Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 39

Search results for: dictionary

39 Iterative Image Reconstruction for Sparse-View Computed Tomography via Total Variation Regularization and Dictionary Learning

Authors: XianYu Zhao, JinXu Guo

Abstract:

Recently, low-dose computed tomography (CT) has become highly desirable due to increasing attention to the potential risks of excessive radiation. For low-dose CT imaging, ensuring image quality while reducing radiation dose is a major challenge. To facilitate low-dose CT imaging, we propose an improved statistical iterative reconstruction scheme based on the Penalized Weighted Least Squares (PWLS) standard combined with total variation (TV) minimization and sparse dictionary learning (DL) to improve reconstruction performance. We call this method "PWLS-TV-DL". In order to evaluate the PWLS-TV-DL method, we performed experiments on digital phantoms and physical phantoms, respectively. The experimental results show that our method is in image quality and calculation. The efficiency is superior to other methods, which confirms the potential of its low-dose CT imaging.

Keywords: Low dose computed tomography, penalized weighted least squares, total variation, dictionary learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 180
38 A Motion Dictionary to Real-Time Recognition of Sign Language Alphabet Using Dynamic Time Warping and Artificial Neural Network

Authors: Marcio Leal, Marta Villamil

Abstract:

Computacional recognition of sign languages aims to allow a greater social and digital inclusion of deaf people through interpretation of their language by computer. This article presents a model of recognition of two of global parameters from sign languages; hand configurations and hand movements. Hand motion is captured through an infrared technology and its joints are built into a virtual three-dimensional space. A Multilayer Perceptron Neural Network (MLP) was used to classify hand configurations and Dynamic Time Warping (DWT) recognizes hand motion. Beyond of the method of sign recognition, we provide a dataset of hand configurations and motion capture built with help of fluent professionals in sign languages. Despite this technology can be used to translate any sign from any signs dictionary, Brazilian Sign Language (Libras) was used as case study. Finally, the model presented in this paper achieved a recognition rate of 80.4%.

Keywords: Sign language recognition, computer vision, infrared, artificial neural network, dynamic time warping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 289
37 Online Multilingual Dictionary Using Hamburg Notation for Avatar-Based Indian Sign Language Generation System

Authors: Sugandhi, Parteek Kumar, Sanmeet Kaur

Abstract:

Sign Language (SL) is used by deaf and other people who cannot speak but can hear or have a problem with spoken languages due to some disability. It is a visual gesture language that makes use of either one hand or both hands, arms, face, body to convey meanings and thoughts. SL automation system is an effective way which provides an interface to communicate with normal people using a computer. In this paper, an avatar based dictionary has been proposed for text to Indian Sign Language (ISL) generation system. This research work will also depict a literature review on SL corpus available for various SL s over the years. For ISL generation system, a written form of SL is required and there are certain techniques available for writing the SL. The system uses Hamburg sign language Notation System (HamNoSys) and Signing Gesture Mark-up Language (SiGML) for ISL generation. It is developed in PHP using Web Graphics Library (WebGL) technology for 3D avatar animation. A multilingual ISL dictionary is developed using HamNoSys for both English and Hindi Language. This dictionary will be used as a database to associate signs with words or phrases of a spoken language. It provides an interface for admin panel to manage the dictionary, i.e., modification, addition, or deletion of a word. Through this interface, HamNoSys can be developed and stored in a database and these notations can be converted into its corresponding SiGML file manually. The system takes natural language input sentence in English and Hindi language and generate 3D sign animation using an avatar. SL generation systems have potential applications in many domains such as healthcare sector, media, educational institutes, commercial sectors, transportation services etc. This research work will help the researchers to understand various techniques used for writing SL and generation of Sign Language systems.

