Search results for: extended Arrhenius equation.
1538 Comparative Kinetic Study on Alkylation of p-cresol with Tert-butyl Alcohol using Different SO3-H Functionalized Ionic Liquid Catalysts
Authors: Pandian Elavarasan, Kishore Kondamudi, Sreedevi Upadhyayula
Abstract:
Ionic liquids are well known as green solvents, reaction media and catalysis. Here, three different sulfonic acid functional ionic liquids prepared in the laboratory are used as catalysts in alkylation of p-cresol with tert-butyl alcohol. The kinetics on each of the catalysts was compared and a kinetic model was developed based on the product distribution over these catalysts. The kinetic parameters were estimated using Marquadt's algorithm to minimize the error function. The Arrhenius plots show a curvature which is best interpreted by the extended Arrhenius equation.
Keywords: Alkylation, p-cresol, tert-butyl alcohol, kinetics, activation parameter, extended Arrhenius equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24471537 Thermodynamic Equilibrium of Nitrogen Species Discharge: Comparison with Global Model
Authors: Saktioto, F.D Ismail, P.P. Yupapin, J. Ali
Abstract:
The equilibrium process of plasma nitrogen species by chemical kinetic reactions along various pressures is successfully investigated. The equilibrium process is required in industrial application to obtain the stable condition when heating up the material for having homogenous reaction. Nitrogen species densities is modeled by a continuity equation and extended Arrhenius form. These equations are used to integrate the change of density over the time. The integration is to acquire density and the reaction rate of each reaction where temperature and time dependence are imposed. A comparison is made with global model within pressure range of 1- 100mTorr and the temperature of electron is set to be higher than other nitrogen species. The results shows that the chemical kinetic model only agrees for high pressure because of no power imposed; while the global model considers the external power along the pressure range then the electron and nitrogen species give highly quantity densities by factor of 3 to 5.Keywords: chemical kinetic model, Arrhenius equation, nitrogen plasma, low pressure discharge
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17351536 Useful Lifetime Prediction of Rail Pads for High Speed Trains
Authors: Chang Su Woo, Hyun Sung Park
Abstract:
Useful lifetime evaluation of railpads were very important in design procedure to assure the safety and reliability. It is, therefore, necessary to establish a suitable criterion for the replacement period of rail pads. In this study, we performed properties and accelerated heat aging tests of rail pads considering degradation factors and all environmental conditions including operation, and then derived a lifetime prediction equation according to changes in hardness, thickness, and static spring constants in the Arrhenius plot to establish how to estimate the aging of rail pads. With the useful lifetime prediction equation, the lifetime of e-clip pads was 2.5 years when the change in hardness was 10% at 25°C; and that of f-clip pads was 1.7 years. When the change in thickness was 10%, the lifetime of e-clip pads and f-clip pads is 2.6 years respectively. The results obtained in this study to estimate the useful lifetime of rail pads for high speed trains can be used for determining the maintenance and replacement schedule for rail pads.
Keywords: Rail pads, accelerated test, Arrhenius plot, useful lifetime prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28051535 Solution of The KdV Equation with Asymptotic Degeneracy
Authors: Tapas Kumar Sinha, Joseph Mathew
Abstract:
Recently T. C. Au-Yeung, C.Au, and P. C. W. Fung [2] have given the solution of the KdV equation [1] to the boundary condition , where b is a constant. We have further extended the method of [2] to find the solution of the KdV equation with asymptotic degeneracy. Via simulations we find both bright and dark Solitons (i.e. Solitons with opposite phases).
Keywords: KdV equation, Asymptotic Degeneracy, Solitons, Inverse Scattering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16211534 A Comparison of Some Splines-Based Methods for the One-dimensional Heat Equation
Authors: Joan Goh, Ahmad Abd. Majid, Ahmad Izani Md. Ismail
Abstract:
In this paper, collocation based cubic B-spline and extended cubic uniform B-spline method are considered for solving one-dimensional heat equation with a nonlocal initial condition. Finite difference and θ-weighted scheme is used for time and space discretization respectively. The stability of the method is analyzed by the Von Neumann method. Accuracy of the methods is illustrated with an example. The numerical results are obtained and compared with the analytical solutions.Keywords: Heat equation, Collocation based, Cubic Bspline, Extended cubic uniform B-spline.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19051533 A New Version of Unscented Kalman Filter
Authors: S. A. Banani, M. A. Masnadi-Shirazi
Abstract:
This paper presents a new algorithm which yields a nonlinear state estimator called iterated unscented Kalman filter. This state estimator makes use of both statistical and analytical linearization techniques in different parts of the filtering process. It outperforms the other three nonlinear state estimators: unscented Kalman filter (UKF), extended Kalman filter (EKF) and iterated extended Kalman filter (IEKF) when there is severe nonlinearity in system equation and less nonlinearity in measurement equation. The algorithm performance has been verified by illustrating some simulation results.
