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Abstract—This work presents a new phonetic transcription system
based on a tree of hierarchical pronunciation rules expressed as
context-specific grapheme-phoneme correspondences. The tree is
automatically inferred from a phonetic dictionary by incrementally
analyzing deeper context levels, eventually representing a minimum
set of exhaustive rules that pronounce without errors all the words in
the training dictionary and that can be applied to out-of-vocabulary
words.

The proposed approach improves upon existing rule-tree-based
techniques in that it makes use of graphemes, rather than letters,
as elementary orthographic units. A new linear algorithm for the
segmentation of a word in graphemes is introduced to enable out-
of-vocabulary grapheme-based phonetic transcription.

Exhaustive rule trees provide a canonical representation of the
pronunciation rules of a language that can be used not only to
pronounce out-of-vocabulary words, but also to analyze and compare
the pronunciation rules inferred from different dictionaries. The
proposed approach has been implemented in C and tested on Oxford
British English and Basic English. Experimental results show that
grapheme-based rule trees represent phonetically sound rules and
provide better performance than letter-based rule trees.

Keywords—Automatic phonetic transcription; pronunciation rules;
hierarchical tree inference.

I. INTRODUCTION

AUTOMATIC text pronunciation is an important process-
ing task in computational linguistics. A lot of work

has been done in the last decade in the field of letter-to-
sound transformations. In particular, the development of text-
to-speech (TTS) systems has driven the research in automatic
phonetic transcription. In fact, processing modules for aligning
written letters to corresponding phonemes (i.e., meaningful
sounds) are always among the first tasks in the work-flow of
TTS systems [15], [9].

Current approaches to automatic phonetic transcription of
written text can be mainly classified in rule-based and data-
driven approaches [5], [6], [8].

Rule-based approaches (that were the first to be developed)
follow the methodological lines of generative grammars rooted
in computational linguistics [3], formalizing pronunciation
production rules of the type A〈B〉C → P , whose semantic is:
substring B is mapped to phoneme P when its left context is A

and its right context is C. From a computational point of view,
rules are taken in input and used by the TTS system to derive
the phonetic transcription of arbitrary input texts. Needless to
say, the accuracy of rule-based approaches strongly depends
on the quality of the rules. Deriving meaningful rules that
capture the complex relationship between written text and
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pronunciation is a challenging task by itself (that also involves
theoretical issues) especially in languages rich in spelling
irregularities and exceptions, like English. To handle, or
overcome, this problem different methods have been devised,
mainly falling in the category of data-driven approaches.

Data-driven methods try to exploit the knowledge which is
implicit in pronunciation databases, such as dictionaries with
phonetic transcriptions. The wider the size of the dictionary,
the more effective the method. The main challenge here is
to infer the phonetic transcription of words that are not in
the dictionary. This issue is known in literature as the out-of-
vocabulary (OOV) problem.

A possible solution to OOV pronunciation relies on sub-
string similarities: the OOV word is split into substrings that
are matched to substrings belonging to the dictionary (i.e., with
known pronunciation). The result of this matching process is
a pronunciation lattice, i.e., a graph data structure used to
represent the matching of the input string with the dictionary
(sub)strings. In fact, the nodes of the graph represent letters
W (i) of the input string W and are labeled by phonemes
associated with them, while an arc between node i and node
j represents a matching (sub)string that starts with W (i)
and ends with W (j). Each arc is also labeled with the
phonetic transcription of the substring it represents, and with
a frequency count. Paths from the beginning to the end of the
lattice are scored (e.g., by the sum of frequencies of each arc)
and best paths are taken as candidates for pronunciation. This
type of algorithmic technique (called pronunciation by analogy
by Dedina and Nusbaum [7]) is basically heuristic: Different
ways to score the paths can lead to different paths. A multi-
strategy approach that takes into account different possible
scoring systems has been proposed to increase efficiency in
the decision process [5].

Another technique for automatic phonetic transcription ap-
plied to the OOV problem entails constructing the orthographic
neighborhood of the given OOV word (i.e., the set of in-
vocabulary words sufficiently close to it according to a given
distance metric) and deriving the pronunciation for the OOV
word from an alignment procedure of phonetic transcriptions
of the orthographic neighborhood [2].