Keywords: Avatar, dictionary, HamNoSys, hearing-impaired, Indian Sign Language, sign language.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 491
36 Lexical Based Method for Opinion Detection on Tripadvisor Collection

Authors: Faiza Belbachir, Thibault Schienhinski

Abstract:

The massive development of online social networks allows users to post and share their opinions on various topics. With this huge volume of opinion, it is interesting to extract and interpret these information for different domains, e.g., product and service benchmarking, politic, system of recommendation. This is why opinion detection is one of the most important research tasks. It consists on differentiating between opinion data and factual data. The difficulty of this task is to determine an approach which returns opinionated document. Generally, there are two approaches used for opinion detection i.e. Lexical based approaches and Machine Learning based approaches. In Lexical based approaches, a dictionary of sentimental words is used, words are associated with weights. The opinion score of document is derived by the occurrence of words from this dictionary. In Machine learning approaches, usually a classifier is trained using a set of annotated document containing sentiment, and features such as n-grams of words, part-of-speech tags, and logical forms. Majority of these works are based on documents text to determine opinion score but dont take into account if these texts are really correct. Thus, it is interesting to exploit other information to improve opinion detection. In our work, we will develop a new way to consider the opinion score. We introduce the notion of trust score. We determine opinionated documents but also if these opinions are really trustable information in relation with topics. For that we use lexical SentiWordNet to calculate opinion and trust scores, we compute different features about users like (numbers of their comments, numbers of their useful comments, Average useful review). After that, we combine opinion score and trust score to obtain a final score. We applied our method to detect trust opinions in TRIPADVISOR collection. Our experimental results report that the combination between opinion score and trust score improves opinion detection.

Keywords: Tripadvisor, Opinion detection, SentiWordNet, trust score.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 256
35 Weighted-Distance Sliding Windows and Cooccurrence Graphs for Supporting Entity-Relationship Discovery in Unstructured Text

Authors: Paolo Fantozzi, Luigi Laura, Umberto Nanni

Abstract:

The problem of Entity relation discovery in structured data, a well covered topic in literature, consists in searching within unstructured sources (typically, text) in order to find connections among entities. These can be a whole dictionary, or a specific collection of named items. In many cases machine learning and/or text mining techniques are used for this goal. These approaches might be unfeasible in computationally challenging problems, such as processing massive data streams. A faster approach consists in collecting the cooccurrences of any two words (entities) in order to create a graph of relations - a cooccurrence graph. Indeed each cooccurrence highlights some grade of semantic correlation between the words because it is more common to have related words close each other than having them in the opposite sides of the text. Some authors have used sliding windows for such problem: they count all the occurrences within a sliding windows running over the whole text. In this paper we generalise such technique, coming up to a Weighted-Distance Sliding Window, where each occurrence of two named items within the window is accounted with a weight depending on the distance between items: a closer distance implies a stronger evidence of a relationship. We develop an experiment in order to support this intuition, by applying this technique to a data set consisting in the text of the Bible, split into verses.

Keywords: Cooccurrence graph, entity relation graph, unstructured text, weighted distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 271
34 Adaption Model for Building Agile Pronunciation Dictionaries Using Phonemic Distance Measurements

Authors: Akella Amarendra Babu, Rama Devi Yellasiri, Natukula Sainath

Abstract:

Where human beings can easily learn and adopt pronunciation variations, machines need training before put into use. Also humans keep minimum vocabulary and their pronunciation variations are stored in front-end of their memory for ready reference, while machines keep the entire pronunciation dictionary for ready reference. Supervised methods are used for preparation of pronunciation dictionaries which take large amounts of manual effort, cost, time and are not suitable for real time use. This paper presents an unsupervised adaptation model for building agile and dynamic pronunciation dictionaries online. These methods mimic human approach in learning the new pronunciations in real time. A new algorithm for measuring sound distances called Dynamic Phone Warping is presented and tested. Performance of the system is measured using an adaptation model and the precision metrics is found to be better than 86 percent.

Keywords: Pronunciation variations, dynamic programming, machine learning, natural language processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 356
33 A Sparse Representation Speech Denoising Method Based on Adapted Stopping Residue Error

Authors: Qianhua He, Weili Zhou, Aiwu Chen

Abstract:

A sparse representation speech denoising method based on adapted stopping residue error was presented in this paper. Firstly, the cross-correlation between the clean speech spectrum and the noise spectrum was analyzed, and an estimation method was proposed. In the denoising method, an over-complete dictionary of the clean speech power spectrum was learned with the K-singular value decomposition (K-SVD) algorithm. In the sparse representation stage, the stopping residue error was adaptively achieved according to the estimated cross-correlation and the adjusted noise spectrum, and the orthogonal matching pursuit (OMP) approach was applied to reconstruct the clean speech spectrum from the noisy speech. Finally, the clean speech was re-synthesised via the inverse Fourier transform with the reconstructed speech spectrum and the noisy speech phase. The experiment results show that the proposed method outperforms the conventional methods in terms of subjective and objective measure.

