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Abstract—In the paper, a fast high-resolution range profile syn-
thetic algorithm called orthogonal matching pursuit with sensing
dictionary (OMP-SD) is proposed. It formulates the traditional HRRP
synthetic to be a sparse approximation problem over redundant
dictionary. As it employs a priori that the synthetic range profile
(SRP) of targets are sparse, SRP can be accomplished even in
presence of data lost. Besides, the computation complexity decreases
from O(MNDK) flops for OMP to O(M(N + D)K) flops for
OMP-SD by introducing sensing dictionary (SD). Simulation experi-
ments illustrate its advantages both in additive white Gaussian noise
(AWGN) and noiseless situation, respectively.

Keywords—GTD-based model, HRRP, orthogonal matching pur-
suit, sensing dictionary,.

I. INTRODUCTION

A HRRP is the phasor sum of the time returns from dif-
ferent scatterers on the target located within a resolution

cell. As it is very simple and easy to realize, HRRP has
been used to reflect target structure features in radar signal
processing [1]-[6]. In GTD model, the radar target is no longer
a point but composed of multiple scatterers along with radar
line of sight (LoS). A process to identify radar target in GTD
model is just the same as the process to estimate GTD model
parameters (containing scattering mechanisms, intensity and
scatter range cells).

In realistic environment, the returns are always inevitably
interfered by passive or/and active jamming. For the case, the
returns are corrupted or even invalid. We have to synthesize
range profile from partial measurements because some samples
are invalid. However, it’s worth noting that the significant
physical scatterers are sparse in actual targets, which implies
that strong scattering cells are also sparse for the target’s
SRP. This is consistent with sparse signal representation of
compressed sensing (CS) theory appeared in recent years [7]-
[10]. The existed sparse signal recovery algorithms such as
basis pursuit (BP) [7] and orthogonal match pursuit (OMP)
[11] can be used to synthesize range profile from partial
measurements. (For describing convenience, the measurement
matrix in measurement system (see Eq. (3)) is called dictio-
nary. Each column in dictionary is called an atom. Meanwhile,
it calls that it is K-sparse if containing K nonzero entries in a
vector.) However, in the GTD model with multiple scatterers,
a few scattering mechanisms should be considered. With the
increase of atom number in dictionary, the computational
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cost increases. Although a simplified scattering model can be
used to approximate multiple scatterers model as discussed in
section III, model mismatch can degrade the success recover
probability, which deteriorates the cumulative distribute error
(CDE) of SRP. Similar to [12]-[13], the SD is introduced
to mitigate inter-atom interference (IAI) in this paper. Using
SD, it can reduce computational complexity and mitigate the
IAI so as to improve the recover probability of SRP. There
are two main contributions in the paper. On the one hand,
the SRP can be reconstructed from partial measurement data
by introducing sparse property of HRRP. On the other hand,
a faster reconstruct algorithm with SD (i.e., OMP-SD) than
OMP algorithm is proposed.

In section II, it first presents the GTD scattered model in
frequency domain and then, establishes measurement system
in stepped frequency radar (SFR). After that, it briefly reviews
existing algorithms to solve the model and presents approxi-
mate OMP algorithm (A-OMP) in section III. In section IV,
it presents a strategy to construct SD. It mitigates model
mismatch effectively. Besides, a fast algorithm (OMP-SD)
to synthesize HRRP is proposed. Monte Carlo simulations
illustrate the performance of the proposed algorithm both
in AWGN and noiseless situation respectively in section V.
Finally, some conclusions and further work are provided in
Section VI.

Notation: It denotes vectors and matrices by boldface low-
ercase and uppercase letters, respectively. Uppercase Greek
letters also represent matrix in this paper. (·)T denotes the
transpose operation, (·)H denotes the conjugate transpose
operation, Further, ‖ · ‖2 refers to the l2 norm for vectors.
‖ · ‖∞ refers to the l∞ norm for vectors. The vec(·) operator
vectorizes a matrix by stacking its columns. R ∈ R

L×M and
R ∈ C

L×M denote a real-valued and complex-valued matrix
and let �{·} and �{·} be real part and imaginary, respectively.
(·)+ denotes the M-P generalized inverse.

