Search results for: Ultrasonic Machining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 352

Search results for: Ultrasonic Machining

52 An Active Mixer with Vertical Flow Placement via a Series of Inlets for Micromixing

Authors: Pil Woo Heo, In Sub Park

Abstract:

Flows in a microchannel are laminar, which means that mixing depends on only inter-diffusion. A micromixer plays an important role in obtaining fast diagnosis results in the fields of m-TAS (total analysis system), Bio-MEMS and LOC (lab-on-a-chip).

In this paper, we propose a new active mixer with vertical flow placement via a series of inlets for micromixing. This has two inlets on the same axis, one of which is located before the other. The sample input by the first inlet flows into the down-position, while the other sample by the second inlet flows into the up-position. In the experiment, the samples were located vertically in up-down positions in a micro chamber. PZT was attached below a chamber, and ultrasonic waves were radiated in the down to up direction towards the samples in the micro chamber in order to accelerate the mixing. The mixing process was measured by the change of color in a micro chamber using phenolphthalein and NaOH. The results of the experiment showed that the samples in the microchamber were efficiently mixed and that our new active mixer was superior to the horizontal type of active mixers in view of the grey levels and the standard deviation.

Keywords: Active mixer, vertical flow placement, microchannel, bio-MEMS, LOC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
51 Effect of Composite Material on Damping Capacity Improvement of Cutting Tool in Machining Operation Using Taguchi Approach

Authors: S. Ghorbani, N. I. Polushin

Abstract:

Chatter vibrations, occurring during cutting process, cause vibration between the cutting tool and workpiece, which deteriorates surface roughness and reduces tool life. The purpose of this study is to investigate the influence of cutting parameters and tool construction on surface roughness and vibration in turning of aluminum alloy AA2024. A new design of cutting tool is proposed, which is filled up with epoxy granite in order to improve damping capacity of the tool. Experiments were performed at the lathe using carbide cutting insert coated with TiC and two different cutting tools made of AISI 5140 steel. Taguchi L9 orthogonal array was applied to design of experiment and to optimize cutting conditions. By the help of signal-to-noise ratio and analysis of variance the optimal cutting condition and the effect of the cutting parameters on surface roughness and vibration were determined. Effectiveness of Taguchi method was verified by confirmation test. It was revealed that new cutting tool with epoxy granite has reduced vibration and surface roughness due to high damping properties of epoxy granite in toolholder.

Keywords: ANOVA, damping capacity, surface roughness, Taguchi method, vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3024
50 Designing of Multi-Agent Rescue Robot: Development and Basic Experiments of Master-Slave Type Rescue Robots

Authors: J. Lin, T. C. Kuo, C. -Y. Gau, K. C. Liu, Y. J. Huang, J. D. Yu, Y. W. Lin

Abstract:

A multi-agent type robot for disaster response in calamity scene is proposed in this paper. The proposed grouped rescue robots can perform cooperative reconnaissance and surveillance to achieve a given rescue mission. The multi-agent rescue of dual set robot consists of one master set and three slave units. The research for this rescue robot system is going to detect at harmful environment where human is unreachable, such as the building is infected with virus or the factory has hazardous liquid in effluent. As a dual set robot, with Bluetooth and communication network, the master set can connect with slave units and send information back to computer by wireless and monitor. Therefore, rescuer can be informed the real-time information in a calamity area. Furthermore, each slave robot is able to obstacle avoidance by ultrasonic sensors, and encodes distance and location by compass. The master robot can integrate every devices information to increase the efficiency of prospected and research unknown area.

Keywords: Designing of multi-agent rescue robot, development and basic experiments of master-slave type rescue robots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
49 ANN Based Model Development for Material Removal Rate in Dry Turning in Indian Context

Authors: Mangesh R. Phate, V. H. Tatwawadi

Abstract:

This paper is intended to develop an artificial neural network (ANN) based model of material removal rate (MRR) in the turning of ferrous and nonferrous material in a Indian small-scale industry. MRR of the formulated model was proved with the testing data and artificial neural network (ANN) model was developed for the analysis and prediction of the relationship between inputs and output parameters during the turning of ferrous and nonferrous materials. The input parameters of this model are operator, work-piece, cutting process, cutting tool, machine and the environment.