Keywords: Speech denoising, sparse representation, K-singular value decomposition, orthogonal matching pursuit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 502
32 An Image Segmentation Algorithm for Gradient Target Based on Mean-Shift and Dictionary Learning

Authors: Yanwen Li, Shuguo Xie

Abstract:

In electromagnetic imaging, because of the diffraction limited system, the pixel values could change slowly near the edge of the image targets and they also change with the location in the same target. Using traditional digital image segmentation methods to segment electromagnetic gradient images could result in lots of errors because of this change in pixel values. To address this issue, this paper proposes a novel image segmentation and extraction algorithm based on Mean-Shift and dictionary learning. Firstly, the preliminary segmentation results from adaptive bandwidth Mean-Shift algorithm are expanded, merged and extracted. Then the overlap rate of the extracted image block is detected before determining a segmentation region with a single complete target. Last, the gradient edge of the extracted targets is recovered and reconstructed by using a dictionary-learning algorithm, while the final segmentation results are obtained which are very close to the gradient target in the original image. Both the experimental results and the simulated results show that the segmentation results are very accurate. The Dice coefficients are improved by 70% to 80% compared with the Mean-Shift only method.

Keywords: Gradient image, segmentation and extract, mean-shift algorithm, dictionary learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 426
31 Sparsity-Based Unsupervised Unmixing of Hyperspectral Imaging Data Using Basis Pursuit

Authors: Ahmed Elrewainy

Abstract:

Mixing in the hyperspectral imaging occurs due to the low spatial resolutions of the used cameras. The existing pure materials “endmembers” in the scene share the spectra pixels with different amounts called “abundances”. Unmixing of the data cube is an important task to know the present endmembers in the cube for the analysis of these images. Unsupervised unmixing is done with no information about the given data cube. Sparsity is one of the recent approaches used in the source recovery or unmixing techniques. The l1-norm optimization problem “basis pursuit” could be used as a sparsity-based approach to solve this unmixing problem where the endmembers is assumed to be sparse in an appropriate domain known as dictionary. This optimization problem is solved using proximal method “iterative thresholding”. The l1-norm basis pursuit optimization problem as a sparsity-based unmixing technique was used to unmix real and synthetic hyperspectral data cubes.

Keywords: Basis pursuit, blind source separation, hyperspectral imaging, spectral unmixing, wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 449
30 Inner and Outer School Contextual Factors Associated with Poor Performance of Grade 12 Students: A Case Study of an Underperforming High School in Mpumalanga, South Africa

Authors: Victoria L. Nkosi, Parvaneh Farhangpour

Abstract:

Often a Grade 12 certificate is perceived as a passport to tertiary education and the minimum requirement to enter the world of work. In spite of its importance, many students do not make this milestone in South Africa. It is important to find out why so many students still fail in spite of transformation in the education system in the post-apartheid era. Given the complexity of education and its context, this study adopted a case study design to examine one historically underperforming high school in Bushbuckridge, Mpumalanga Province, South Africa in 2013. The aim was to gain a understanding of the inner and outer school contextual factors associated with the high failure rate among Grade 12 students.  Government documents and reports were consulted to identify factors in the district and the village surrounding the school and a student survey was conducted to identify school, home and student factors. The randomly-sampled half of the population of Grade 12 students (53) participated in the survey and quantitative data are analyzed using descriptive statistical methods. The findings showed that a host of factors is at play. The school is located in a village within a municipality which has been one of the poorest three municipalities in South Africa and the lowest Grade 12 pass rate in the Mpumalanga province.   Moreover, over half of the families of the students are single parents, 43% are unemployed and the majority has a low level of education. In addition, most families (83%) do not have basic study materials such as a dictionary, books, tables, and chairs. A significant number of students (70%) are over-aged (+19 years old); close to half of them (49%) are grade repeaters. The school itself lacks essential resources, namely computers, science laboratories, library, and enough furniture and textbooks. Moreover, teaching and learning are negatively affected by the teachers’ occasional absenteeism, inadequate lesson preparation, and poor communication skills. Overall, the continuous low performance of students in this school mirrors the vicious circle of multiple negative conditions present within and outside of the school. The complexity of factors associated with the underperformance of Grade 12 students in this school calls for a multi-dimensional intervention from government and stakeholders. One important intervention should be the placement of over-aged students and grade-repeaters in suitable educational institutions for the benefit of other students.