II. PROBLEM FORMULATION

In this section, it briefly presents the GTD scatter model
of SFR return signal. SF pulse trains are created by trans-
mitting a train of M identical baseband pulse with different
carrier frequencies. The carrier frequency of the m-th (m =
0, 1, · · · ,M−1) pulse is fm = f0+Δf , where f0 is the initial
frequency and Δf is the frequency step size. In the stretch
processing [4], the range resolution is Δr = c/(2MΔf), and
the ambiguous range ΔR = c/(2Δf) (c is the speed of light).
For the convenience of signal modeling and derivation, it is
assumed that the target is stationary and it falls in the range
gate [L,L + L0] in one CPI, where, the range from radar
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antenna to target L = QΔR, and L0 = NΔr). (Q and N are
nonnegative integers). Meanwhile, it assumes that the target
can be present only the grid points and let us discretize the
range space by Δr in L0.

In one aspect angle, the parametric GTD scatter model of
SFR at frequency fm can be represented as follows [14]-[16],

ym =
D∑

d=1

N∑
l=1

Gd

(
j
fm
f0

)αd

· exp
{
−j 4π

c
fmrdl

}
· xdl + um

(1)
where,

xdl =

{
1, if scatter is present in rdl (2a)
0, otherwise (2b)

In (1), Gd, αd are the complex amplitudes, scattering
mechanism of d-th scatterer, respectively. rdl denotes range
space w.r.t. l-th range resolution cell in m-th pulse. D is the
number of scatterers. um is the AWGN with mean zero and
variance σ2.

The ym in (1) consists of N uniformly sampled time-
domain data from the baseband echo signal of m-th pulse
(N = 2L0/(cΔt) and Δt = 1/(MΔf)). The model can be
written into a matrix form as follows,

y = Φx+ u (3)

where, y ∈ C
M×1, Φ ∈ C

M×DN and x ∈ R
DN×1 are

measurement vector, dictionary and HRRP index of the target,
respectively. Φ � [Φ1,Φ2, · · · ,ΦD] and

[Φd]m,n = Gd[j(1+mΔf/f0)]
αd ·exp(−j2πfm(r0+n/(MΔf)))

(4)
x = [xT

1 xT
2 · · · xT

D]T , xd ∈ R
N×1, αd ∈ Ω (Ω is

a set composed of scattering mechanisms), u ∈ C
M×1 is

the AWGN vector. For convenience of the later describing, it
defines Φ � [Φ1,Φ2, · · · ,ΦD] and Φd � [φd1, φd2, · · · , φdN ].
Φd denotes d-th block matrix of Φ. φdi denotes the i-th atom of
Φd. d ∈ Λ � {1, 2, · · · , D}. All atoms are normalized with l2-
norm throughout the paper. r0 is the radial distance from radar
antenna to reference point on the target. In realistic settings,
M << N < DN , hence (3) is an underdetermined system. It
is to reconstruct of a high-dimension sparse vector x from a
small number of linear measurements y and dictionary Φ.

III. THE A-OMP ALGORITHM

For the underdetermined system of linear equations in (3),
l1-norm minimization subject to constraints can be used to
solve it as follows [7],

(P1 :)min
x

‖x‖1 subject to ‖y − Φx‖2 ≤ ε (5)

For the problem P1, it can be solved by linear programming
(LP). Nevertheless, general-purpose LP solvers require about
O(D3N3) flops. Rather than minimizing an objective function
in (5), many of the applications of P1 can be attacked heuris-
tically by fitting sparse models, using greedy stepwise least
squares. A widely used algorithm for sparse signal recovery
is the OMP algorithm for the recovery of the support of
the K-sparse signal in (3), which requires O(DNMK) flops
[11]. OMP constructs a sparse solution to a given problem

by iteratively building up an approximation, the vector y
is approximated as a linear combination of a few atoms in
dictionary Φ, where the activeset of atoms to be used is built
column by column, in a greedy fashion. At each iteration, a
new atom that best correlates with the current residual is added
to the activeset. The standard OMP algorithm can be found in
[11]. For noiseless case, the exactly recovery condition (ERC)
of OMP was derived by Troop [11]. T.cai et al. derived a new
ERC both in the bounded noise and Gaussian noise [17].

In the paper, a few scatter mechanisms are considered. It
increases the atom number in dictionary, and hence it increases
computation. To decrease computation caused by multiple
scatterers, it’s a straight way to synthesize range profile of
target that using a single scattering mechanism instead of
multiple scattering mechanisms (i.e., to replace Φ with Φd).