The ANN model consists of a three layered feedforward back propagation neural network. The network is trained with pairs of independent/dependent datasets generated when machining ferrous and nonferrous material. A very good performance of the neural network, in terms of contract with experimental data, was achieved. The model may be used for the testing and forecast of the complex relationship between dependent and the independent parameters in turning operations.

Keywords: Field data based model, Artificial neural network, Simulation, Convectional Turning, Material removal rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
48 Optimization of Surface Roughness and Vibration in Turning of Aluminum Alloy AA2024 Using Taguchi Technique

Authors: Vladimir Aleksandrovich Rogov, Ghorbani Siamak

Abstract:

Determination of optimal conditions of machining parameters is important to reduce the production cost and achieve the desired surface quality. This paper investigates the influence of cutting parameters on surface roughness and natural frequency in turning of aluminum alloy AA2024. The experiments were performed at the lathe machine using two different cutting tools made of AISI 5140 and carbide cutting insert coated with TiC. Turning experiments were planned by Taguchi method L9 orthogonal array.Three levels for spindle speed, feed rate, depth of cut and tool overhang were chosen as cutting variables. The obtained experimental data has been analyzed using signal to noise ratio and analysis of variance. The main effects have been discussed and percentage contributions of various parameters affecting surface roughness and natural frequency, and optimal cutting conditions have been determined. Finally, optimization of the cutting parameters using Taguchi method was verified by confirmation experiments.

Keywords: Turning, Cutting conditions, Surface roughness, Natural frequency, Taguchi method, ANOVA, S/N ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4560
47 Smart Cane Assisted Mobility for the Visually Impaired

Authors: Jayant Sakhardande, Pratik Pattanayak, Mita Bhowmick

Abstract:

An efficient reintegration of the disabled people in the family and society should be fulfilled; hence it is strongly needful to assist their diminished functions or to replace the totally lost functions. Assistive technology helps in neutralizing the impairment. Recent advancements in embedded systems have opened up a vast area of research and development for affordable and portable assistive devices for the visually impaired. Granted there are many assistive devices on the market that are able to detect obstacles, and numerous research and development currently in process to alleviate the cause, unfortunately the cost of devices, size of devices, intrusiveness and higher learning curve prevents the visually impaired from taking advantage of available devices. This project aims at the design and implementation of a detachable unit which is robust, low cost and user friendly, thus, trying to aggrandize the functionality of the existing white cane, to concede above-knee obstacle detection. The designed obstruction detector uses ultrasound sensors for detecting the obstructions before direct contact. It bestows haptic feedback to the user in accordance with the position of the obstacle.

Keywords: Visually impaired, Ultrasonic sensors, Obstruction detector, Mobility aid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6002
46 Application of Nano Cutting Fluid under Minimum Quantity Lubrication (MQL) Technique to Improve Grinding of Ti – 6Al – 4V Alloy

Authors: Dinesh Setti, Sudarasan Ghosh, P. Venkateswara Rao

Abstract:

Minimum Quantity Lubrication (MQL) technique obtained a significant attention in machining processes to reduce environmental loads caused by usage of conventional cutting fluids. Recently nanofluids are finding an extensive application in the field of mechanical engineering because of their superior lubrication and heat dissipation characteristics. This paper investigates the use of a nanofluid under MQL mode to improve grinding characteristics of Ti-6Al-4V alloy. Taguchi-s experimental design technique has been used in the present investigation and a second order model has been established to predict grinding forces and surface roughness. Different concentrations of water based Al2O3 nanofluids were applied in the grinding operation through MQL setup developed in house and the results have been compared with those of conventional coolant and pure water. Experimental results showed that grinding forces reduced significantly when nano cutting fluid was used even at low concentration of the nano particles and surface finish has been found to improve with higher concentration of the nano particles.

Keywords: MQL, Nanofluid, Taguchi method, Ti-6Al-4V.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3977
45 Optimization of Surface Finish in Milling Operation Using Live Tooling via Taguchi Method

Authors: Harish Kumar Ponnappan, Joseph C. Chen

Abstract:

The main objective of this research is to optimize the surface roughness of a milling operation on AISI 1018 steel using live tooling on a HAAS ST-20 lathe. In this study, Taguchi analysis is used to optimize the milling process by investigating the effect of different machining parameters on surface roughness. The L9 orthogonal array is designed with four controllable factors with three different levels each and an uncontrollable factor, resulting in 18 experimental runs. The optimal parameters determined from Taguchi analysis were feed rate – 76.2 mm/min, spindle speed 1150 rpm, depth of cut – 0.762 mm and 2-flute TiN coated high-speed steel as tool material. The process capability Cp and process capability index Cpk values were improved from 0.62 and -0.44 to 1.39 and 1.24 respectively. The average surface roughness values from the confirmation runs were 1.30 µ, decreasing the defect rate from 87.72% to 0.01%. The purpose of this study is to efficiently utilize the Taguchi design to optimize the surface roughness in a milling operation using live tooling.