Keywords: Inner context, outer context, over-aged students, vicious circle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 497
29 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning

Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul

Abstract:

In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.

Keywords: Electrocardiogram, dictionary learning, sparse coding, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
28 Speaker Identification by Atomic Decomposition of Learned Features Using Computational Auditory Scene Analysis Principals in Noisy Environments

Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic

Abstract:

Speaker recognition is performed in high Additive White Gaussian Noise (AWGN) environments using principals of Computational Auditory Scene Analysis (CASA). CASA methods often classify sounds from images in the time-frequency (T-F) plane using spectrograms or cochleargrams as the image. In this paper atomic decomposition implemented by matching pursuit performs a transform from time series speech signals to the T-F plane. The atomic decomposition creates a sparsely populated T-F vector in “weight space” where each populated T-F position contains an amplitude weight. The weight space vector along with the atomic dictionary represents a denoised, compressed version of the original signal. The arraignment or of the atomic indices in the T-F vector are used for classification. Unsupervised feature learning implemented by a sparse autoencoder learns a single dictionary of basis features from a collection of envelope samples from all speakers. The approach is demonstrated using pairs of speakers from the TIMIT data set. Pairs of speakers are selected randomly from a single district. Each speak has 10 sentences. Two are used for training and 8 for testing. Atomic index probabilities are created for each training sentence and also for each test sentence. Classification is performed by finding the lowest Euclidean distance between then probabilities from the training sentences and the test sentences. Training is done at a 30dB Signal-to-Noise Ratio (SNR). Testing is performed at SNR’s of 0 dB, 5 dB, 10 dB and 30dB. The algorithm has a baseline classification accuracy of ~93% averaged over 10 pairs of speakers from the TIMIT data set. The baseline accuracy is attributable to short sequences of training and test data as well as the overall simplicity of the classification algorithm. The accuracy is not affected by AWGN and produces ~93% accuracy at 0dB SNR.

Keywords: Time-frequency plane, atomic decomposition, envelope sampling, Gabor atoms, matching pursuit, sparse dictionary learning, sparse autoencoder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 940
27 Particular Features of the First Romanian Multilingual Dictionaries

Authors: Mihaela Mocanu

Abstract:

The Romanian multilingual dictionaries – also named polyglot, plurilingual or polylingual dictionaries, have known a slow yet constant development starting with the end of the 17th century, when the first such work is attested, to the present time, when we witness a considerable increase of the number of polyglot dictionaries, especially the terminological ones. This paper aims at analyzing the context in which the first Romanian multilingual dictionaries were issued, as well as and the organization and structure particularities of the first lexicographic works of this type. The irretrievable loss of some of these works as well as the partial conservation of others renders the attempt to retrace the beginnings of Romanian lexicography extremely difficult. The research methodology is part of a descriptive and analytical approach based on two types of sources, subject to contrastive analysis: the notes made by the initiators of lexicographic projects and the testimonies of their contemporaries, respectively, along with the specialized studies regarding the history of the old Romanian lexicography. The analysis of the contents has indicated that these dictionaries lacked a scientific apparatus in the true sense of the phrase, failed to obey unitary organizational criteria, being limited, most of the times, to mere inventories of words, where the Romanian term was assigned its correspondent in other languages. Motivated by practical reasons, the first multilingual dictionaries were aimed at the clerics their purpose being to ensure the translators’ fidelity towards the original religious texts, regarded as sacred.

