Search results for: energy minimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3006

Search results for: energy minimization

2586 Self-Organizing Maps in Evolutionary Approachmeant for Dimensioning Routes to the Demand

Authors: J.-C. Créput, A. Koukam, A. Hajjam

Abstract:

We present a non standard Euclidean vehicle routing problem adding a level of clustering, and we revisit the use of self-organizing maps as a tool which naturally handles such problems. We present how they can be used as a main operator into an evolutionary algorithm to address two conflicting objectives of route length and distance from customers to bus stops minimization and to deal with capacity constraints. We apply the approach to a real-life case of combined clustering and vehicle routing for the transportation of the 780 employees of an enterprise. Basing upon a geographic information system we discuss the influence of road infrastructures on the solutions generated.

Keywords: Evolutionary algorithm, self-organizing map, clustering and vehicle routing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1346
2585 Mechanical Properties of Pea Pods (Pisium sativum Var. Shamshiri)

Authors: M. Azadbakht, N. Tajari, R. Alimoradzade

Abstract:

Knowing pea pods mechanical resistance against dynamic forces are important for design of combine harvester. In pea combine harvesters, threshing is accomplished by two mechanical actions of impact and friction forces. In this research, the effects of initial moisture content and needed impact and friction energy on threshing of pea pods were studied. An impact device was built based on pendulum mechanism. The experiments were done at three initial moisture content levels of 12.1, 23.5 and 39.5 (%w.b.) for both impact and friction methods. Three energy levels of 0.088, 0.126 and 0.202 J were used for impact method and for friction method three energy levels of 0.784, 0.930 and 1.351 J. The threshing percentage was measured in each method. By using a frictional device, kinetic friction coefficients at above moisture contents were measured 0.257, 0.303 and 0.336, respectively. The results of variance analysis of the two methods showed that moisture content and energy have significant effects on the threshing percentage.

Keywords: Pea pod, Energy, Friction, Impact, Initial moisture content, Threshing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2075
2584 Reduction of Energy Consumption of Distillation Process by Recovering the Heat from Exit Streams

Authors: Apichit Svang-Ariyaskul, Thanapat Chaireongsirikul, Pawit Tangviroon

Abstract:

Distillation consumes enormous quantity of energy. This work proposed a process to recover the energy from exit streams during the distillation process of three consecutive columns. There are several novel techniques to recover the heat with the distillation system; however, a complex control system is required. This work proposed a simpler technique by exchanging the heat between streams without interrupting the internal distillation process that might cause a serious control problem. The proposed process is executed by using heat exchanger network with pinch analysis to maximize the process heat recovery. The test model is the distillation of butane, pentane, hexane, and heptanes, which is a common mixture in the petroleum refinery. This proposed process saved the energy consumption for hot and cold utilities of 29 and 27%, which is considered significant. Therefore, the recovery of heat from exit streams from distillation process is proved to be effective for energy saving.

Keywords: Distillation, Heat Exchanger, Network Pinch Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3182
2583 Modeling Moisture and Density Behaviors of Wood in Biomass Torrefaction Environments

Authors: Gun Yung Go, Man Young Kim

Abstract:

Worldwide interests for the renewable energy are increasing due to environmental and climate changes from traditional petroleum related energy sources. To account for these social needs, ligneous biomass energy is considered as one of the environmentally friend energy solutions. The wood torrefaction process is a feasible method to improve the properties of the biomass fuel and makes the wood have low moisture, lower smoke emission and increased heating value. In this work, therefore, the moisture evaporation model which largely affects energy efficiency of ligneous biomass through moisture contents and heating value relative to its weight is studied with numerical modeling approach by analyzing the effects of torrefaction furnace temperature. The results show that the temperature and moisture fraction of wood decrease by increasing the furnace temperature. When the torrefaction temperature is lower than 423K, there were little changes of the moisture fraction in the wood. Also, it can be found that charcoal is produced more slowly when the torrefaction temperature is lower than 573K.