Just as the description in section II, the atoms in dictionary
(i.e., columns of Φd) are normalized so that ‖φdi‖2 = 1,
for i = 1, 2, · · · , N . It denotes by c ⊆ S � {1, 2, · · · , N}
the support of xd, which is defined as the set of indices
corresponding to the nonzero components of xd. For matrix
Φd, Φd(c) denotes the matrix formed by picking the atoms
of Φd corresponding to indices in set c. Following the same
convention as section 2, φdi represents the i-th atom of Φd. It
calls φdi a correct atom if the corresponding xdi �= 0 and call
φdi an incorrect atom otherwise. With slight abuse of notation,
we use Φd(c) to denote both the subset of atoms of Φd with
indices and the corresponding block matrix of Φd. A detailed
description of approximation orthogonal matching pursuit (A-
OMP) algorithm is presented as follows.

Algorithm 1 :A-OMP

Input:
The measurement vector, y;
The dictionary, Φd, d ∈ Λ;
the error threshold, ε;

Main Procedures:
1: Initialize the residual r0 = y and initialize the subscript

set of selected atom c0 is empty. Set i = 1.
2: Find the atom φti that solves the maximization problem

ti � max
t

|φHdtri−1|, (t ∈ S, φdt is the tth atom in Φd)

and update ci = ci−1 ∪ {ti}.
3: Let Pi = Φd(ci)(Φd(ci)

HΦd(ci))
−1Φd(ci)

H . Denote the
projection onto the linear space spanned by the elements
of Φd(ci). Update ri = (I−Pi)y.

4: If the stopping condition is achieved (i.e., ‖ri‖2 ≤ ε), go
to 5. Otherwise, set i = i+ 1 and return to 2.

5: Pick out the range scattering cells w.r.t set ci.
6: Calculate the scattering intensity in these range cells

determined in the previous step with P+
i y.

7: Reconstruct SRP using the scattering intensity and range
scattering cells.

8: Return SRP.

Similar to OMP, the A-OMP is a stepwise forward selection
algorithm and is easy to implement. A key component of A-
OMP is the stopping rule which depends on the noise structure.
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In the noiseless case the natural stopping rule is ri = 0 (ri is
the residual after i-th iteration, which is defined in Algorithm
1). That is, the algorithm stops whenever ri = 0 is achieved.
In this paper, both noiseless and the case of AWGN in which
ui ∼ N (0, σ2) are considered. The stopping rule for each case
and the properties of the resulting procedure are discussed in
article [11].

As a special case of multi-scattering center, for a single
scattering mechanism, the A-OMP algorithm procedure is
the same as OMP, but it has a significant different physical
meaning. Because the dictionary Φd just as a sub-block of Φ
in (3). Thus, it is called approximate OMP in the paper. Once
the subscribe set is determined with A-OMP or OMP, the SRP
can be obtained with Least-Square (LS) solution.

IV. OMP ALGORITHM VIA SENSING DICTIONARY
(OMP-SD)

In (3), the sparse vector x can be obtained by OMP or
A-OMP directly. However, two major problems cannot be
avoided in this case. For OMP, it has to search all atoms in
dictionary Φ to find the best matched atom at each iteration (in
the paper, the dictionary is M -by-DN dimension matrix); For
A-OMP, it just needs to find the best matched atom in M -by-
N dimension dictionary at each iteration, but it leads to model
mismatch and increases CDE of SRP. Thus, an improved
algorithm via sensing dictionary (i.e., OMP-SD) is developed
to overcome drawbacks of both OMP and A-OMP. There are
two advantages with OMP-SD to synthesize HRRP. On the
one hand, as a result of the atoms in SD are independent on
scattering mechanisms, it mitigates model mismatch. On the
other hand, it reduces computation because of the searching
dimensional of dictionary reduced from M -by-DN down to
M -by-N .

A. Dictionary Pre-processing
For the convenience of following analysis, the dictionary

Φ of in (3) are divided into D M -by-N dimensional block
matrix firstly, which are denoted by Φ1,Φ2, · · · ,ΦD and each
block matrix Φd, d ∈ Λ, corresponds to a different scattering
mechanism. (3) can be rewritten as,

y = [Φ1|Φ2| · · · |ΦD]x+ u (6)

In (6), it considers Φ1 (w.r.t the 1st scattering mechanism)
as an example. In ideal condition, the Gram matrix ΦH

1 Φd = I,
but it is not the case because the dictionary is over complete,
so it has to make ΦH

1 Φd → I, (d ∈ Λ and d �= 1), extremely,
which needs to solve the problem maxd∈Λ ‖I − ΦH