Keywords: Language, multilingual dictionary, Romanian lexicography, terminology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1053
26 A Recognition Method for Spatio-Temporal Background in Korean Historical Novels

Authors: Seo-Hee Kim, Kee-Won Kim, Seung-Hoon Kim

Abstract:

The most important elements of a novel are the characters, events and background. The background represents the time, place and situation that character appears, and conveys event and atmosphere more realistically. If readers have the proper knowledge about background of novels, it may be helpful for understanding the atmosphere of a novel and choosing a novel that readers want to read. In this paper, we are targeting Korean historical novels because spatio-temporal background especially performs an important role in historical novels among the genre of Korean novels. To the best of our knowledge, we could not find previous study that was aimed at Korean novels. In this paper, we build a Korean historical national dictionary. Our dictionary has historical places and temple names of kings over many generations as well as currently existing spatial words or temporal words in Korean history. We also present a method for recognizing spatio-temporal background based on patterns of phrasal words in Korean sentences. Our rules utilize postposition for spatial background recognition and temple names for temporal background recognition. The knowledge of the recognized background can help readers to understand the flow of events and atmosphere, and can use to visualize the elements of novels.

Keywords: Data mining, Korean historical novels, Korean linguistic feature, spatio-temporal background.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 796
25 A Cost Effective Approach to Develop Mid-size Enterprise Software Adopted the Waterfall Model

Authors: M. N. Hasnine, M. K. H. Chayon, M. M. Rahman

Abstract:

Organizational tendencies towards computer-based information processing have been observed noticeably in the third-world countries. Many enterprises are taking major initiatives towards computerized working environment because of massive benefits of computer-based information processing. However, designing and developing information resource management software for small and mid-size enterprises under budget costs and strict deadline is always challenging for software engineers. Therefore, we introduced an approach to design mid-size enterprise software by using the Waterfall model, which is one of the SDLC (Software Development Life Cycles), in a cost effective way. To fulfill research objectives, in this study, we developed mid-sized enterprise software named “BSK Management System” that assists enterprise software clients with information resource management and perform complex organizational tasks. Waterfall model phases have been applied to ensure that all functions, user requirements, strategic goals, and objectives are met. In addition, Rich Picture, Structured English, and Data Dictionary have been implemented and investigated properly in engineering manner. Furthermore, an assessment survey with 20 participants has been conducted to investigate the usability and performance of the proposed software. The survey results indicated that our system featured simple interfaces, easy operation and maintenance, quick processing, and reliable and accurate transactions.

Keywords: End-user Application Development, Enterprise Software Design, Information Resource Management, Usability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
24 A Simple Adaptive Atomic Decomposition Voice Activity Detector Implemented by Matching Pursuit

Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic

Abstract:

A simple adaptive voice activity detector (VAD) is implemented using Gabor and gammatone atomic decomposition of speech for high Gaussian noise environments. Matching pursuit is used for atomic decomposition, and is shown to achieve optimal speech detection capability at high data compression rates for low signal to noise ratios. The most active dictionary elements found by matching pursuit are used for the signal reconstruction so that the algorithm adapts to the individual speakers dominant time-frequency characteristics. Speech has a high peak to average ratio enabling matching pursuit greedy heuristic of highest inner products to isolate high energy speech components in high noise environments. Gabor and gammatone atoms are both investigated with identical logarithmically spaced center frequencies, and similar bandwidths. The algorithm performs equally well for both Gabor and gammatone atoms with no significant statistical differences. The algorithm achieves 70% accuracy at a 0 dB SNR, 90% accuracy at a 5 dB SNR and 98% accuracy at a 20dB SNR using 30d B SNR as a reference for voice activity.

Keywords: Atomic Decomposition, Gabor, Gammatone, Matching Pursuit, Voice Activity Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404
23 Test Data Compression Using a Hybrid of Bitmask Dictionary and 2n Pattern Runlength Coding Methods

Authors: C. Kalamani, K. Paramasivam

Abstract:

In VLSI, testing plays an important role. Major problem in testing are test data volume and test power. The important solution to reduce test data volume and test time is test data compression. The Proposed technique combines the bit maskdictionary and 2n pattern run length-coding method and provides a substantial improvement in the compression efficiency without introducing any additional decompression penalty. This method has been implemented using Mat lab and HDL Language to reduce test data volume and memory requirements. This method is applied on various benchmark test sets and compared the results with other existing methods. The proposed technique can achieve a compression ratio up to 86%.