Keywords: Modeling, Torrefaction, Biomass, Moisture Fraction, Charcoal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
2582 Preliminary Assessment of Feasibility of a Wind Energy Conversion System for a Martian Probe or Surface Rover

Authors: M. Raciti Castelli, M. Cescon, E. Benini

Abstract:

Nuclear energy sources have been widely used in the past decades in order to power spacecraft subsystems. Nevertheless, their use has attracted controversy because of the risk of harmful material released into the atmosphere if an accident were to occur during the launch phase of the mission, leading to the general adoption of photovoltaic systems. As compared to solar cells, wind turbines have a great advantage on Mars, as they can continuously produce power both during dust storms and at night-time: this paper focuses on the potential of a wind energy conversion system (WECS) considering the atmospheric conditions on Mars. Wind potential on Martian surface has been estimated, as well as the average energy requirements of a Martian probe or surface rover. Finally, the expected daily energy output of the WECS has been computed on the basis of both the swept area of the rotor and the equivalent wind speed at the landing site.

Keywords: Wind turbine, wind potential, Mars, probe, surface rover.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
2581 Photovoltaic Array Cleaning System Design and Evaluation

Authors: Ghoname Abdullah, Hidekazu Nishimura

Abstract:

Dust accumulation on the photovoltaic module's surface results in appreciable loss and negatively affects the generated power. Hence, in this paper, the design of a photovoltaic array cleaning system is presented. The cleaning system utilizes one drive motor, two guide rails, and four sweepers during the cleaning process. The cleaning system was experimentally implemented for one month to investigate its efficiency on PV array energy output. The energy capture over a month for PV array cleaned using the proposed cleaning system is compared with that of the energy capture using soiled PV array. The results show a 15% increase in energy generation from PV array with cleaning. From the results, investigating the optimal scheduling of the PV array cleaning could be an interesting research topic.

Keywords: Cleaning system, dust accumulation, PV array, PV module, soiling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 468
2580 Switched Reluctance Generator for Wind Power Applications

Authors: M. Nassereddine, J. Rizk, M. Nagrial

Abstract:

Green house effect has becomes a serious concern in many countries due to the increase consumption of the fossil fuel. There have been many studies to find an alternative power source. Wind energy found to be one of the most useful solutions to help in overcoming the air pollution and global. There is no agreed solution to conversion of wind energy to electrical energy. In this paper, the advantages of using a Switched Reluctance Generator (SRG) for wind energy applications. The theoretical study of the self excitation of a SRG and the determination of the variable parameters in a SRG design are discussed. The design parameters for the maximum power output of the SRG are computed using Matlab simulation. The designs of the circuit to control the variable parameters in a SRG to provide the maximum power output are also discussed.

Keywords: Switched Reluctance Generator, Wind Power, Electrical Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2956
2579 Soft Computing Based Cluster Head Selection in Wireless Sensor Network Using Bacterial Foraging Optimization Algorithm

Authors: A. Rajagopal, S. Somasundaram, B. Sowmya, T. Suguna

Abstract:

Wireless Sensor Networks (WSNs) enable new applications and need non-conventional paradigms for the protocol because of energy and bandwidth constraints, In WSN, sensor node’s life is a critical parameter. Research on life extension is based on Low-Energy Adaptive Clustering Hierarchy (LEACH) scheme, which rotates Cluster Head (CH) among sensor nodes to distribute energy consumption over all network nodes. CH selection in WSN affects network energy efficiency greatly. This study proposes an improved CH selection for efficient data aggregation in sensor networks. This new algorithm is based on Bacterial Foraging Optimization (BFO) incorporated in LEACH.

Keywords: Bacterial Foraging Optimization (BFO), Cluster Head (CH), Data-aggregation protocols, Low-Energy Adaptive Clustering Hierarchy (LEACH).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3444
2578 Innovative Power Engineering in a Selected Rural Commune

Authors: Pawel Sowa, Joachim Bargiel

Abstract:

This paper presents modern solutions of distributed generation in rural communities aiming at the improvement of energy and environmental security, as well as power supply reliability to important customers (e.g. health care, sensitive consumer required continuity). Distributed sources are mainly gas and biogas cogeneration units, as well as wind and photovoltaic sources. Some examples of their applications in a selected Silesian community are given.

