Soft Computing Based Cluster Head Selection in Wireless Sensor Network Using Bacterial Foraging Optimization Algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Soft Computing Based Cluster Head Selection in Wireless Sensor Network Using Bacterial Foraging Optimization Algorithm

Authors: A. Rajagopal, S. Somasundaram, B. Sowmya, T. Suguna

Abstract:

Wireless Sensor Networks (WSNs) enable new applications and need non-conventional paradigms for the protocol because of energy and bandwidth constraints, In WSN, sensor node’s life is a critical parameter. Research on life extension is based on Low-Energy Adaptive Clustering Hierarchy (LEACH) scheme, which rotates Cluster Head (CH) among sensor nodes to distribute energy consumption over all network nodes. CH selection in WSN affects network energy efficiency greatly. This study proposes an improved CH selection for efficient data aggregation in sensor networks. This new algorithm is based on Bacterial Foraging Optimization (BFO) incorporated in LEACH.

Keywords: Bacterial Foraging Optimization (BFO), Cluster Head (CH), Data-aggregation protocols, Low-Energy Adaptive Clustering Hierarchy (LEACH).

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1108324

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3485

References:


[1] Lewis, F. L. (2004). Wireless sensor networks. Smart environments: technologies, protocols, and applications, 11-46.
[2] Sohraby, K., Minoli, D., &Znati, T (2007). Wireless sensor networks: technology, protocols, and applications. John Wiley & Sons.
[3] Abbasi, A. A., &Younis, M. (2007). A survey on clustering algorithms for wireless sensor networks. Computer Communications, 30(14), 2826- 2841.
[4] Dasgupta, K., Kalpakis, K., &Namjoshi, P. (2003, March). An efficient clustering-based heuristic for data gathering and aggregation in sensor networks. In Wireless Communications and Networking, 2003. WCNC 2003. 2003 IEEE (Vol. 3, pp. 1948-1953). IEEE.
[5] Patil, N. S., &Patil, P. R. (2010, December). Data aggregation in wireless sensor network. In Proceedings of IEEE International Conference on Computational Intelligence and Computing Research, Coimbatore, India, 28-29 December.
[6] Dargie, W., &Poellabauer, C. (2010). Fundamentals of wireless sensor networks: theory and practice. John Wiley & Sons.
[7] Frey, H., Rührup, S., &Stojmenović, I. (2009). Routing in wireless sensor networks. In Guide to Wireless Sensor Networks (pp. 81-111). Springer London.
[8] KC, G. (2013). Evaluation of Routing Protocols for Wireless Sensor Networks. IJRCCT, 2(6), 322-328.
[9] Handy, M. J., Haase, M., &Timmermann, D. (2002). Low energy adaptive clustering hierarchy with deterministic cluster-head selection. In Mobile and Wireless Communications Network, 2002. 4th International Workshop on (pp. 368-372). IEEE.
[10] Younis, O., &Fahmy, S. (2004). HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. Mobile Computing, IEEE Transactions on, 3(4), 366-379.
[11] Passino, K. M. (2002). Biomimicry of bacterial foraging for distributed optimization and control. Control Systems, IEEE, 22(3), 52-67.
[12] Fareed, M. S., Javaid, N., Akbar, M., Rehman, S., Qasim, U., & Khan, Z. A. (2012). Optimal Number of Cluster Head Selection for Efficient Distribution of Sources in WSNs. arXiv preprint arXiv:1208.2399.
[13] Thein, M. C. M., &Thein, T. (2010, January). An energy efficient cluster-head selection for wireless sensor networks. In Intelligent systems, modelling and simulation (ISMS), 2010 international conference on (pp. 287-291). IEEE.
[14] Maraiya, K., Kant, K., & Gupta, N. (2011). Efficient cluster head selection scheme for data aggregation in wireless sensor network. International Journal of Computer Applications, 23(9), 10-18.
[15] Gao, T., Jin, R. C., Song, J. Y., Xu, T. B., & Wang, L. D. (2012). Energy-efficient cluster head selection scheme based on multiple criteria decision making for wireless sensor networks. Wireless personal communications,63(4), 871-894.
[16] Chen, J. S., Hong, Z. W., Wang, N. C., &Jhuang, S. H. (2010). Efficient cluster head selection methods for wireless sensor networks. journal of networks, 5(8), 964-970.
[17] Chen, H., Zhu, Y., & Hu, K. (2010). Multi-colony bacteria foraging optimization with cell-to-cell communication for RFID network planning. Applied Soft Computing, 10(2), 539-547.
[18] Passino, K. M. (2010). Bacterial foraging optimization. International Journal of Swarm Intelligence Research (IJSIR), 1(1), 1-16.
[19] Zhao, Q. S., Meng, G. Y., & Yu–Lan, H. (2013). A multidimensional scaling localisation algorithm based on bacterial foraging optimisation. International Journal of Wireless and Mobile Computing, 6(1), 58-65.
[20] Sharma, E. N., &Behal, E. S. A Systematic way of Soft-Computing Implementation for Wireless Sensor Network Optimization using Bacteria Foraging Optimization Algorithm: A Review.
[21] Kavitha, G., &Wahidabanu, R. (2014). Foraging Optimization For Cluster Head Selection. Journal of Theoretical & Applied Information Technology, 61(3).
[22] Jhankal, N. K., &Adhyaru, D. (2011, December). Bacterial foraging optimization algorithm: A derivative free technique. In Engineering (NUiCONE), 2011 Nirma University International Conference on (pp. 1-4). IEEE.
[23] Ran, G., Zhang, H., & Gong, S. (2010). Improving on LEACH protocol of wireless sensor networks using fuzzy logic. Journal of Information and Computational Science, 7(3), 767-775.
[24] Gou, H., &Yoo, Y. (2010, April). An energy balancing LEACH algorithm for wireless sensor networks. In Information Technology: New Generations (ITNG), 2010 Seventh International Conference on (pp. 822-827). IEEE.
[25] Tong, M., & Tang, M. (2010, September). LEACH-B: An improved LEACH protocol for wireless sensor network. In Wireless Communications Networking and Mobile Computing (WiCOM), 2010 6th International Conference on (pp. 1-4). IEEE.
[26] Heinzelman, W. R., Chandrakasan, A., &Balakrishnan, H. (2000, January). Energy-efficient communication protocol for wireless microsensor networks. InSystem Sciences, 2000. Proceedings of the 33rd Annual Hawaii International Conference on (pp. 10-pp). IEEE.
[27] Enami, N., &Moghadam, R. A. (2010). Energy Based Clustering Self Organizing Map Protocol For extending Wireless Sensor Networks lifetime and coverage. Canadian Journal on Multimedia and Wireless Network, 1(4), 42-54.
[28] Ishibuchi, H., & Murata, T. (2000). Flowshop scheduling with fuzzy duedate and fuzzy processing time. Scheduling under fuzziness, 113-143.
[29] Thomas, R. M. Survey of Bacterial Foraging Optimization Algorithm.
[30] Mezura-Montes, E., & Hernández-Ocana, B. (2008, October). Bacterial Foraging for Engineering Design Problems: Preliminary Results. In Memorias del 4o CongresoNacional de ComputacionEvolutiva (COMCEV’2008), CIMAT, Gto. Mexico.