Keywords: Live tooling, surface roughness, Taguchi analysis, Computer Numerical Control (CNC) milling operation, CNC turning operation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 711
44 Analytical Cutting Forces Model of Helical Milling Operations

Authors: Changyi Liu, Gui Wang, Matthew Dargusch

Abstract:

Helical milling operations are used to generate or enlarge boreholes by means of a milling tool. The bore diameter can be adjusted through the diameter of the helical path. The kinematics of helical milling on a three axis machine tool is analysed firstly. The relationships between processing parameters, cutting tool geometry characters with machined hole feature are formulated. The feed motion of the cutting tool has been decomposed to plane circular feed and axial linear motion. In this paper, the time varying cutting forces acted on the side cutting edges and end cutting edges of the flat end cylinder miller is analysed using a discrete method separately. These two components then are combined to produce the cutting force model considering the complicated interaction between the cutters and workpiece. The time varying cutting force model describes the instantaneous cutting force during processing. This model could be used to predict cutting force, calculate statics deflection of cutter and workpiece, and also could be the foundation of dynamics model and predicting chatter limitation of the helical milling operations.

Keywords: Helical milling, Hole machining, Cutting force, Analytical model, Time domain

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3093
43 Multi-Walled Carbon Nanotubes/Polyacrylonitrile Composite as Novel Semi-Permeable Mixed Matrix Membrane in Reverse Osmosis Water Treatment Process

Authors: M. M. Doroodmand, Z.Tahvildar, M. H.Sheikhi

Abstract:

novel and simple method is introduced for rapid and highly efficient water treatment by reverse osmosis (RO) method using multi-walled carbon nanotubes (MWCNTs) / polyacrylonitrile (PAN) polymer as a flexible, highly efficient, reusable and semi-permeable mixed matrix membrane (MMM). For this purpose, MWCNTs were directly synthesized and on-line purified by chemical vapor deposition (CVD) process, followed by directing the MWCNT bundles towards an ultrasonic bath, in which PAN polymer was simultaneously suspended inside a solid porous silica support in water at temperature to ~70 οC. Fabrication process of MMM was finally completed by hot isostatic pressing (HIP) process. In accordance with the analytical figures of merit, the efficiency of fabricated MMM was ~97%. The rate of water treatment process was also evaluated to 6.35 L min-1. The results reveal that, the CNT-based MMM is suitable for rapid treatment of different forms of industrial, sea, drinking and well water samples.

Keywords: Mixed Matrix Membrane, Carbon Nanostructures, Chemical Vapour Deposition, Hot Isostatic Pressing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2150
42 Application of Pearson Parametric Distribution Model in Fatigue Life Reliability Evaluation

Authors: E. A. Azrulhisham, Y. M. Asri, A. W. Dzuraidah, A. H. Hairul Fahmi

Abstract:

The aim of this paper is to introduce a parametric distribution model in fatigue life reliability analysis dealing with variation in material properties. Service loads in terms of responsetime history signal of Belgian pave were replicated on a multi-axial spindle coupled road simulator and stress-life method was used to estimate the fatigue life of automotive stub axle. A PSN curve was obtained by monotonic tension test and two-parameter Weibull distribution function was used to acquire the mean life of the component. A Pearson system was developed to evaluate the fatigue life reliability by considering stress range intercept and slope of the PSN curve as random variables. Considering normal distribution of fatigue strength, it is found that the fatigue life of the stub axle to have the highest reliability between 10000 – 15000 cycles. Taking into account the variation of material properties associated with the size effect, machining and manufacturing conditions, the method described in this study can be effectively applied in determination of probability of failure of mass-produced parts.