Keywords: Energy security, power supply reliability, power engineering, mini energy centers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1359
2577 Energy Management System with Temperature Rise Prevention on Hybrid Ships

Authors: Asser S. Abdelwahab, Nabil H. Abbasy, Ragi A. Hamdy

Abstract:

Marine shipping has now become one of the major worldwide contributors to pollution and greenhouse gas emissions. Hybrid ships technology based on multiple energy sources has taken a great scope of research to get rid of ship emissions and cut down fuel expenses. Insufficiency between power generated and the demand load to withstand the transient behavior on ships during severe climate conditions will lead to a blackout. Thus, an efficient energy management system (EMS) is a mandatory scope for achieving higher system efficiency while enhancing the lifetime of the onboard storage systems is another salient EMS scope. Considering energy storage system conditions, both the battery state of charge (SOC) and temperature represent important parameters to prevent any malfunction of the storage system that eventually degrades the whole system. In this paper, a two battery packs ratio fuzzy logic control model is proposed. The overall aim is to control the charging/discharging current while including both the battery SOC and temperature in the energy management system. The full designs of the proposed controllers are described and simulated using Matlab. The results prove the successfulness of the proposed controller in stabilizing the system voltage during both loading and unloading while keeping the energy storage system in a healthy condition.

Keywords: energy storage system, fuzzy logic control, hybrid ship, thermal runaway

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 538
2576 EEIA: Energy Efficient Indexed Aggregation in Smart Wireless Sensor Networks

Authors: Mohamed Watfa, William Daher, Hisham Al Azar

Abstract:

The main idea behind in network aggregation is that, rather than sending individual data items from sensors to sinks, multiple data items are aggregated as they are forwarded by the sensor network. Existing sensor network data aggregation techniques assume that the nodes are preprogrammed and send data to a central sink for offline querying and analysis. This approach faces two major drawbacks. First, the system behavior is preprogrammed and cannot be modified on the fly. Second, the increased energy wastage due to the communication overhead will result in decreasing the overall system lifetime. Thus, energy conservation is of prime consideration in sensor network protocols in order to maximize the network-s operational lifetime. In this paper, we give an energy efficient approach to query processing by implementing new optimization techniques applied to in-network aggregation. We first discuss earlier approaches in sensors data management and highlight their disadvantages. We then present our approach “Energy Efficient Indexed Aggregation" (EEIA) and evaluate it through several simulations to prove its efficiency, competence and effectiveness.

Keywords: Sensor Networks, Data Base, Data Fusion, Aggregation, Indexing, Energy Efficiency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
2575 Energy Supply, Demand and Environmental Analysis – A Case Study of Indian Energy Scenario

Authors: I.V. Saradhi, G.G. Pandit, V.D. Puranik

Abstract:

Increasing concerns over climate change have limited the liberal usage of available energy technology options. India faces a formidable challenge to meet its energy needs and provide adequate energy of desired quality in various forms to users in sustainable manner at reasonable costs. In this paper, work carried out with an objective to study the role of various energy technology options under different scenarios namely base line scenario, high nuclear scenario, high renewable scenario, low growth and high growth rate scenario. The study has been carried out using Model for Energy Supply Strategy Alternatives and their General Environmental Impacts (MESSAGE) model which evaluates the alternative energy supply strategies with user defined constraints on fuel availability, environmental regulations etc. The projected electricity demand, at the end of study period i.e. 2035 is 500490 MWYr. The model predicted the share of the demand by Thermal: 428170 MWYr, Hydro: 40320 MWYr, Nuclear: 14000 MWYr, Wind: 18000 MWYr in the base line scenario. Coal remains the dominant fuel for production of electricity during the study period. However, the import dependency of coal increased during the study period. In baseline scenario the cumulative carbon dioxide emissions upto 2035 are about 11,000 million tones of CO2. In the scenario of high nuclear capacity the carbon dioxide emissions reduced by 10 % when nuclear energy share increased to 9 % compared to 3 % in baseline scenario. Similarly aggressive use of renewables reduces 4 % of carbon dioxide emissions.