1 Φd‖∞.
According to the idea, it should find an M -by-N SD W (
being the same dimensional as block matrix Φd ), which is
independent on scattering mechanisms. The SD can be found
by solving the problem P2 of the follows,

(P2 :)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
W

b1 + γb2 (7a)

s.t. ‖I− diag(WΦd)‖∞ ≤ b1 (7b)
s.t. ‖ρ‖∞ ≤ b2 (7c)
ρ = vec

(
(WHΦd)k,l

)
, k �= l (7d)

d ∈ Λ (7e)

In (7a), γ is the regular factor. It sets 0.5 in the paper. Both
b1 and b2 are unknown but determined variables. They reflect
the IAI level between W and dictionary Φd. As the problem
P2 is a convex problem, the sensing dictionary W can be
obtained offline with efficient algorithms. And it can be solved
by software pockets such as cvx (http://stanford.edu/ boy-
d/software.html.).

B. The Proposed Algorithm

The proposed algorithm (OMP-SD) is also a greedy algo-
rithm but different from OMP and A-OMP. For OMP-SD, at
each iteration, it requires a two-step search to select an atom.
First, it determines the offset index of atom in SD W, which
is not sensitive to scatter mechanism. And then, it further to
determine the specific scatter mechanism in dictionary Φ. After
the two-step procedures, an actual atom is picked out. The
OMP-SD is described as follows.

Algorithm 2 :OMP-SD

Input:
The measurement vector, y;
The dictionary, Φ1,Φ2 · · · ,ΦD, W
the err threshold, ε;

Main Procedures:
1: To initialize the residual r0 = y and initialize the

subscribe set c0 is empty. set i = 1.
2: To find the matrix Γti that solves the maximization

problem
ti � max

t

∣∣wH
t ri−1

∣∣
where,

Γ = [Φ1(ti) Φ2(ti) · · · ΦD(ti)]

3: To solve the maximization problem

ξ = max
d

∣∣ΓHri−1

∣∣ , d ∈ Λ

and update ci = ci−1 ∪ {ξi}. Where ξi = (ξ − 1)N + ti.
4: Let Pi = Φ(ci)(Φ(ci)

HΦ(ci))
−1Φ(ci)

H denote the pro-
jection onto the linear space spanned by the elements of
Φ(ci). Update ri = (I−Pi)y.

5: If the stopping condition is achieved (i.e., ‖ri‖2 ≤ ε), go
to 6. Otherwise, set i = i+ 1 and go back to 2.

6: Pick out the range scattering cells w.r.t set ci.
7: Calculate the scattering intensity in these range cells

determined in the previous step with P+
i y.

8: Reconstruct SRP using the scattering intensity and range
scattering cells.

9: Return SRP.

As far as computational complexity is concerned, it re-
quires DN times correlation operators to select an atom in
OMP whileas it just requires N + D times for the proposed
algorithm. So it requires about O(M(N + D)K) flops. It
is approximate to the simplified model in which requires N
times. Similarly to in section 3 discussed, once the subscribe
set is determined with the proposed algorithm, the SRP can
be recovered with LS solution, too.
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TABLE I: Geometry parameters for example scattering ge-
ometries [14]

Value of αd Scatter mechanisms
-1 corner diffraction

-0.5 edge diffraction
0 point diffraction; straight edge specular

0.5 singly curved surface reflection
1 late plate at broadside; dihedral

TABLE II: Time consuming simulation results

SRP Algorithm time(s)
OMP 1044

A-OMP 109
OMP-SD 121

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section, 10000 trails Monte Carlo simulation has
been done to illustrate the previous discussions. Assume the
SFR operates at the following condition. Five scattering mech-
anisms are considered (i.e., αd ∈ Ω � {−1,−0.5, 0, 0.5, 1}).
An example scattering geometrics and the corresponding scat-
tering parameters are shown in Tab. II.