Keywords: Bit Mask dictionary, 2n pattern run length code, system-on-chip, SOC, test data compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
22 A New Graphical Password: Combination of Recall & Recognition Based Approach

Authors: Md. Asraful Haque, Babbar Imam

Abstract:

Information Security is the most describing problem in present times. To cop up with the security of the information, the passwords were introduced. The alphanumeric passwords are the most popular authentication method and still used up to now. However, text based passwords suffer from various drawbacks such as they are easy to crack through dictionary attacks, brute force attacks, keylogger, social engineering etc. Graphical Password is a good replacement for text password. Psychological studies say that human can remember pictures better than text. So this is the fact that graphical passwords are easy to remember. But at the same time due to this reason most of the graphical passwords are prone to shoulder surfing. In this paper, we have suggested a shoulder-surfing resistant graphical password authentication method. The system is a combination of recognition and pure recall based techniques. Proposed scheme can be useful for smart hand held devices (like smart phones i.e. PDAs, iPod, iPhone, etc) which are more handy and convenient to use than traditional desktop computer systems.

Keywords: Authentication, Graphical Password, Text Password, Information Security, Shoulder-surfing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3497
21 Cryptanalysis of Yang-Li-Liao’s Simple Three-Party Key Exchange (S-3PAKE) Protocol

Authors: Hae-Soon Ahn, Eun-Jun Yoon

Abstract:

Three-party password authenticated key exchange (3PAKE) protocols are widely deployed on lots of remote user authentication system due to its simplicity and convenience of maintaining a human-memorable password at client side to achieve secure communication within a hostile network. Recently, an improvement of 3PAKE protocol by processing a built-in data attached to other party for identity authentication to individual data was proposed by some researchers. However, this paper points out that the improved 3PAKE protocol is still vulnerable to undetectable on-line dictionary attack and off-line dictionary attack.

Keywords: Three-party key exchange, 3PAKE, Passwordauthenticated key exchange, Network security, Dictionary attack

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
20 A Dictionary Learning Method Based On EMD for Audio Sparse Representation

Authors: Yueming Wang, Zenghui Zhang, Rendong Ying, Peilin Liu

Abstract:

Sparse representation has long been studied and several dictionary learning methods have been proposed. The dictionary learning methods are widely used because they are adaptive. In this paper, a new dictionary learning method for audio is proposed. Signals are at first decomposed into different degrees of Intrinsic Mode Functions (IMF) using Empirical Mode Decomposition (EMD) technique. Then these IMFs form a learned dictionary. To reduce the size of the dictionary, the K-means method is applied to the dictionary to generate a K-EMD dictionary. Compared to K-SVD algorithm, the K-EMD dictionary decomposes audio signals into structured components, thus the sparsity of the representation is increased by 34.4% and the SNR of the recovered audio signals is increased by 20.9%.

Keywords: Dictionary Learning, EMD, K-means Method, Sparse Representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2236
19 A Fast HRRP Synthesis Algorithm with Sensing Dictionary in GTD Model

Authors: R. Fan, Q. Wan, H. Chen, Y.L. Liu, Y.P. Liu

Abstract:

In the paper, a fast high-resolution range profile synthetic algorithm called orthogonal matching pursuit with sensing dictionary (OMP-SD) is proposed. It formulates the traditional HRRP synthetic to be a sparse approximation problem over redundant dictionary. As it employs a priori that the synthetic range profile (SRP) of targets are sparse, SRP can be accomplished even in presence of data lost. Besides, the computation complexity decreases from O(MNDK) flops for OMP to O(M(N + D)K) flops for OMP-SD by introducing sensing dictionary (SD). Simulation experiments illustrate its advantages both in additive white Gaussian noise (AWGN) and noiseless situation, respectively.

Keywords: GTD-based model, HRRP, orthogonal matching pursuit, sensing dictionary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
18 Query Reformulation Guided by External Resource for Information Retrieval

Authors: Mohammed El Amine Abderrahim

Abstract:

Reformulating the user query is a technique that aims to improve the performance of an Information Retrieval System (IRS) in terms of precision and recall. This paper tries to evaluate the technique of query reformulation guided by an external resource for Arabic texts. To do this, various precision and recall measures were conducted and two corpora with different external resources like Arabic WordNet (AWN) and the Arabic Dictionary (thesaurus) of Meaning (ADM) were used. Examination of the obtained results will allow us to measure the real contribution of this reformulation technique in improving the IRS performance.