Keywords: Carbon dioxide, energy, electricity, message.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2728
2574 Estimation of the Moisture Diffusivity and Activation Energy in Thin Layer Drying of Ginger Slices

Authors: Ebru Kavak Akpinar, Seda Toraman

Abstract:

In the present work, the effective moisture diffusivity and activation energy were calculated using an infinite series solution of Fick-s diffusion equation. The results showed that increasing drying temperature accelerated the drying process. All drying experiments had only falling rate period. The average effective moisture diffusivity values varied from 2.807x10-10 to 6.977x10-10m2 s_1 over the temperature and velocity range. The temperature dependence of the effective moisture diffusivity for the thin layer drying of the ginger slices was satisfactorily described by an Arrhenius-type relationship with activation energy values of 19.313- 22.722 kJ.mol-1 within 40–70 °C and 0.8-3 ms-1 temperature range.

Keywords: Ginger, Drying, Activation energy, Moisture diffusivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2658
2573 A Study to Assess the Energy Saving Potential and Economic Analysis of an Agro Based Industry in Karnataka, India

Authors: Sangamesh G. Sakri, Akash N. Patil, Sadashivappa M. Kotli

Abstract:

Agro based industries in India are considered as the micro, small and medium enterprises (MSME). In India, MSMEs contribute approximately 8 percent of the country’s GDP, 42 percent of the manufacturing output and 40 percent of exports. The toor dal (scientific name Cajanus cajan, commonly known as yellow gram, pigeon pea) is the second largest pulse crop in India accounting for about 20% of total pulse production. The toor dal milling industry in India is one of the major agro-processing industries in the country. Most of the dal mills are concentrated in pulse producing areas, which are spread all over the country. In Karnataka state, Gulbarga is a district, where toor dal is the main crop and is grown extensively. There are more than 500 dal mills in and around the Gulbarga district to process dal. However, the majority of these dal milling units use traditional methods of processing which are energy and capital intensive. There exists a huge energy saving potential in these mills. An energy audit is conducted on a dal mill in Gulbarga to understand the energy consumption pattern to assess the energy saving potential, and an economic analysis is conducted to identify energy conservation opportunities.

Keywords: Conservation, demand side management, load curve, toor dal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
2572 Driver of Tectonic Plate Fracture and Movement

Authors: Xuguang Leng

Abstract:

The theory of tectonic plate asteroid driver provides that comet and asteroid collisions have ample energy to fracture, move, and deform tectonic plate. The enormous kinetic energy of an asteroid collision is dissipated through the fracture and violent movement of the tectonic plates, and stored in the plate deformations. The stored energy will be released in the future through plate slow movement. The reflection of plate edge upwards upon collision impact causes the plate to sit on top of adjacent plate and creates the subduction plate. Higher probability and higher energy of asteroid collision in the equator area provides the net energy to drive heavier land plates to higher latitudes, offsetting the tidal and self spin forces, creating a more random land plates distribution. The trend of asteroid collisions is less frequency and intensity as loose objects are merging into the planets and Jupiter is taking ever larger shares of collisions. As overall energy input from asteroid collision decreases, plate movement is slowing down and eventually land plates will congregate towards equator area. The current trajectory of plate movements is the cumulative effect of past asteroid collisions, and can be altered, new plates be created, by future collisions.