A different kind of data-driven solutions has been recently
proposed that makes use of hidden Markov models (HMM)
to derive a grapheme-to-phoneme conversion [16]. In the
HMM approach, phonemes represent hidden states, transitions
between hidden states represent the probability that a phoneme
is followed by another one, and graphemes are derived as
observations, according to the HMM generative model and
to the probability distributions associated to each state (that
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have to be learned during the training phase).
A hybrid approach between data-driven and rule-base tech-

niques consists of automatically extracting a set of rules from a
phonetic dictionary, taking into account left and right contexts
in order to reduce pronunciation ambiguity [4], [10], [11], [13],
[14], [17]. In particular, the algorithm proposed by Hochberg
et al. [10] is based on the alignment between characters and
phonemes and it proceeds by inducing a hierarchical tree of
rules that become progressively more specific at deeper levels
of the tree as larger contexts are considered. Starting from level
1, that provides a context-free pronunciation rule for the given
letter, the algorithm proceeds by choosing a context-letter at a
time and by adding child nodes to represent context-specific
exceptions to the context-free rule. At each step, the most
significant incremental context is chosen. Daelemans et al.
[4] developed a similar algorithm that constructs a rule tree
by enforcing a fixed criterion (based on static information-
theoretical analysis) for choosing context letters.

This paper proposes a similar approach that infers a tree
of hierarchical pronunciation rules from a phonetic dictio-
nary, but it uses graphemes in place of letters. The result
is a set of grapheme-to-phoneme (rather than letter-to-sound)
associations that are directly comparable with those used
in generative grammars. Moreover, the rule tree provides a
canonical representation that can be used to analyze the empir-
ical pronunciation rules (and exceptions) of a given language
and to compare the rules of different languages, as exemplified
in Section III-F. The depth of the tree can be limited to obtain
different tradeoffs between size and accuracy. If no limits are
imposed, the tree represents exhaustive pronunciation rules
that read without errors all the words in the training dictionary.

The proposed approach has been implemented in C and
compared with the algorithm by Daelemans [4] in terms of
accuracy, efficiency, and phonetic soundness of the inferred
rules. Finally, the algorithm has been applied to infer and
compare the empirical pronunciation rules of British English
and Basic English [12].

II. AUTOMATIC TEXT PRONUNCIATION

Before outlining the proposed approach to automatic text
pronunciation, operative definitions need to be introduced of
the terms ’phoneme’, ’grapheme’ and ’phonogram’, that are
extensively used hereafter.

A phoneme can be defined as the smallest phonetic unit
capable of causing a distinction in meaning. All the phonemes
of a given language can be associated with a subset of the
International Phonetic Alphabet (IPA)1. IPA symbols are then
used to denote the corresponding phonemes. When ASCII
characters are used in place of the standard IPA notation,
phonemes are represented within slashes (e.g., /@/).

A grapheme is a sequence of one or more characters
that may be pronounced as a single phoneme. Graphemes
are usually represented within angle brackets. For instance,
according to our definition, 〈kn〉 is an English grapheme, since
in many words it is pronounced as a single phoneme (/n/ as in

1International Phonetic Association, http://www2.arts.gla.ac.uk/IPA/index.html,
1996

’known’). However, 〈k〉 and 〈n〉 are also English graphemes
by themselves, since they occur separately in many words.
Moreover, even if they appear together, they may be treated
as separate graphemes as in the composite word ’banknote’,
where ’kn’ has to be regarded as 〈k〉〈n〉 and pronounced /k//n/.

A phonogram is a grapheme-phoneme pair where the
grapheme is one of the possible orthographic representations
of the phoneme and the phoneme is one of the possible pronun-
ciations of the grapheme. Since in many languages there is no
1-1 correspondence between graphemes and phonemes, there
are many more phonograms than graphemes and phonemes.

The proposed algorithm starts from: i) the set of the ASCII
representations of the phonemes of the target language, ii) the
set of the graphemes of the target language, iii) a conventional
table of phonograms and iv) a consistent phonetic dictionary,
i.e., a list of words with corresponding phonetic transcriptions.