In (4), it assumes that target is stationary in one CPI, and
the distance from radar antenna to target L is regarded as
constant. In simulation, the radial distance from radar antenna
to reference point on the target (i.e., r0) is unvaried and it can
be eliminated. For simplicity, we set r0 = 0 and hence, the
m-th row and n-th column element in (4) is rewritten as

[Φp]m,n = Gp[j(1+mΔf/f0)]
αp · exp(−j2πfmn/(MΔf)))

(8)
The range of the measured frequency band is from L band to

S band ( i.e., from 1GHz to 4GH ), where the start frequency
is f0 = 1GHz and frequency step size Δf = 10MHz. The
number of pulses M = 300. And it assumes that the target
is 5m length. Five scatterers are located on 0.3m, 0.85m,
2.0m, 3.25m and 4m to target front-end, respectively. All
scatterers have same intensity. What’s more, it assumes that
the stationary scatterer centers are present on the grid points.
In each measurement, only 30 returned pulses are measured
in one CPI (i.e., 300 pulses). The measurement vector y is
contaminated by AWGN with SNR = 20dB, 15dB, 10dB,
5dB and noiseless situation, respectively. In order to explain
the essence of model mismatch, mutual incoherence property
(MIP) is introduced which is defined as the same as in article
[10],

μ(Φ) � max
1�i,j�n

i�=j

∣∣φHi φj∣∣
‖φHi ‖2 · ‖φj‖2 (9)

Noting that each atom in dictionary is normalized, hence
Eq. (9) can be rewritten as another form,

μ(Φ) � max
1�i,j�n

i�=j

∣∣φHi φj∣∣ (10)

We calculate the IAI of original dictionary and SD with Eq.
(10), respectively. In the original dictionary, the IAI minimum
is 0.0762 and the maximum of inner-atom cross-correlation
(i.e., MIP) is 0.3872. However, both of them are 0.2248 (i.e.,

Fig. 1: Success recover probability w.r.t SNR
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Fig. 2: Cumulative distribute error (upper plot, noiseless),
(bottom plot, SNR = 20dB)

b1 = b2 = 0.2248 in (7a)) for the sensing dictionary. It
mitigates the IAI.

Besides, simulation results about the three algorithms (i.e.,
OMP, A-OMP, OMP-SD) are shown in Fig. 1 ∼ Fig. 3.
According to the simulation results, we can present three
remarks in the following.

Remark 1: Fig. 1 shows that the success recovery proba-
bility is a monotonic decreasing relative to SNR for the three
algorithms (i.e., OMP, A-OMP and OMP-SD). It is easy to
understand that the OMP has the best recovery performance
because it is match model and the A-OMP has worst recovery
performance because of its model mismatch. However, the
proposed method (OMP-SD) has an approximate performance
compared to OMP and approximate computational complexity
to A-OMP and it is confirmed in Tab. II. It should be noted
that there is an exception for small SNR (< 10dB). When
SNR is 5dB in Fig. 1, all of the three algorithms have a lower
success recovery probability (less than 30 percent). Hence,
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Fig. 3: Cumulative distribute error (upper plot, SNR = 15dB),
(bottom plot, SNR = 10dB)

objectively speaking, it is a drawback for these algorithm. But
in moderately high SNR settings (i.e., greater than 15dB), the
proposed algorithm has outstanding performance.

Remark 2: For the noiseless and three different SNR
settings, Fig. 2 ∼ Fig. 3 show the cumulative distribute errors
(i.e., CDE). It is widely used to evaluate recover performance
in CS community such as [10]. From Fig. 2 ∼ Fig. 3 we
can see the match model is best, while the mismatch model is
worst although it requires least computation amount. However,
OMP-SD shows that it has an approximate values of CDE
compared to OMP. However, it has to point out that all of
the three algorithms are not suitable for low SNR (< 10dB)
settings.

Remark 3: The computational time results given in the
Tab. II for the same computer platform. The computer used for
experiments uses an Intel(R) Core(TM) i3 CPU M 330 4chip at
2.13 GHz, has random access memory of 4GB, and uses Win-
dows 7 and Matlab R2012a (7.14.0.739) 64-bit(win64). There
are sums of 10000 Monte Carlo trails time consuming results
for OMP, A-OMP and OMP-SD, respectively. It confirms that
OMP has the most computational cost but it is approximately
computational cost between A-OMP and OMP-SD. Both of
them have much lower computation cost compared with OMP.

VI. CONCLUSION AND FUTURE WORK

In this paper, a fast algorithm to synthesize range profile
is proposed. For the SFR system in GTD model, the HRRP
synthesis can be converted to solve a sparse approximation
problem over redundant dictionaries. Different from A-OMP,
the model mismatch is mitigated with SD. Better than OMP,
the computational complexity is reduced. Finally, simulation
results show the proposed algorithm is valid for both noiseless
and noisy settings. In the future work, we plan to verify the
performance of the proposed algorithm on real data.
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