Keywords: Tectonic plate, Earth, asteroid, comet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 126
2571 Review of Strategies for Hybrid Energy Storage Management System in Electric Vehicle Application

Authors: Kayode A. Olaniyi, Adeola A. Ogunleye, Tola M. Osifeko

Abstract:

Electric Vehicles (EV) appear to be gaining increasing patronage as a feasible alternative to Internal Combustion Engine Vehicles (ICEVs) for having low emission and high operation efficiency. The EV energy storage systems are required to handle high energy and power density capacity constrained by limited space, operating temperature, weight and cost. The choice of strategies for energy storage evaluation, monitoring and control remains a challenging task. This paper presents review of various energy storage technologies and recent researches in battery evaluation techniques used in EV applications. It also underscores strategies for the hybrid energy storage management and control schemes for the improvement of EV stability and reliability. The study reveals that despite the advances recorded in battery technologies there is still no cell which possess both the optimum power and energy densities among other requirements, for EV application. However combination of two or more energy storages as hybrid and allowing the advantageous attributes from each device to be utilized is a promising solution. The review also reveals that State-of-Charge (SoC) is the most crucial method for battery estimation. The conventional method of SoC measurement is however questioned in the literature and adaptive algorithms that include all model of disturbances are being proposed. The review further suggests that heuristic-based approach is commonly adopted in the development of strategies for hybrid energy storage system management. The alternative approach which is optimization-based is found to be more accurate but is memory and computational intensive and as such not recommended in most real-time applications.

Keywords: Hybrid electric vehicle, hybrid energy storage, battery state estimation, ate of charge, state of health.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 980
2570 Spectrum Analysis with Monte Cralo Simulation, BEAMnrc, for Low Energy X-RAY

Authors: Z. Salehi Dehyagani, A. L. Yusoff

Abstract:

BEAMnrc was used to calculate the spectrum and HVL for X-ray Beam during low energy X-ray radiation using tube model: SRO 33/100 /ROT 350 Philips. The results of BEAMnrc simulation and measurements were compared to the IPEM report number 78 and SpekCalc software. Three energies 127, 103 and 84 Kv were used. In these simulation a tungsten anode with 1.2 mm for Be window were used as source. HVLs were calculated from BEAMnrc spectrum with air Kerma method for four different filters. For BEAMnrc one billion particles were used as original particles for all simulations. The results show that for 127 kV, there was maximum 5.2 % difference between BEAMnrc and Measurements and minimum was 0.7% .the maximum 9.1% difference between BEAMnrc and IPEM and minimum was 2.3% .The maximum difference was 3.2% between BEAMnrc and SpekCal and minimum was 2.8%. The result show BEAMnrc was able to satisfactory predict the quantities of Low energy Beam as well as high energy X-ray radiation.

Keywords: BEAMnr , Monte Carlo , HVL

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3017
2569 An Experimental Study of Downstream Structures on the Flow-Induced Vibrations Energy Harvester Performances

Authors: Pakorn Uttayopas, Chawalit Kittichaikarn

Abstract:

This paper presents an experimental investigation for the characteristics of an energy harvesting device exploiting flow-induced vibration in a wind tunnel. A stationary bluff body is connected with a downstream tip body via an aluminium cantilever beam. Various lengths of aluminium cantilever beam and different shapes of downstream tip body are considered. The results show that the characteristics of the energy harvester’s vibration depend on both the length of the aluminium cantilever beam and the shape of the downstream tip body. The highest ratio between vibration amplitude and bluff body diameter was found to be 1.39 for an energy harvester with a symmetrical triangular tip body and L/D1 = 5 at 9.8 m/s of flow speed (Re = 20077). Using this configuration, the electrical energy was extracted with a polyvinylidene fluoride (PVDF) piezoelectric beam with different load resistances, of which the optimal value could be found on each Reynolds number. The highest power output was found to be 3.19 µW, at 9.8 m/s of flow speed (Re = 20077) and 27 MΩ of load resistance.

Keywords: Downstream structures, energy harvesting, flow-induced vibration, piezoelectric material, wind tunnel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 888
2568 Business Diversification Strategies in the Italian Energy Markets

Authors: F. Di Pillo, G. Capece, L. Cricelli, N. Levialdi

Abstract:

The liberalization and privatization processes have forced public utility companies to face new competitive challenges, implementing strategies to gain market share and, at the same time, keep the old customers. To this end, many companies have carried out mergers, acquisitions and conglomerations in order to diversify their business. This paper focuses on companies operating in the free energy market in Italy. In the last decade, this sector has undergone profound changes that have radically changed the competitive scenario and have led companies to implement diversification strategies of the business. Our work aims to evaluate the economic and financial performances obtained by energy companies, following the beginning of the liberalization process, verifying the possible relationship with the implemented diversification strategies.