Keywords: Stub axle, Fatigue life reliability, Stress-life, PSN curve, Weibull distribution, Pearson system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102
41 Detection of Ultrasonic Images in the Presence of a Random Number of Scatterers: A Statistical Learning Approach

Authors: J. P. Dubois, O. M. Abdul-Latif

Abstract:

Support Vector Machine (SVM) is a statistical learning tool that was initially developed by Vapnik in 1979 and later developed to a more complex concept of structural risk minimization (SRM). SVM is playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM was applied to the detection of medical ultrasound images in the presence of partially developed speckle noise. The simulation was done for single look and multi-look speckle models to give a complete overlook and insight to the new proposed model of the SVM-based detector. The structure of the SVM was derived and applied to clinical ultrasound images and its performance in terms of the mean square error (MSE) metric was calculated. We showed that the SVM-detected ultrasound images have a very low MSE and are of good quality. The quality of the processed speckled images improved for the multi-look model. Furthermore, the contrast of the SVM detected images was higher than that of the original non-noisy images, indicating that the SVM approach increased the distance between the pixel reflectivity levels (detection hypotheses) in the original images.

Keywords: LS-SVM, medical ultrasound imaging, partially developed speckle, multi-look model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1299
40 Optimization of Surface Roughness in Turning Process Utilizing Live Tooling via Taguchi Methodology

Authors: Weinian Wang, Joseph C. Chen

Abstract:

The objective of this research is to optimize the process of cutting cylindrical workpieces utilizing live tooling on a HAAS ST-20 lathe. Surface roughness (Ra) has been investigated as the indicator of quality characteristics for machining process. Aluminum alloy was used to conduct experiments due to its wide range usages in engineering structures and components where light weight or corrosion resistance is required. In this study, Taguchi methodology is utilized to determine the effects that each of the parameters has on surface roughness (Ra). A total of 18 experiments of each process were designed according to Taguchi’s L9 orthogonal array (OA) with four control factors at three levels of each and signal-to-noise ratios (S/N) were computed with Smaller the better equation for minimizing the system. The optimal parameters identified for the surface roughness of the turning operation utilizing live tooling were a feed rate of 3 inches/min(A3); a spindle speed of 1300 rpm(B3); a 2-flute titanium nitrite coated 3/8” endmill (C1); and a depth of cut of 0.025 inches (D2). The mean surface roughness of the confirmation runs in turning operation was 8.22 micro inches. The final results demonstrate that Taguchi methodology is a sufficient way of process improvement in turning process on surface roughness.

Keywords: Live tooling, surface roughness, Taguchi Parameter Design, CNC turning operation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 742
39 Analytical Modelling of Surface Roughness during Compacted Graphite Iron Milling Using Ceramic Inserts

Authors: S. Karabulut, A. Güllü, A. Güldas, R. Gürbüz

Abstract:

This study investigates the effects of the lead angle and chip thickness variation on surface roughness during the machining of compacted graphite iron using ceramic cutting tools under dry cutting conditions. Analytical models were developed for predicting the surface roughness values of the specimens after the face milling process. Experimental data was collected and imported to the artificial neural network model. A multilayer perceptron model was used with the back propagation algorithm employing the input parameters of lead angle, cutting speed and feed rate in connection with chip thickness. Furthermore, analysis of variance was employed to determine the effects of the cutting parameters on surface roughness. Artificial neural network and regression analysis were used to predict surface roughness. The values thus predicted were compared with the collected experimental data, and the corresponding percentage error was computed. Analysis results revealed that the lead angle is the dominant factor affecting surface roughness. Experimental results indicated an improvement in the surface roughness value with decreasing lead angle value from 88° to 45°.

Keywords: CGI, milling, surface roughness, ANN, regression, modeling, analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
38 Error Correction of Radial Displacement in Grinding Machine Tool Spindle by Optimizing Shape and Bearing Tuning

Authors: Khairul Jauhari, Achmad Widodo, Ismoyo Haryanto

Abstract:

In this article, the radial displacement error correction capability of a high precision spindle grinding caused by unbalance force was investigated. The spindle shaft is considered as a flexible rotor mounted on two sets of angular contact ball bearing. Finite element methods (FEM) have been adopted for obtaining the equation of motion of the spindle. In this paper, firstly, natural frequencies, critical frequencies, and amplitude of the unbalance response caused by residual unbalance are determined in order to investigate the spindle behaviors. Furthermore, an optimization design algorithm is employed to minimize radial displacement of the spindle which considers dimension of the spindle shaft, the dynamic characteristics of the bearings, critical frequencies and amplitude of the unbalance response, and computes optimum spindle diameters and stiffness and damping of the bearings. Numerical simulation results show that by optimizing the spindle diameters, and stiffness and damping in the bearings, radial displacement of the spindle can be reduced. A spindle about 4 μm radial displacement error can be compensated with 2 μm accuracy. This certainly can improve the accuracy of the product of machining.