Keywords: Arabic NLP, Arabic Information Retrieval, Arabic WordNet, Query Expansion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1067
17 Two Undetectable On-line Dictionary Attacks on Debiao et al.’s S-3PAKE Protocol

Authors: Sung-Bae Choi, Sang-Yoon Yoon, Eun-Jun Yoon

Abstract:

In 2011, Debiao et al. pointed out that S-3PAKE protocol proposed by Lu and Cao for password-authenticated key exchange in the three-party setting is vulnerable to an off-line dictionary attack. Then, they proposed some countermeasures to eliminate the security vulnerability of the S-3PAKE. Nevertheless, this paper points out their enhanced S-3PAKE protocol is still vulnerable to undetectable on-line dictionary attacks unlike their claim.

Keywords: Authentication, 3PAKE, password, three-party key exchange, network security, dictionary attacks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1247
16 Graphical Password Security Evaluation by Fuzzy AHP

Authors: Arash Habibi Lashkari, Azizah Abdul Manaf, Maslin Masrom

Abstract:

In today's day and age, one of the important topics in information security is authentication. There are several alternatives to text-based authentication of which includes Graphical Password (GP) or Graphical User Authentication (GUA). These methods stems from the fact that humans recognized and remembers images better than alphanumerical text characters. This paper will focus on the security aspect of GP algorithms and what most researchers have been working on trying to define these security features and attributes. The goal of this study is to develop a fuzzy decision model that allows automatic selection of available GP algorithms by taking into considerations the subjective judgments of the decision makers who are more than 50 postgraduate students of computer science. The approach that is being proposed is based on the Fuzzy Analytic Hierarchy Process (FAHP) which determines the criteria weight as a linear formula.

Keywords: Graphical Password, Authentication Security, Attack Patterns, Brute force attack, Dictionary attack, Guessing Attack, Spyware attack, Shoulder surfing attack, Social engineering Attack, Password Entropy, Password Space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
15 Development of Multimodal e-Slide Presentation to Support Self-Learning for the Visually Impaired

Authors: Rustam Asnawi, Wan Fatimah Wan Ahmad

Abstract:

Currently electronic slide (e-slide) is one of the most common styles in educational presentation. Unfortunately, the utilization of e-slide for the visually impaired is uncommon since they are unable to see the content of such e-slides which are usually composed of text, images and animation. This paper proposes a model for presenting e-slide in multimodal presentation i.e. using conventional slide concurrent with voicing, in both languages Malay and English. At the design level, live multimedia presentation concept is used, while at the implementation level several components are used. The text content of each slide is extracted using COM component, Microsoft Speech API for voicing the text in English language and the text in Malay language is voiced using dictionary approach. To support the accessibility, an auditory user interface is provided as an additional feature. A prototype of such model named as VSlide has been developed and introduced.

Keywords: presentation, self-learning, slide, visually impaired

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1176
14 Providing Medical Information in Braille: Research and Development of Automatic Braille Translation Program for Japanese “eBraille“

Authors: Aki Sugano, Mika Ohta, Mineko Ikegami, Kenji Miura, Sayo Tsukamoto, Akihiro Ichinose, Toshiko Ohshima, Eiichi Maeda, Masako Matsuura, Yutaka Takao

Abstract:

Along with the advances in medicine, providing medical information to individual patient is becoming more important. In Japan such information via Braille is hardly provided to blind and partially sighted people. Thus we are researching and developing a Web-based automatic translation program “eBraille" to translate Japanese text into Japanese Braille. First we analyzed the Japanese transcription rules to implement them on our program. We then added medical words to the dictionary of the program to improve its translation accuracy for medical text. Finally we examined the efficacy of statistical learning models (SLMs) for further increase of word segmentation accuracy in braille translation. As a result, eBraille had the highest translation accuracy in the comparison with other translation programs, improved the accuracy for medical text and is utilized to make hospital brochures in braille for outpatients and inpatients.