Keywords: Business diversification strategies, M&A, the Italian energy market liberalization, economic and financial performances.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093
2567 Agent-based Framework for Energy Efficiency in Wireless Sensor Networks

Authors: Hongjoong Sin, Jangsoo Lee, Sungju Lee, Seunghwan Yoo, Sanghyuck Lee, Jaesik Lee, Yongjun Lee, Sungchun Kim

Abstract:

Wireless sensor networks are consisted of hundreds or thousands of small sensors that have limited resources. Energy-efficient techniques are the main issue of wireless sensor networks. This paper proposes an energy efficient agent-based framework in wireless sensor networks. We adopt biologically inspired approaches for wireless sensor networks. Agent operates automatically with their behavior policies as a gene. Agent aggregates other agents to reduce communication and gives high priority to nodes that have enough energy to communicate. Agent behavior policies are optimized by genetic operation at the base station. Simulation results show that our proposed framework increases the lifetime of each node. Each agent selects a next-hop node with neighbor information and behavior policies. Our proposed framework provides self-healing, self-configuration, self-optimization properties to sensor nodes.

Keywords: Agent, Energy Efficiency, Genetic algorithm, Wireless Sensor Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
2566 Investigation of Passive Solutions of Thermal Comfort in Housing Aiming to Reduce Energy Consumption

Authors: Josiane R. Pires, Marco A. S. González, Bruna L. Brenner, Luciana S. Roos

Abstract:

The concern with sustainability brought the need for optimization of the buildings to reduce consumption of natural resources. Almost 1/3 of energy demanded by Brazilian housings is used to provide thermal solutions. AEC sector may contribute applying bioclimatic strategies on building design. The aim of this research is to investigate the viability of applying some alternative solutions in residential buildings. The research was developed with computational simulation on single family social housing, examining envelope type, absorptance, and insolation. The analysis of the thermal performance applied both Brazilian standard NBR 15575 and degree-hour method, in the scenery of Porto Alegre, a southern Brazilian city. We used BIM modeling through Revit/Autodesk and used Energy Plus to thermal simulation. The payback of the investment was calculated comparing energy savings and building costs, in a period of 50 years. The results shown that with the increment of envelope’s insulation there is thermal comfort improvement and energy economy, with a pay-back period of 24 to 36 years, in some cases.

Keywords: Civil construction, design, thermal performance, energy, economic analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877
2565 Enlightening Malaysia's Energy Policies and Strategies for Modernization and Sustainable Development

Authors: Hussain Ali Bekhet, Nor Salwati Othman

Abstract:

Malaysia has achieved remarkable economic growth since 1957, moving toward modernization from a predominantly agriculture base to manufacturing and—now—modern services. The development policies (i.e., New Economic Policy [1970–1990], the National Development Policy [1990–2000], and Vision 2020) have been recognized as the most important drivers of this transformation. The transformation of the economic structure has moved along with rapid gross domestic product (GDP) growth, urbanization growth, and greater demand for energy from mainly fossil fuel resources, which in turn, increase CO2 emissions. Malaysia faced a great challenge to bring down the CO2 emissions without compromising economic development. Solid policies and a strategy to reduce dependencies on fossil fuel resources and reduce CO2 emissions are needed in order to achieve sustainable development. This study provides an overview of the Malaysian economic, energy, and environmental situation, and explores the existing policies and strategies related to energy and the environment. The significance is to grasp a clear picture on what types of policies and strategies Malaysia has in hand. In the future, this examination should be extended by drawing a comparison with other developed countries and highlighting several options for sustainable development.