The phonetic dictionary is parsed and used as a training set
to build a tree of statistical pronunciation rules that can be
eventually applied to OOV words.

    A. Theoretical Foundation
According to our definition of grapheme, the segmentation

of a word in graphemes is induced by its pronunciation
through the phonogram table. For instance, given the English
word ’known’ and its phonetic transcription /n//@U//n/, the
phonogram table suggests that the word is composed of the
graphemes 〈kn〉〈ow〉〈n〉 that are aligned to the omologous
phonemes. Similarly, given the English word ’banknote’ and
its phonetic transcription /b//&//N//k//n//@U//t/, the corre-
sponding segmentation is 〈b〉〈a〉〈n〉〈k〉〈n〉〈o〉〈t〉〈e〉. These two
examples point out that graphemes are not uniquely deter-
mined by the orthography (for instance, ’kn’ is split into
〈k〉〈n〉 in ’banknote’ and taken as a single grapheme 〈kn〉 in
’known’) and that words may contain silent graphemes (such
as 〈e〉 in ’banknote’). Given a word, its phonetic transcription
and a phonogram table, its segmentation in graphemes can be
determined by means of a branch and bound decision process.

Since the aim of this work is building a tree of pronunciation
rules to be possibly applied to OOV words, it is impossible to
rely on the knowledge of the phonetic transcription of a word
to obtain its segmentation in graphemes. Rather, it is necessary
to obtain first the graphemes from the orthography, and then
the phonetic transcription from the sequence of graphemes.
This can be done without ambiguity by extending the set of
graphemes as outlined in the following.

A grapheme x contains a grapheme y if y is a substring
(i.e., a subset of contiguous characters) of x. In this case, y is
said to be a sub-grapheme of x. The sequence of graphemes
P = (y1, y2, ..., yn) is a partition of x if and only if x can be
obtained from the concatenation of y1, y2, ..., yn.

Two graphemes x and y are overlapping if the tail (i.e., the
last part) of x is equal to the head (i.e., the first part) of y. For
instance 〈kn〉 contains 〈k〉 and 〈n〉, P=(〈k〉,〈n〉) is a partition
of 〈kn〉, while 〈ss〉 and 〈sh〉 are overlapping graphemes.

G is a complete grapheme set if and only if, for each pair
of overlapping graphemes x and y in G, there is a grapheme
z in G that contains both x and y. For instance, if G contains
〈ss〉 and 〈sh〉, it is not complete unless it also contains 〈ssh〉.
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P is a complete phonogram table if and only if the pho-
netic transcriptions associated with each grapheme include all
combinations of the phonemes associated with the graphemes
of its possible partitions. In our example, a complete phono-
gram table associates to grapheme 〈kn〉 not only its single-
phoneme prononciation /n/, but also the concatenation of the
possible phonemes associated with 〈k〉 and 〈n〉, such as /k//n/.
Hereafter, the concatenation of the phonemes associated with
a single grapheme is represented by a dot, and the resulting
sequence of phonemes is treated as a single phoneme (/k.n/).

A partition P of a given word w, defined over grapheme
set G, is a said to be a minimum partition for w if it contains
the minimum number of graphemes.

Theorem 1. Given a word w and a complete grapheme set G,
the minimum partition P of w defined over G is unique and
it can be incrementally constructed in linear time during the
parsing of w.

Proof. The uniqueness of the minimum partition P can be
demonstrated by assuming, by contradiction, that there are
two different minimum partitions (namely, P1 and P2) of the
same word w. In order for P1 to be different from P2 there
must be at least a character c of w that is considered to be
part of different graphemes in P1 and P2 (namely, g1 and
g2). Since the two graphemes cover the same character c of
w they must be either contained in each other or overlapping.
If g1 is contained in g2 (or viceversa) then P1 (or P2) is not
a minimum partition, that’s a contradiction. If g1 and g2 are
overlapping there must be in G a grapheme that contains both
of them, so that neither P1 nor P2 are minimum partitions,
leading ot a contradiction.
The minimum partition can be determined in linear time
by using a keyword tree [1] to represent all the graphemes
in G: Edges are associated with letters; existing graphemes
(keywords) are associated with paths from the root; graphemes
with the same prefix share the first part of their paths. The
letters of the word are read one at the time, following the
corresponding path on the tree. When the path cannot be
further extended the grapheme corresponding with the path
is added to P and the traversal is restarted from the root of
the tree.