Keywords: Extended Kalman Filter, Iterated EKF, Nonlinearstate estimator, Unscented Kalman Filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28891532 Development of Extended Trapezoidal Method for Numerical Solution of Volterra Integro-Differential Equations
Authors: Fuziyah Ishak, Siti Norazura Ahmad
Abstract:
Volterra integro-differential equations appear in many models for real life phenomena. Since analytical solutions for this type of differential equations are hard and at times impossible to attain, engineers and scientists resort to numerical solutions that can be made as accurately as possible. Conventionally, numerical methods for ordinary differential equations are adapted to solve Volterra integro-differential equations. In this paper, numerical solution for solving Volterra integro-differential equation using extended trapezoidal method is described. Formulae for the integral and differential parts of the equation are presented. Numerical results show that the extended method is suitable for solving first order Volterra integro-differential equations.
Keywords: Accuracy, extended trapezoidal method, numerical solution, Volterra integro-differential equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16571531 Note to the Global GMRES for Solving the Matrix Equation AXB = F
Authors: Fatemeh Panjeh Ali Beik
Abstract:
In the present work, we propose a new projection method for solving the matrix equation AXB = F. For implementing our new method, generalized forms of block Krylov subspace and global Arnoldi process are presented. The new method can be considered as an extended form of the well-known global generalized minimum residual (Gl-GMRES) method for solving multiple linear systems and it will be called as the extended Gl-GMRES (EGl- GMRES). Some new theoretical results have been established for proposed method by employing Schur complement. Finally, some numerical results are given to illustrate the efficiency of our new method.
Keywords: Matrix equation, Iterative method, linear systems, block Krylov subspace method, global generalized minimum residual (Gl-GMRES).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18411530 Extend Three-wave Method for the (3+1)-Dimensional Soliton Equation
Authors: Somayeh Arbabi Mohammad-Abadi, Maliheh Najafi
Abstract:
In this paper, we study (3+1)-dimensional Soliton equation. We employ the Hirota-s bilinear method to obtain the bilinear form of (3+1)-dimensional Soliton equation. Then by the idea of extended three-wave method, some exact soliton solutions including breather type solutions are presented.
Keywords: Three-wave method, (3+1)-dimensional Soliton equation, Hirota's bilinear form.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15601529 Some Complexiton Type Solutions of the (3+1)-Dimensional Jimbo-Miwa Equation
Authors: Mohammad Taghi Darvishi, Mohammad Najafi
Abstract:
By means of the extended homoclinic test approach (shortly EHTA) with the aid of a symbolic computation system such as Maple, some complexiton type solutions for the (3+1)-dimensional Jimbo-Miwa equation are presented.
Keywords: Jimbo-Miwa equation, painleve analysis, Hirota's bilinear form, computerized symbolic computation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18941528 On the Modeling and State Estimation for Dynamic Power System
Authors: A. Thabet, M. Boutayeb, M. N. Abdelkrim
Abstract:
This paper investigates a method for the state estimation of nonlinear systems described by a class of differential-algebraic equation (DAE) models using the extended Kalman filter. The method involves the use of a transformation from a DAE to ordinary differential equation (ODE). A relevant dynamic power system model using decoupled techniques will be proposed. The estimation technique consists of a state estimator based on the EKF technique as well as the local stability analysis. High performances are illustrated through a simulation study applied on IEEE 13 buses test system.
Keywords: Power system, Dynamic decoupled model, Extended Kalman Filter, Convergence analysis, Time computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27381527 Extended Arithmetic Precision in Meshfree Calculations
Authors: Edward J. Kansa, Pavel Holoborodko
Abstract:
Continuously differentiable radial basis functions (RBFs) are meshfree, converge faster as the dimensionality increases, and is theoretically spectrally convergent. When implemented on current single and double precision computers, such RBFs can suffer from ill-conditioning because the systems of equations needed to be solved to find the expansion coefficients are full. However, the Advanpix extended precision software package allows computer mathematics to resemble asymptotically ideal Platonic mathematics. Additionally, full systems with extended precision execute faster graphical processors units and field-programmable gate arrays because no branching is needed. Sparse equation systems are fast for iterative solvers in a very limited number of cases.