Keywords: Error correction, High precision grinding, Optimization, Radial displacement, Spindle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
37 Automatic Generating CNC-Code for Milling Machine

Authors: Chalakorn Chitsaart, Suchada Rianmora, Mann Rattana-Areeyagon, Wutichai Namjaiprasert

Abstract:

G-code is the main factor in computer numerical control (CNC) machine for controlling the toolpaths and generating the profile of the object’s features. For obtaining high surface accuracy of the surface finish, non-stop operation is required for CNC machine. Recently, to design a new product, the strategy that concerns about a change that has low impact on business and does not consume lot of resources has been introduced. Cost and time for designing minor changes can be reduced since the traditional geometric details of the existing models are applied. In order to support this strategy as the alternative channel for machining operation, this research proposes the automatic generating codes for CNC milling operation. Using this technique can assist the manufacturer to easily change the size and the geometric shape of the product during the operation where the time spent for setting up or processing the machine are reduced. The algorithm implemented on MATLAB platform is developed by analyzing and evaluating the geometric information of the part. Codes are created rapidly to control the operations of the machine. Comparing to the codes obtained from CAM, this developed algorithm can shortly generate and simulate the cutting profile of the part.

Keywords: Geometric shapes, Milling operation, Minor changes, CNC Machine, G-code, and Cutting parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7330
36 Effects of Cerium Oxide Nanoparticle Addition in Diesel and Diesel-Biodiesel Blends on the Performance Characteristics of a CI Engine

Authors: Abbas Alli Taghipoor Bafghi, Hosein Bakhoda, Fateme Khodaei Chegeni

Abstract:

An experimental investigation is carried out to establish the performance characteristics of a compression ignition engine while using cerium oxide nanoparticles as additive in neat diesel and diesel-biodiesel blends. In the first phase of the experiments, stability of neat diesel and diesel-biodiesel fuel blends with the addition of cerium oxide nanoparticles is analyzed. After series of experiments, it is found that the blends subjected to high speed blending followed by ultrasonic bath stabilization improves the stability. In the second phase, performance characteristics are studied using the stable fuel blends in a single cylinder four stroke engine coupled with an electrical dynamometer and a data acquisition system. The cerium oxide acts as an oxygen donating catalyst and provides oxygen for combustion. The activation energy of cerium oxide acts to burn off carbon deposits within the engine cylinder at the wall temperature and prevents the deposition of non-polar compounds on the cylinder wall results reduction in HC emissions. The tests revealed that cerium oxide nanoparticles can be used as additive in diesel and diesel-biodiesel blends to improve complete combustion of the fuel significantly.

Keywords: Diesel engine, cerium oxide, diesel-biodiesel blends, nanoparticles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4765
35 Thermo-Mechanical Characterization of MWCNTs-Modified Epoxy Resin

Authors: M. Dehghan, R. Al-Mahaidi, I. Sbarski

Abstract:

An industrial epoxy adhesive used in Carbon Fiber Reinforced Polymer (CFRP) strengthening systems was modified by dispersing multi-walled carbon nanotubes (MWCNTs). Nanocomposites were fabricated using the solvent-assisted dispersion method and ultrasonic mixing. Thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and tensile tests were conducted to study the effect of nanotubes dispersion on the thermal and mechanical properties of the epoxy composite. Experimental results showed a substantial enhancement in the decomposition temperature and tensile properties of epoxy composite, while, the glass transition temperature (Tg) was slightly reduced due to the solvent effect. The morphology of the epoxy nanocomposites was investigated by SEM. It was proved that using solvent improves the nanotubes dispersion. However, at contents higher than 2 wt. %, nanotubes started to re-bundle in the epoxy matrix which negatively affected the final properties of epoxy composite.