Theorem 2. Given a word w, a complete grapheme set G,
a complete phonogram table P and a minimum partition P
of w, the correct pronunciation of w is one of the possible
configurations of the phonemes associated with the graphemes
of P according to P.

Proof. If g is a grapheme in P , then there are no larger
graphemes covering the same letters of w or part of them,
or otherwise P would not be a minimum partition. By con-
struction, the extended phonogram table P contains all possible
pronunciations of g, including its correct pronunciation in the
context of w. Since this is true for all the graphemes in P ,
the correct pronunciation of w is one of the configurations of
the phonemes associated with the graphemes of P according
to P.

Theorems 1 and 2 provide the theoretical basis for our
approach. In fact, they allow us to: i) split a word in graphemes

phonetic
dictionary

extend

graphemes phonemes phonograms

build rule tree
tree depth

phonetic
transcription

rule tree

text
pronounce

Fig. 1. Tool flow of the proposed approach.

independently of its pronunciation, ii) express pronunciation
rules in terms of context-specific grapheme to phoneme associ-
ations and iii) obtain the pronunciation of a word by applying
the pronunciation rules to the sequence of its graphemes.

It is worth noting that the complete grapheme set, the
complete phonogram table and the corresponding phoneme
set are automatically generated in a pre-processing step by
extending the grapheme set, the phonogram table and the
phoneme set provided by the user. The usage of the extended
data structures in place of the original ones is needed to meet
the completeness requirements of Theorems 1 and 2. However,
extended data structures are kept transparent to the user and the
phonetic transcription provided by the algorithm is coherent
with the original grapheme set and phonogram table. The
proposed tool flow is schematically represented in Figure 1.

    B. Rule Tree Structure

Pronunciation rules are represented by means of a tree
whose nodes are associated with the graphemes to be pro-
nounced and with their contexts. The complete context of a
grapheme is the word it belongs to. A phonetic dictionary
uses the entire context to pronounce each grapheme. However,
once a word is partitioned in graphemes, the context of
each grapheme can be incrementally specified by looking
at the surrounding graphemes one at the time, according to
a language-specific priority. Information theoretical analysis
of many languages demonstrated that the contribution of
a context grapheme to the disambiguation of the phonetic
transcription decreases with its distance from the grapheme to
be pronounced. Moreover, right-context graphemes are more
important than left-context graphemes at the same distance
[4]. Hence, context graphemes are alternatively taken from
the list of graphemes that follow (right-context) and precede
(left-context) the current one in the partition of the word.
The context of 〈kn〉 in ’banknote’ would then be incremen-
tally expressed as: 〈kn〉〈o〉 (level 1), 〈n〉〈kn〉〈o〉 (level 2),
〈n〉〈kn〉〈o〉〈t〉 (level 3), eventually getting to the entire word
〈b〉〈a〉〈n〉〈kn〉〈o〉〈t〉〈e〉 (level 6).

The corresponding tree is partially represented in Figure 2.
At each node of the tree, a statistical pronunciation rule is
provided based on the partial context information available at
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kn

kn o

kn e−

kn e

kn on

/n/

<kn>

root

<o><e>

/n//k.n/

<z><a>

<n><−>

/k.n//n/

0

1

2

Fig. 2. Tree-structured representation of the pronunciation rules of English
grapheme 〈kn〉.

that level. For instance, in English the most likely pronunci-
ation of 〈kn〉 is /n/ at level 0, but it may be /k.n/ at level 1
(if the right context is 〈e〉) and at level 2 (if the right context
is 〈o〉 and the left context is 〈n〉). It is worth noting that an
empty grapheme 〈-〉 is used to represent word boundaries in
the context tree. For instance, the left-hand side leaf node of
the rule tree of Figure 2 represents the pronunciation of 〈kn〉
when it appears at a beginning of a word (i.e., when its left
context is an empty grapheme) and its right context is 〈e〉, like
in ’knelt’.