Keywords: Meshless spectrally convergent, partial differential equations, extended arithmetic precision, no branching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6321526 On the Integer Solutions of the Pell Equation x2 - dy2 = 2t
Authors: Ahmet Tekcan, Betül Gezer, Osman Bizim
Abstract:
Let k ≥ 1 and t ≥ 0 be two integers and let d = k2 + k be a positive non-square integer. In this paper, we consider the integer solutions of Pell equation x2 - dy2 = 2t. Further we derive a recurrence relation on the solutions of this equation.
Keywords: Pell equation, Diophantine equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23911525 The Proof of Two Conjectures Related to Pell-s Equation x2 −Dy2 = ± 4
Authors: Armend Sh. Shabani
Abstract:
Let D ≠ 1 be a positive non-square integer. In this paper are given the proofs for two conjectures related to Pell-s equation x2 -Dy2 = ± 4, proposed by A. Tekcan.Keywords: Pell's equation, solutions of Pell's equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12401524 A New Approach to Solve Blasius Equation using Parameter Identification of Nonlinear Functions based on the Bees Algorithm (BA)
Authors: E. Assareh, M.A. Behrang, M. Ghalambaz, A.R. Noghrehabadi, A. Ghanbarzadeh
Abstract:
In this paper, a new approach is introduced to solve Blasius equation using parameter identification of a nonlinear function which is used as approximation function. Bees Algorithm (BA) is applied in order to find the adjustable parameters of approximation function regarding minimizing a fitness function including these parameters (i.e. adjustable parameters). These parameters are determined how the approximation function has to satisfy the boundary conditions. In order to demonstrate the presented method, the obtained results are compared with another numerical method. Present method can be easily extended to solve a wide range of problems.Keywords: Bees Algorithm (BA); Approximate Solutions; Blasius Differential Equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18021523 Extending Global Full Orthogonalization method for Solving the Matrix Equation AXB=F
Authors: Fatemeh Panjeh Ali Beik
Abstract:
In the present work, we propose a new method for solving the matrix equation AXB=F . The new method can be considered as a generalized form of the well-known global full orthogonalization method (Gl-FOM) for solving multiple linear systems. Hence, the method will be called extended Gl-FOM (EGl- FOM). For implementing EGl-FOM, generalized forms of block Krylov subspace and global Arnoldi process are presented. Finally, some numerical experiments are given to illustrate the efficiency of our new method.Keywords: Matrix equations, Iterative methods, Block Krylovsubspace methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19941522 An Analytical Method for Solving General Riccati Equation
Authors: Y. Pala, M. O. Ertas
Abstract:
In this paper, the general Riccati equation is analytically solved by a new transformation. By the method developed, looking at the transformed equation, whether or not an explicit solution can be obtained is readily determined. Since the present method does not require a proper solution for the general solution, it is especially suitable for equations whose proper solutions cannot be seen at first glance. Since the transformed second order linear equation obtained by the present transformation has the simplest form that it can have, it is immediately seen whether or not the original equation can be solved analytically. The present method is exemplified by several examples.
Keywords: Riccati Equation, ordinary differential equation, nonlinear differential equation, analytical solution, proper solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20251521 Order Reduction of Linear Dynamic Systems using Stability Equation Method and GA
Authors: G. Parmar, R. Prasad, S. Mukherjee
Abstract:
The authors present an algorithm for order reduction of linear dynamic systems using the combined advantages of stability equation method and the error minimization by Genetic algorithm. The denominator of the reduced order model is obtained by the stability equation method and the numerator terms of the lower order transfer function are determined by minimizing the integral square error between the transient responses of original and reduced order models using Genetic algorithm. The reduction procedure is simple and computer oriented. It is shown that the algorithm has several advantages, e.g. the reduced order models retain the steady-state value and stability of the original system. The proposed algorithm has also been extended for the order reduction of linear multivariable systems. Two numerical examples are solved to illustrate the superiority of the algorithm over some existing ones including one example of multivariable system.