Keywords: Automatic Braille translation, Medical text, Partially sighted people.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1223
13 Identification of Non-Lexicon Non-Slang Unigrams in Body-enhancement Medicinal UBE

Authors: Jatinderkumar R. Saini, Apurva A. Desai

Abstract:

Email has become a fast and cheap means of online communication. The main threat to email is Unsolicited Bulk Email (UBE), commonly called spam email. The current work aims at identification of unigrams in more than 2700 UBE that advertise body-enhancement drugs. The identification is based on the requirement that the unigram is neither present in dictionary, nor is a slang term. The motives of the paper are many fold. This is an attempt to analyze spamming behaviour and employment of wordmutation technique. On the side-lines of the paper, we have attempted to better understand the spam, the slang and their interplay. The problem has been addressed by employing Tokenization technique and Unigram BOW model. We found that the non-lexicon words constitute nearly 66% of total number of lexis of corpus whereas non-slang words constitute nearly 2.4% of non-lexicon words. Further, non-lexicon non-slang unigrams composed of 2 lexicon words, form more than 71% of the total number of such unigrams. To the best of our knowledge, this is the first attempt to analyze usage of non-lexicon non-slang unigrams in any kind of UBE.

Keywords: Body Enhancement, Lexicon, Medicinal, Slang, Unigram, Unsolicited Bulk e-mail (UBE)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1211
12 Learning an Overcomplete Dictionary using a Cauchy Mixture Model for Sparse Decay

Authors: E. S. Gower, M. O. J. Hawksford

Abstract:

An algorithm for learning an overcomplete dictionary using a Cauchy mixture model for sparse decomposition of an underdetermined mixing system is introduced. The mixture density function is derived from a ratio sample of the observed mixture signals where 1) there are at least two but not necessarily more mixture signals observed, 2) the source signals are statistically independent and 3) the sources are sparse. The basis vectors of the dictionary are learned via the optimization of the location parameters of the Cauchy mixture components, which is shown to be more accurate and robust than the conventional data mining methods usually employed for this task. Using a well known sparse decomposition algorithm, we extract three speech signals from two mixtures based on the estimated dictionary. Further tests with additive Gaussian noise are used to demonstrate the proposed algorithm-s robustness to outliers.

Keywords: expectation-maximization, Pitman estimator, sparsedecomposition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603
11 How Efficiency of Password Attack Based on a Keyboard

Authors: Hsien-cheng Chou, Fei-pei Lai, Hung-chang Lee

Abstract:

At present, dictionary attack has been the basic tool for recovering key passwords. In order to avoid dictionary attack, users purposely choose another character strings as passwords. According to statistics, about 14% of users choose keys on a keyboard (Kkey, for short) as passwords. This paper develops a framework system to attack the password chosen from Kkeys and analyzes its efficiency. Within this system, we build up keyboard rules using the adjacent and parallel relationship among Kkeys and then use these Kkey rules to generate password databases by depth-first search method. According to the experiment results, we find the key space of databases derived from these Kkey rules that could be far smaller than the password databases generated within brute-force attack, thus effectively narrowing down the scope of attack research. Taking one general Kkey rule, the combinations in all printable characters (94 types) with Kkey adjacent and parallel relationship, as an example, the derived key space is about 240 smaller than those in brute-force attack. In addition, we demonstrate the method's practicality and value by successfully cracking the access password to UNIX and PC using the password databases created

Keywords: Brute-force attack, dictionary attack, depth-firstsearch, password attack.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3116
10 Automatic Building an Extensive Arabic FA Terms Dictionary

Authors: El-Sayed Atlam, Masao Fuketa, Kazuhiro Morita, Jun-ichi Aoe

Abstract:

Field Association (FA) terms are a limited set of discriminating terms that give us the knowledge to identify document fields which are effective in document classification, similar file retrieval and passage retrieval. But the problem lies in the lack of an effective method to extract automatically relevant Arabic FA Terms to build a comprehensive dictionary. Moreover, all previous studies are based on FA terms in English and Japanese, and the extension of FA terms to other language such Arabic could be definitely strengthen further researches. This paper presents a new method to extract, Arabic FA Terms from domain-specific corpora using part-of-speech (POS) pattern rules and corpora comparison. Experimental evaluation is carried out for 14 different fields using 251 MB of domain-specific corpora obtained from Arabic Wikipedia dumps and Alhyah news selected average of 2,825 FA Terms (single and compound) per field. From the experimental results, recall and precision are 84% and 79% respectively. Therefore, this method selects higher number of relevant Arabic FA Terms at high precision and recall.

Keywords: Arabic Field Association Terms, information extraction, document classification, information retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1325