The rule tree is irredundant, in that it contains a node if and
only if it is strictly required to represent a context-dependent
exception to the pronunciation rule expressed by its parent
node, and canonical, in that it is uniquely determined by the
rules it represents.

For instance, level-1 node ’kne’ of figure 2 represents an
exception to the pronunciation rule of its parent node. Its
level-2 child (’-kne’) represents a further exception, even if
it provides the same pronunciation of the level-0 node. On the
right-hand side of the tree, level-1 node ’kno’ is associated
with the same phoneme of its level-0 parent. Hence, it doesn’t
represent an exception by itself, but it is strictly required
anyway to lead to a level-2 exception.

The sub-tree reported in figure 2 represents the following
hierarchical pronunciation rules:

grapheme and context pronunciation
〈kn〉 /n/

〈kn〉e /k.n/
-〈kn〉e /n/
n〈kn〉o /k.n/

It is worth noting that there is no rule associated with node
’kno’, since it doesn’t represent an exception, as discussed
above.

    C. Rule-Tree Construction and Characterization
The rule tree is incrementally constructed and characterized,

level by level, on the basis of the training phonetic dictionary.
At each iteration the entire dictionary is parsed, each word is
segmented into maximum-size graphemes and the graphemes
are aligned with the phonemes in the corresponding phonetic
transcription. The alignment is determined by means of a
branch-and-bound procedure driven by the complete phono-
gram table. Context-specific grapheme-phoneme associations

are deduced from the alignment and used first to update the
structure of the tree, and then to update the leaf-node statistics.
Reminding that each node represents a grapheme in a partially-
specified context, node statistics express the context-dependent
probability distribution of the phonemes. A grapheme g that
appears in a given word of the training dictionary aligned with
phoneme p contributes to node statistics by incrementing the
counter associated with phoneme p in the node corresponding
to g and to its partial context (that is found by traversing the
rule tree from its root, taking at level 0 the branch associated
with g, and at subsequent levels the branches associated with
its context graphemes). A node counter is also incremented
to be used to compute phoneme frequencies from phoneme
counts.

The tree construction algorithm can be outlined as follows:

1) Create a root node with a null grapheme associated with
a silent phoneme.

2) Add level-0 child nodes associated with all the
graphemes in G.

3) Parse the dictionary and update level-0 (context-
independent) statistics.

4) Associate the most-likely pronunciation to level-0 nodes.
5) For k from 1 to tree depth

a) Parse the dictionary and add level-k nodes (associ-
ated with level-k context graphemes) whenever the
context-specific pronunciation is different from the
most likely level-(k-1) pronunciation.

b) Parse the dictionary and update level-k node statis-
tics

c) Associate the most-likely pronunciation to level-k
nodes.

    D. Rule-Tree Application

Once the rule tree has been inferred from a phonetic
dictionary, it can be applied to pronounce any word (say, w)
according to the following procedure:

1) find a minimum partition P of w

2) for each grapheme g in P

a) traverse the rule tree from the root, following the
path corresponding to g and to its incremental
context, until a node n is reached that has no
children associated with the next context grapheme

b) use the phoneme associated with node n to pro-
nounce g

3) return the phonetic transcription of w splitting composite
phonemes into separate IPA phonemes

Consider, for instance, English word w=’known’. Its minimum
partition is:

P=(〈kn〉,〈ow〉,〈n〉).

Pronouncing the first grapheme, 〈kn〉, entails following
the path associated with its incremental context, that is:
root→〈kn〉→〈ow〉→〈-〉→〈n〉. The traversal of the rule tree,
however, stops at level-0 node ’kn’, since it has no children
(i.e., no exceptions) associated with context grapheme 〈ow〉.
Hence, the pronounciation of 〈kn〉 is /n/.
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The pronunciation of 〈kn〉 in ’banknote’ can be found by
following the path:

root→〈kn〉→〈o〉→〈n〉→〈t〉→〈a〉→〈e〉→〈b〉

that stops at node ’nkno’, associated with phoneme /k.n/.
Finally, the context path for grapheme 〈kn〉 in ’knelt’ is:

root→〈kn〉→〈e〉→〈-〉→〈l〉→〈-〉→〈t〉

that stops at ’-kne’, associated with phoneme /n/.