Keywords: Genetic algorithm, Integral square error, Orderreduction, Stability equation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31911520 The Pell Equation x2 − Py2 = Q
Authors: Ahmet Tekcan, Arzu Özkoç, Canan Kocapınar, Hatice Alkan
Abstract:
Let p be a prime number such that p ≡ 1(mod 4), say p = 1+4k for a positive integer k. Let P = 2k + 1 and Q = k2. In this paper, we consider the integer solutions of the Pell equation x2-Py2 = Q over Z and also over finite fields Fp. Also we deduce some relations on the integer solutions (xn, yn) of it.Keywords: Pell equation, solutions of Pell equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21071519 A Hybrid Neural Network and Gravitational Search Algorithm (HNNGSA) Method to Solve well known Wessinger's Equation
Authors: M. Ghalambaz, A.R. Noghrehabadi, M.A. Behrang, E. Assareh, A. Ghanbarzadeh, N.Hedayat
Abstract:
This study presents a hybrid neural network and Gravitational Search Algorithm (HNGSA) method to solve well known Wessinger's equation. To aim this purpose, gravitational search algorithm (GSA) technique is applied to train a multi-layer perceptron neural network, which is used as approximation solution of the Wessinger's equation. A trial solution of the differential equation is written as sum of two parts. The first part satisfies the initial/ boundary conditions and does not contain any adjustable parameters and the second part which is constructed so as not to affect the initial/boundary conditions. The second part involves adjustable parameters (the weights and biases) for a multi-layer perceptron neural network. In order to demonstrate the presented method, the obtained results of the proposed method are compared with some known numerical methods. The given results show that presented method can introduce a closer form to the analytic solution than other numerical methods. Present method can be easily extended to solve a wide range of problems.
Keywords: Neural Networks, Gravitational Search Algorithm (GSR), Wessinger's Equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23991518 Extended Least Squares LS–SVM
Authors: József Valyon, Gábor Horváth
Abstract:
Among neural models the Support Vector Machine (SVM) solutions are attracting increasing attention, mostly because they eliminate certain crucial questions involved by neural network construction. The main drawback of standard SVM is its high computational complexity, therefore recently a new technique, the Least Squares SVM (LS–SVM) has been introduced. In this paper we present an extended view of the Least Squares Support Vector Regression (LS–SVR), which enables us to develop new formulations and algorithms to this regression technique. Based on manipulating the linear equation set -which embodies all information about the regression in the learning process- some new methods are introduced to simplify the formulations, speed up the calculations and/or provide better results.Keywords: Function estimation, Least–Squares Support VectorMachines, Regression, System Modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20091517 Prediction of Henry's Constant in Polymer Solutions using the Peng-Robinson Equation of State
Authors: Somayeh Tourani, Alireza Behvandi
Abstract:
The peng-Robinson (PR), a cubic equation of state (EoS), is extended to polymers by using a single set of energy (A1, A2, A3) and co-volume (b) parameters per polymer fitted to experimental volume data. Excellent results for the volumetric behavior of the 11 polymer up to 2000 bar pressure are obtained. The EoS is applied to the correlation and prediction of Henry constants in polymer solutions comprising three polymer and many nonpolar and polar solvents, including supercritical gases. The correlation achieved with two adjustable parameter is satisfactory compared with the experimental data. As a result, the present work provides a simple and useful model for the prediction of Henry's constant for polymer containing systems including those containing polar, nonpolar and supercritical fluids.
Keywords: Equation of state, Henry's constant, Peng-Robinson, polymer solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21431516 The Diophantine Equation y2 − 2yx − 3 = 0 and Corresponding Curves over Fp
Authors: Ahmet Tekcan, Arzu Özkoç, Hatice Alkan
Abstract:
In this work, we consider the number of integer solutions of Diophantine equation D : y2 - 2yx - 3 = 0 over Z and also over finite fields Fp for primes p ≥ 5. Later we determine the number of rational points on curves Ep : y2 = Pp(x) = yp 1 + yp 2 over Fp, where y1 and y2 are the roots of D. Also we give a formula for the sum of x- and y-coordinates of all rational points (x, y) on Ep over Fp.Keywords: Diophantine equation, Pell equation, quadratic form.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12671515 Solution of Nonlinear Second-Order Pantograph Equations via Differential Transformation Method
Authors: Nemat Abazari, Reza Abazari
Abstract:
In this work, we successfully extended one-dimensional differential transform method (DTM), by presenting and proving some theorems, to solving nonlinear high-order multi-pantograph equations. This technique provides a sequence of functions which converges to the exact solution of the problem. Some examples are given to demonstrate the validity and applicability of the present method and a comparison is made with existing results.
