentin Mateev

Abstract:

For investigations of electromagnetic field distributions in biological structures by Finite Element Method (FEM), a method for automatic 3D model building of human anatomical objects is developed. Models are made by meshed structures and specific electromagnetic material properties for each tissue type. Mesh is built according to specific FEM criteria for achieving good solution accuracy. Several FEM models of anatomical objects are built. Formulation using magnetic vector potential and scalar electric potential (A-V, A) is used for modeling of electromagnetic fields in human tissue objects. The developed models are suitable for investigations of electromagnetic field distributions in human tissues exposed in external fields during magnetic stimulation, defibrillation, impedance tomography etc.

Keywords: electromagnetic field, finite element method, humantissue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5244
14048 Effect of Variable viscosity on Convective Heat Transfer along an Inclined Plate Embedded in Porous Medium with an Applied Magnetic Field

Authors: N.S. Tomer, Phool Singh, Manoj Kumar

Abstract:

The flow and heat transfer characteristics for natural convection along an inclined plate in a saturated porous medium with an applied magnetic field have been studied. The fluid viscosity has been assumed to be an inverse function of temperature. Assuming temperature vary as a power function of distance. The transformed ordinary differential equations have solved by numerical integration using Runge-Kutta method. The velocity and temperature profile components on the plate are computed and discussed in detail for various values of the variable viscosity parameter, inclination angle, magnetic field parameter, and real constant (λ). The results have also been interpreted with the aid of tables and graphs. The numerical values of Nusselt number have been calculated for the mentioned parameters.

Keywords: Heat Transfer, Magnetic Field, Porosity, Viscosity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706
14047 A Statistical Model for the Dynamics of Single Cathode Spot in Vacuum Cylindrical Cathode

Authors: Po-Wen Chen, Jin-Yu Wu, Md. Manirul Ali, Yang Peng, Chen-Te Chang, Der-Jun Jan

Abstract:

Dynamics of cathode spot has become a major part of vacuum arc discharge with its high academic interest and wide application potential. In this article, using a three-dimensional statistical model, we simulate the distribution of the ignition probability of a new cathode spot occurring in different magnetic pressure on old cathode spot surface and at different arcing time. This model for the ignition probability of a new cathode spot was proposed in two typical situations, one by the pure isotropic random walk in the absence of an external magnetic field, other by the retrograde motion in external magnetic field, in parallel with the cathode surface. We mainly focus on developed relationship between the ignition probability density distribution of a new cathode spot and the external magnetic field.

Keywords: Cathode spot, vacuum arc discharge, transverse magnetic field, random walk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1348
14046 Investigations of Flow Field with Different Turbulence Models on NREL Phase VI Blade

Authors: T. Y. Liu, C. H Lin., Y. M Ferng

Abstract:

Wind energy is one of the clean renewable energy. However, the low frequency (20-200HZ) noise generated from the wind turbine blades, which bothers the residents, becomes the major problem to be developed. It is useful for predicting the aerodynamic noise by flow field and pressure distribution analysis on the wind turbine blades. Therefore, the main objective of this study is to use different turbulence models to analyze the flow field and pressure distributions of the wing blades.

Three-dimensional Computation Fluid Dynamics (CFD) simulation of the flow field was used to calculate the flow phenomena for the National Renewable Energy Laboratory (NREL) Phase VI horizontal axis wind turbine rotor. Two different flow cases with different wind speeds were investigated: 7m/s with 72rpm and 15m/s with 72rpm.

Four kinds of RANS-based turbulence models, Standard k-ε, Realizable k-ε, SST k-ω, and v2f, were used to predict and analyze the results in the present work. The results show that the predictions on pressure distributions with SST k-ω and v2f turbulence models have good agreements with experimental data.

Keywords: Horizontal Axis Wind Turbine, turbulence model, noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078
14045 Ambipolar Effect Free Double Gate PN Diode Based Tunnel FET

Authors: Hardik Vaghela, Mamta Khosla, Balwindar Raj

Abstract:

In this paper, we present and investigate a double gate PN diode based tunnel field effect transistor (DGPNTFET). The importance of proposed structure is that the formation of different drain doping is not required and ambipolar effect in OFF state is completely removed for this structure. Validation of this structure to behave like a Tunnel Field Effect Transistor (TFET) is carried out through energy band diagrams and transfer characteristics. Simulated result shows point subthreshold slope (SS) of 19.14 mV/decade and ON to OFF current ratio (ION / IOFF) of 2.66 × 1014 (ION at VGS=1.5V, VDS=1V and IOFF at VGS=0V, VDS=1V) for gate length of 20nm and HfO2 as gate oxide at room temperature. Which indicate that the DGPNTFET is a promising candidate for nano-scale, ambipolar free switch.

Keywords: Ambipolar effect, double gate PN diode based tunnel field effect transistor, high-κ dielectric material, subthreshold slope, tunnel field effect transistor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 957
14044 Personnel Marketing as Perceived by HR Managers in Czech Republic: Results of a Qualitative Research Study

Authors: Lukáš Mazánek, Zdeňka Konečná

Abstract:

The article is devoted to the area of personnel marketing. A comprehensive review of scientific literature and articles published predominantly in personnel-oriented journals was carried out, followed by a qualitative exploratory research with the aim to explore and explain the perception of personnel marketing. Due to the lack of research in this field in Czech Republic, we have focused on Czech HR managers, more specifically, on how they understand the tasks of personnel marketing, which tools they use and whether the companies they work for try to be a preferred employer. The answers from our respondents were used to help us determine what is important within this field. All of the respondents strive to be a preferred employer and try to achieve it by using an extensive range of marketing tools. The most frequently used tools are advertising, job fairs presentations, employee care and employer brand promotion.

Keywords: Czech Republic, personnel marketing, preferred employer, qualitative research study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1164
14043 Viscous Potential Flow Analysis of Electrohydrodynamic Capillary Instability through Porous Media

Authors: Mukesh Kumar Awasth, Mohammad Tamsir

Abstract:

The effect of porous medium on the capillary instability of a cylindrical interface in the presence of axial electric field has been investigated using viscous potential flow theory. In viscous potential flow, the viscous term in Navier-Stokes equation vanishes as vorticity is zero but viscosity is not zero. Viscosity enters through normal stress balance in the viscous potential flow theory and tangential stresses are not considered. A dispersion relation that accounts for the growth of axisymmetric waves is derived and stability is discussed theoretically as well as numerically. Stability criterion is given by critical value of applied electric field as well as critical wave number. Various graphs have been drawn to show the effect of various physical parameters such as electric field, viscosity ratio, permittivity ratio on the stability of the system. It has been observed that the axial electric field and porous medium both have stabilizing effect on the stability of the system.

Keywords: Capillary instability, Viscous potential flow, Porous media, Axial electric field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031