III. EXPERIMENTAL RESULTS

The proposed methodology (hereafter called Grapheme-
based Rule Tree, GRT) was implemented in C and applied
to British English and Basic English [12]. The approach by
Daelemans et al. [4] (hereafter denoted by LRT, that stays for
Letter-based Rule Tree) was also implemented and used for
comparison. The details of the two phonetic dictionaries used
for characterization and validation are outlined in the following
before discussing the experiments and reporting the results.

    A. British English

British English pronunciation rules were inferred from
an electronic version of the Oxford Dictionary, called CU-
VOLAD2, available from the Oxford Text Archive. The CU-
VOLAD contains more than 70,000 words, including plural
nouns, conjugated verbs, proper names and acronyms. Our
training dictionary was obtained by removing proper names
and acronyms from the dictionary, reducing to about 60,000
words.

The phoneme set was provided as a list of English IPA sym-
bols with the same ASCII notation used in the CUVOLAD.

The list of English graphemes and the phonogram table
were derived from Orton-Gillingham’s (OG) chart based on
the pioneer work of Samuel T. Orton (1925) on dyslexia.
The OG chart contains 71 graphemes and the 128 most
common grapheme-to-phoneme correspondences. Grapheme
〈eau〉, occurring in many words taken from French, and all
double consonants were added to the grapheme set. The OG
chart was then incremented by adding the new graphemes and
their unusual pronunciations found on the CUVOLAD.

The phoneme set, the grapheme set and the phonogram table
described so far were provided to the tool and automatically
extended to meet completeness requirements. In particular, two
new graphemes were added in this phase: 〈pph〉 (containing
the overlapping graphemes 〈pp〉 and 〈ph〉) and 〈ssh〉 (contain-
ing the overlapping graphemes 〈ss〉 and 〈sh〉).

    B. Basic English

Basic English is an artificial subset of English, containing
only 850 words, proposed by C. K. Ogden in 1930 as an
international second language [12]. A training phonetic dic-
tionary for Basic English was constructed by adding plural
nouns and conjugated verbs to the original list of 850 words3.

2CUVOLAD: ”Computer Usable Version of the Oxford Advanced Lerner’s
Dictionary”, ftp://ota.ox.ac.uk/pub/ota/public/dicts/710/

3http://www.basic-english.org
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The phonetic transcriptions for the resulting 1490 words were
taken from the CUVOLAD.

In this way a reduced training dictionary was obtained
defined over the same sets of phonemes, graphemes and
phonograms used for the Oxford British English.

    C. In-Vocabulary Accuracy

In-vocabulary (IV) accuracy was tested by using the entire
CUVOLAD to build the rule trees and by applying them to the
same dictionary. Figure 3 shows the number of rules and the
IV error rates provided by GRT and LRT for different values of
the tree depth. The complete GRT is slightly smaller than the
complete LRT, both in terms of rules (19916 against 20548)
and in terms of levels (24 against 26). More important, for a
given tree depth GRT is more accurate than LRT. Accuracy
is expressed in terms of word error rate (WER), which is
the relative frequency of mispronounced words, and phoneme
error rate (PhER), which is the relative frequency of wrong
phonemes (including substitutions, insertions and deletions).

Limiting the tree depth provides the flexibility of tuning
the tradeoff between pronunciation accuracy and rule number,
as shown in Figure 4. Although GRT is consistently more
efficient than LRT, the main advantage of the grapheme-based
approach is the phonetic soundness of the inferred rules. For
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Fig. 5. OOV accuracy as a function of the vocabulary sampling rate for
different depths of the rule trees.

instance, the correct pronunciation of ’watch’ (i.e., /w//0//tS/)
is achieved by LRT by associating 〈t〉 with /tS/ and considering
〈c〉〈h〉 as silent letters. On the contrary, GRT recognizes
〈tch〉 as a grapheme to be pronounced /tS/. Similarly, in
’through’ (i.e., /T//r//u/) GRT recognizes grapheme 〈ough〉 to
be pronounced /u/, while LRT arbitrarely associates phoneme
/u/ to one of the 4 letters of the grapheme, considering all the
others as silent letters.