Keywords: Nonlinear multi-pantograph equation, delay differential equation, differential transformation method, proportional delay conditions, closed form solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25601514 Propagation of Viscous Waves and Activation Energy of Hydrocarbon Fluids
Authors: Ram N. Singh, Abraham K. George, Dawood N. Al-Namaani
Abstract:
The Euler-s equation of motion is extended to include the viscosity stress tensor leading to the formulation of Navier– Stokes type equation. The latter is linearized and applied to investigate the rotational motion or vorticity in a viscous fluid. Relations for the velocity of viscous waves and attenuation parameter are obtained in terms of viscosity (μ) and the density (¤ü) of the fluid. μ and ¤ü are measured experimentally as a function of temperature for two different samples of light and heavy crude oil. These data facilitated to determine the activation energy, velocity of viscous wave and the attenuation parameter. Shear wave velocity in heavy oil is found to be much larger than the light oil, whereas the attenuation parameter in heavy oil is quite low in comparison to light one. The activation energy of heavy oil is three times larger than light oil.Keywords: Activation Energy, Attenuation, Crude Oil, Navier- Stokes Equation, Viscosity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19871513 Study of Qualitative and Quantitative Metric for Pixel Factor Mapping and Extended Pixel Mapping Method
Authors: Indradip Banerjee, Souvik Bhattacharyya, Gautam Sanyal
Abstract:
In this paper, an approach is presented to investigate the performance of Pixel Factor Mapping (PFM) and Extended PMM (Pixel Mapping Method) through the qualitative and quantitative approach. These methods are tested against a number of well-known image similarity metrics and statistical distribution techniques. The PFM has been performed in spatial domain as well as frequency domain and the Extended PMM has also been performed in spatial domain through large set of images available in the internet.Keywords: Qualitative, quantitative, PFM, EXTENDED PMM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10631512 Exact Solutions of the Helmholtz equation via the Nikiforov-Uvarov Method
Authors: Said Laachir, Aziz Laaribi
Abstract:
The Helmholtz equation often arises in the study of physical problems involving partial differential equation. Many researchers have proposed numerous methods to find the analytic or approximate solutions for the proposed problems. In this work, the exact analytical solutions of the Helmholtz equation in spherical polar coordinates are presented using the Nikiforov-Uvarov (NU) method. It is found that the solution of the angular eigenfunction can be expressed by the associated-Legendre polynomial and radial eigenfunctions are obtained in terms of the Laguerre polynomials. The special case for k=0, which corresponds to the Laplace equation is also presented.
Keywords: Helmholtz equation, Nikiforov-Uvarov method, exact solutions, eigenfunctions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30041511 Study of Cahn-Hilliard Equation to Simulate Phase Separation
Authors: Nara Guimarães, Marcelo Aquino Martorano, Douglas Gouvêa
Abstract:
An investigation into Cahn-Hilliard equation was carried out through numerical simulation to identify a possible phase separation for one and two dimensional domains. It was observed that this equation can reproduce important mass fluxes necessary for phase separation within the miscibility gap and for coalescence of particles.
Keywords: Cahn-Hilliard equation, miscibility gap, phase separation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20541510 Estimation of the Moisture Diffusivity and Activation Energy in Thin Layer Drying of Ginger Slices
Authors: Ebru Kavak Akpinar, Seda Toraman
Abstract:
In the present work, the effective moisture diffusivity and activation energy were calculated using an infinite series solution of Fick-s diffusion equation. The results showed that increasing drying temperature accelerated the drying process. All drying experiments had only falling rate period. The average effective moisture diffusivity values varied from 2.807x10-10 to 6.977x10-10m2 s_1 over the temperature and velocity range. The temperature dependence of the effective moisture diffusivity for the thin layer drying of the ginger slices was satisfactorily described by an Arrhenius-type relationship with activation energy values of 19.313- 22.722 kJ.mol-1 within 40–70 °C and 0.8-3 ms-1 temperature range.Keywords: Ginger, Drying, Activation energy, Moisture diffusivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27111509 Transient Population Dynamics of Phase Singularities in 2D Beeler-Reuter Model
Authors: Hidetoshi Konno, Akio Suzuki
Abstract:
The paper presented a transient population dynamics of phase singularities in 2D Beeler-Reuter model. Two stochastic modelings are examined: (i) the Master equation approach with the transition rate (i.e., λ(n, t) = λ(t)n and μ(n, t) = μ(t)n) and (ii) the nonlinear Langevin equation approach with a multiplicative noise. The exact general solution of the Master equation with arbitrary time-dependent transition rate is given. Then, the exact solution of the mean field equation for the nonlinear Langevin equation is also given. It is demonstrated that transient population dynamics is successfully identified by the generalized Logistic equation with fractional higher order nonlinear term. It is also demonstrated the necessity of introducing time-dependent transition rate in the master equation approach to incorporate the effect of nonlinearity.
Keywords: Transient population dynamics, Phase singularity, Birth-death process, Non-stationary Master equation, nonlinear Langevin equation, generalized Logistic equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594