Keywords: Energy policies, energy efficiency, renewable energy, green building, Malaysia, sustainable development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2620
2564 Strategies and Compromises: Towards an Integrated Energy and Climate Policy for Egypt

Authors: S.T. El Sheltawy, A. A. Refaat

Abstract:

Until recently, energy security and climate change were considered separate issues to be dealt with by policymakers. The two issues are now converging, challenging the security and climate communities to develop a better understanding of how to deal with both issues simultaneously. Although Egypt is not a major contributor to the world's total GHG emissions, it is particularly vulnerable to the potential effects of global climate change such as rising sea levels and changed patterns of rainfall in the Nile Basin. Climate change is a major threat to sustainable growth and development in Egypt, and the achievement of the Millennium Development Goals. Egypt-s capacity to respond to the challenges of climate instability will be expanded by improving overall resilience, integrating climate change goals into sustainable development strategies, increasing the use of modern energy systems with reduced carbon intensity, and strengthening international initiatives. This study seeks to establish a framework for considering the complex and evolving links between energy security and climate change, applicable to Egypt.

Keywords: climate change, climate policy, cnergy policy, energy security, sustainable development

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
2563 A Kernel Classifier using Linearised Bregman Iteration

Authors: K. A. D. N. K Wimalawarne

Abstract:

In this paper we introduce a novel kernel classifier based on a iterative shrinkage algorithm developed for compressive sensing. We have adopted Bregman iteration with soft and hard shrinkage functions and generalized hinge loss for solving l1 norm minimization problem for classification. Our experimental results with face recognition and digit classification using SVM as the benchmark have shown that our method has a close error rate compared to SVM but do not perform better than SVM. We have found that the soft shrinkage method give more accuracy and in some situations more sparseness than hard shrinkage methods.

Keywords: Compressive sensing, Bregman iteration, Generalisedhinge loss, sparse, kernels, shrinkage functions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344
2562 Methodology for Bioenergy Potential and Assessment for Energy Deployment in Rural Vhembe District Areas

Authors: Clement M. Matasane, Mohamed T. Kahn

Abstract:

Biomass resources such as animal waste, agricultural and acro-industrial residues, forestry and woodland waste, and industrial and municipal solid wastes provide alternative means to utilize its untapped potential for biomass/biofuel renewable energy systems. In addition, crop residues (i.e., grain, starch, and energy crops) are commonly available in the district and play an essential role in community farming activities. The remote sensing technology (mappings) and geographic information systems tool will be used to determine the biomass potential in the Vhembe District Municipality. The detailed assessment, estimation, and modeling in quantifying their distribution, abundance, and quality yield an effective and efficient use of their potential. This paper aims to examine the potential and prospects of deploying bioenergy systems in small or micro-systems in the district for community use and applications. This deployment of the biofuels/biomass systems will help communities for sustainable energy supply from their traditional energy use into innovative and suitable methods that improve their livelihood. The study demonstrates the potential applications of Geographical Information Systems (GIS) in spatial mapping analysis, evaluation, modeling, and decision support for easy access to renewable energy systems.

Keywords: Agricultural crops, waste materials, biomass potentials, bioenergy potentials, GIS mappings, environmental data, renewable energy deployment, sustainable energy supply.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 238
2561 Piezomechanical Systems for Algae Cell Ultrasonication

Authors: Piotr Vasiljev, Regimantas Bareikis, Sergejus Borodinas, Arunas Struckas, Jurate Kasperoviciene

Abstract:

Nowadays for algae cell ultrasonication the longitudinal ultrasonic piezosystems are used. In this paper a possibility of creating unique ultrasonic piezoelectric system, which would allow reducing energy losses and concentrating this energy to a small closed volume are proposed. The current vibrating systems whose ultrasonic energy is concentrated inside of hollow cylinder in which water-algae mixture is flowing. Two, three or multiply ultrasonic composite systems to concentrate total energy into a hollow cylinder to creating strong algae cell ultrasonication are used. The experiments and numerical FEM analysis results using diskshaped transducer and the first biological test results on algae cell disruption by ultrasonication are presented as well.