    D. Out-of-Vocabulary Accuracy

Comparative results of OOV accuracy are reported in Figure
5 for different depths of the rule trees: Level 0 corresponds
to a flat tree that takes into account only the grapheme/letter
under pronunciation without any context, while full depth
corresponds to an exhaustive rule tree that takes into account
the entire context and makes no pronunciation errors on the
training dictionary.

OOV experiments were conducted by using a sample of
entries randomly taken from the Oxford dictionary to build
the pronunciation rule trees and then applying the rules to
the remaining part of the dictionary. Results are plotted as
functions of the sampling rate, that represents the relative
size of the vocabulary used for characterization. The accuracy
is expressed in terms of OOV-PhER, that is the rate of the
errors made on the pronunciation of each OOV phoneme.
Each experiment was repeated three times with different
seeds of the random number generator in order to test the
statistical significance of the results. The marks representing
the outcomes of the three trials of each experiment are almost
coincident in Figure 5.

As expected, the higher the sampling rate, the lower the
OOV error. In fact, all the curves in Figure 5 have a decreasing
trend. Moreover, the effect of the sampling rate (i.e., the slope
of the curves) grows with the depth of the rule tree, since
larger training sets are required to characterize more complex
rules.

The improved accuracy of GRT in comparison with LRT is
apparent for the trees having limited depth. This demonstrates
that pronunciation rules based on graphemes are more suitable
to be generalized than those based on single letters. Full-depth

LRT and GRT achieve a comparable OOV accuracy, but GRT
requires fewer levels and rules than LRT, as shown in the
previous sections.

    E. Computational Complexity and Performance

The computational complexity of the tree-construction al-
gorithm depends on the size of the training dictionary, on the
target depth of the tree, on the average word lenght and on the
average complexity of the pronunciation rules to be inferred.
In fact, the tree construction algorithm has an inner loop that
iterates on the words of the training dictionary and an outer
loop that iterates on the tree levels. The complexity of the
body of the inner loop depends, in its turn, on the number of
graphemes in the word (since each grapheme may give rise
to a new rule), on the depth of the current level (since the
previously constructed tree has to be traversed before adding
a new rule) and on the regularity of the pronunciation (since
new rules need to be added to the tree if and only if they
represent exceptions to the rules already encountered). Since
the number of new exceptions decreases for increasing tree
depths, the lower number of rules to be added at deeper levels
compensates for the higher complexity of tree traversal. As a
result, the CPU time grows almost linearly with the number
of levels and with the number of words. The experiment
conducted on a 2.8GHz Pentium 4 with 1GB of RAM running
Linux reported a CPU time of 69.8s and 75.7s, respectively,
for the construction of complete GRT and LRT from the
CUVOLAD. The higher CPU time required for constructing
the LRT is mainly explained by the higher number of levels
in the complete tree. The average CPU time per level was of
about 2.9s, with an average performance of about 48μs per
word per level.

It is worth mentioning that tree construction is not a
performance-critical task, since it can be performed once
and for all and it doesn’t impact run-time pronunciation
performance.

Using a rule tree to pronounce a word entails a preliminary
partitioning of the word in graphemes/letters and a traversal
of the rule tree for each of them. Word partitioning is a linear
task, whose complexity is proportional to the length of the
word, while pronunciation complexity depends on the number
of graphemes and on the average depth of the rules needed
to pronounce them. The words in the CUVOLAD have on
average 8.30 letters and 6.84 graphemes, while the average
depth of the pronunciation rules is 1.63 for GRT and 1.89 for
LRT. The overall proncunciation complexity per word results
in 11.13 for GRT against 15.72 for LRT. In our experiments,
the average CPU time required to pronounce a word was
19.3μs for GRT and 20.7μs for LRT. The difference between
the two methods is lower in terms of CPU time than in terms
of pronunciation complexity because of the flattening effect of
parsing and partitioning phases, which take the same amout
of CPU time regardless of the rule tree.