Keywords: Algae, piezomechanical system, ultrasonication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2469
2560 Optimal Type and Installation Time of Wind Farm in a Power System, Considering Service Providers

Authors: M. H. Abedi, A. Jalilvand

Abstract:

The economic development benefits of wind energy may be the most tangible basis for the local and state officials’ interests. In addition to the direct salaries associated with building and operating wind projects, the wind energy industry provides indirect jobs and benefits. The optimal planning of a wind farm is one most important topic in renewable energy technology. Many methods have been implemented to optimize the cost and output benefit of wind farms, but the contribution of this paper is mentioning different types of service providers and also time of installation of wind turbines during planning horizon years. Genetic algorithm (GA) is used to optimize the problem. It is observed that an appropriate layout of wind farm can cause to minimize the different types of cost.

Keywords: Renewable energy, wind farm, optimization, planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1098
2559 Energetic Considerations for Sputter Deposition Processes

Authors: Dirk Hegemann, Martin Amberg

Abstract:

Sputter deposition processes, especially for sputtering from metal targets, are well investigated. For practical reasons, i.e. for industrial processes, energetic considerations for sputter deposition are useful in order to optimize the sputtering process. In particular, for substrates at floating conditions it is required to obtain energetic conditions during film growth that enables sufficient dense metal films of good quality. The influence of ion energies, energy density and momentum transfer is thus examined both for sputtering at the target as well as during film growth. Different regimes dominated by ion energy, energy density and momentum transfer were identified by using different plasma sources and by varying power input, pressure and bias voltage.

Keywords: Energy density, film growth, momentum transfer, sputtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2409
2558 Quantifying Uncertainties in an Archetype-Based Building Stock Energy Model by Use of Individual Building Models

Authors: Morten Brøgger, Kim Wittchen

Abstract:

Focus on reducing energy consumption in existing buildings at large scale, e.g. in cities or countries, has been increasing in recent years. In order to reduce energy consumption in existing buildings, political incentive schemes are put in place and large scale investments are made by utility companies. Prioritising these investments requires a comprehensive overview of the energy consumption in the existing building stock, as well as potential energy-savings. However, a building stock comprises thousands of buildings with different characteristics making it difficult to model energy consumption accurately. Moreover, the complexity of the building stock makes it difficult to convey model results to policymakers and other stakeholders. In order to manage the complexity of the building stock, building archetypes are often employed in building stock energy models (BSEMs). Building archetypes are formed by segmenting the building stock according to specific characteristics. Segmenting the building stock according to building type and building age is common, among other things because this information is often easily available. This segmentation makes it easy to convey results to non-experts. However, using a single archetypical building to represent all buildings in a segment of the building stock is associated with loss of detail. Thermal characteristics are aggregated while other characteristics, which could affect the energy efficiency of a building, are disregarded. Thus, using a simplified representation of the building stock could come at the expense of the accuracy of the model. The present study evaluates the accuracy of a conventional archetype-based BSEM that segments the building stock according to building type- and age. The accuracy is evaluated in terms of the archetypes’ ability to accurately emulate the average energy demands of the corresponding buildings they were meant to represent. This is done for the buildings’ energy demands as a whole as well as for relevant sub-demands. Both are evaluated in relation to the type- and the age of the building. This should provide researchers, who use archetypes in BSEMs, with an indication of the expected accuracy of the conventional archetype model, as well as the accuracy lost in specific parts of the calculation, due to use of the archetype method.

Keywords: Building stock energy modelling, energy-savings, archetype.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 690
2557 Renewable Energy Trends Analysis: A Patents Study

Authors: Sepulveda Juan

Abstract:

This article explains the elements and considerations taken into account when implementing and applying patent evaluation and scientometric study in the identifications of technology trends, and the tools that led to the implementation of a software application for patent revision. Univariate analysis helped recognize the technological leaders in the field of energy, and steered the way for a multivariate analysis of this sample, which allowed for a graphical description of the techniques of mature technologies, as well as the detection of emerging technologies. This article ends with a validation of the methodology as applied to the case of fuel cells.

Keywords: Energy, technology mapping, patents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2145