    F. Application

The proposed methodology was used to compare the em-
pirical pronunciation rules of Oxford and Basic English.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:2, 2008 

279International Scholarly and Scientific Research & Innovation 2(2) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

2,
 2

00
8 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

75
6.

pd
f



0 5 10 15 20 25
Tree depth

0

0.2

0.4

0.6

0.8
E

rr
or

 r
at

e
WER(Oxford,Oxford)
PhER(Oxford,Oxford)
WER(Basic,Basic)
PhER(Basic,Basic)
WER(Basic,Oxford)
PhER(Basic,Oxford)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Number of rules

0

0.2

0.4

0.6

0.8

E
rr

or
 r

at
e

WER(Oxford,Oxford)
PhER(Oxford,Oxford)
WER(Basic,Basic)
PhER(Basic,Basic)

(a) (b)

Fig. 6. Experimental results: (a) Pronunciation error rate vs depth of the rule tree, (b) Pronunciation error rate vs number of rules.

Figure 6.a plots the WER (denoted by circles) and the
PhER (denoted by asteriscs) against the maximum depth
of the rule tree. Figure 6.b plots WER and PhER against
the number of rules in the tree. As expected, the WER is
always higher than the corresponding PhER. Each point in
the graph represents a different experiment characterized by
a given training dictionary, a given context depth and a given
validation dictionary.

Solid lines represent the results obtained by using the
CUVOLAD both as training dictionary and as validation
dictionary. Dashed lines represent the results obtained on
Basic English dictionary. The exhaustive rule tree for the
CUVOLAD has 24 levels and represents 19,916 rules (to
pronounce 410,137 graphemes), while the exhaustive rule
tree for the Basic English dictionary has only 9 levels and
represents only 822 rules (to pronounce 7,042 graphemes).
Hence, Basic English is made of words with a more regular
pronunciation than the average Oxford English words.

Dotted lines represent the results obtained by applying to
the CUVOLAD the rule trees inferred from the Basic English
dictionary. The rule tree that provides no pronunciation errors
on Basic English words has a WER of 0.709 and a PhER of
0.196 on the Oxford dictionary.

It is worth noting that different level-0 (i.e., context-
independent) pronunciation rules were inferred from the two
dictionaries for several graphemes, including 〈gn〉 (that is /n/
in Basic English and /g n/ in Oxford English), 〈ti〉 (/S/ and
/t I/), 〈a〉 (/eI/ and /&/) and 〈ew〉 (/u/ and /j u/).

IV. CONCLUSION

This work has introduced a new text-to-speech approach that
uses a phonetic dictionary to infer tree-structured pronuncia-
tion rules that can be eventually applied to out-of-vocabulary
words.

Although the idea of inferring pronunciation rule trees
from a phonetic dictionary is not new, the proposed ap-
proach improves existing methodologies by using graphemes
rather than letters as basic orthographic units. The result
is a grapheme-based rule tree that slightly improves the
accuracy and efficiency of letter-based methods while sig-
nificantly improving the phonetic soundness of the inferred
rules. The first level of the tree represents the most common

context-independent grapheme-to-phoneme correspondences
(i.e., phonograms), while subsequent levels represent context-
dependent exceptions.

The pronunciation of a word entails the segmentation of
the word in graphemes and, for each grapheme, the traversal
of the tree from the root up to the node corresponding to
the proper context, where the phonemes are annotated. The
segmentation is accomplished in linear time during the parsing
of the word, by means of an original algorithm that makes
use of a complete grapheme set (as defined in the paper)
represented as a keyword tree.

Comparative experiments have been performed on Ox-
ford British English to compare the proposed approach with
letter-based rule trees in terms of in-vocabulary and out-
of-vocabulary performance. Experimental results show the
improved quality of grapheme-based rules.

Exhaustive rule-trees provide canonical representations that
can be used to compare the pronunciation rules of different
languages. This kind of application has been exemplified
by comparing the grapheme-based rule trees constructed for
Oxford British English and Basic English.
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