Keywords: Carbon Fiber Reinforced Polymer, Epoxy, Multi-Walled Carbon Nanotube, Glass Transition Temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3306
34 Dynamic Clustering Estimation of Tool Flank Wear in Turning Process using SVD Models of the Emitted Sound Signals

Authors: A. Samraj, S. Sayeed, J. E. Raja., J. Hossen, A. Rahman

Abstract:

Monitoring the tool flank wear without affecting the throughput is considered as the prudent method in production technology. The examination has to be done without affecting the machining process. In this paper we proposed a novel work that is used to determine tool flank wear by observing the sound signals emitted during the turning process. The work-piece material we used here is steel and aluminum and the cutting insert was carbide material. Two different cutting speeds were used in this work. The feed rate and the cutting depth were constant whereas the flank wear was a variable. The emitted sound signal of a fresh tool (0 mm flank wear) a slightly worn tool (0.2 -0.25 mm flank wear) and a severely worn tool (0.4mm and above flank wear) during turning process were recorded separately using a high sensitive microphone. Analysis using Singular Value Decomposition was done on these sound signals to extract the feature sound components. Observation of the results showed that an increase in tool flank wear correlates with an increase in the values of SVD features produced out of the sound signals for both the materials. Hence it can be concluded that wear monitoring of tool flank during turning process using SVD features with the Fuzzy C means classification on the emitted sound signal is a potential and relatively simple method.

Keywords: Fuzzy c means, Microphone, Singular ValueDecomposition, Tool Flank Wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852
33 Fuzzy Logic System for Tractive Performance Prediction of an Intelligent Air-Cushion Track Vehicle

Authors: Altab Hossain, Ataur Rahman, A. K. M. Mohiuddin, Yulfian Aminanda

Abstract:

Fuzzy logic system (FLS) is used in this study to predict the tractive performance in terms of traction force, and motion resistance for an intelligent air cushion track vehicle while it operates in the swamp peat. The system is effective to control the intelligent air –cushion system with measuring the vehicle traction force (TF), motion resistance (MR), cushion clearance height (CH) and cushion pressure (CP). Ultrasonic displacement sensor, pull-in solenoid electromagnetic switch, pressure control sensor, micro controller, and battery pH sensor are incorporated with the Fuzzy logic system to investigate experimentally the TF, MR, CH, and CP. In this study, a comparison for tractive performance of an intelligent air cushion track vehicle has been performed with the results obtained from the predicted values of FLS and experimental actual values. The mean relative error of actual and predicted values from the FLS model on traction force, and total motion resistance are found as 5.58 %, and 6.78 % respectively. For all parameters, the relative error of predicted values are found to be less than the acceptable limits. The goodness of fit of the prediction values from the FLS model on TF, and MR are found as 0.90, and 0.98 respectively.

Keywords: Cushion pressure, Fuzzy logic, Motion resistance, Traction force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
32 Effect of Local Dual Frequency Sonication on Drug Distribution from Nanomicelles

Authors: Hadi Hasanzadeh, Manijhe Mokhtari-Dizaji, S.Zahra Bathaie, Zuhair M. Hassan, Hamid R. Miri, Mahbobe Alamolhoda, Vahid Nilchiani, Hamid Goudarzi

Abstract:

The nanosized polymeric micelles release the drug due to acoustic cavitation, which is enhanced in dual frequency ultrasonic fields. In this study, adult female Balb/C mice were transplanted with spontaneous breast adenocarcinoma tumors and were injected with a dose of 1.3 mg/kg doxorubicin in one of three forms: free doxorubicin, micellar doxorubicin without sonication and micellar doxorubicin with sonication. To increase cavitation yield, the tumor region was sonicated with low level dual frequency of 3 MHz and 28 kHz. The animals were sacrificed 24 h after injection, and their tumor, heart, spleen, liver, kidneys and plasma were separated and homogenized. The drug content in their tumor, heart, spleen, liver, kidneys and plasma was determined using tissue fluorimetry. The results show that in the group that received micellar doxorubicin with sonication, the drug concentration in the tumor tissue was nine and three times higher than in the free doxorubicin group and the micellar doxorubicin without sonication group, respectively. In the micellar doxorubicin with sonication group, the drug concentration in other tissues was lower than other groups (p<0.05). We conclude that dual frequency sonication improves drug release from micelles and increases the drug uptake by tumors due to sonoporation.

Keywords: Nanomicelles, Dual frequency ultrasound, Drug delivery

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
31 Precision Grinding of Titanium (Ti-6Al-4V) Alloy Using Nanolubrication

Authors: Ahmed A. D. Sarhan, Hong Wan Ping, M. Sayuti

Abstract:

In this current era of competitive machinery productions, the industries are designed to place more emphasis on the product quality and reduction of cost whilst abiding by the pollution-preventing policy. In attempting to delve into the concerns, the industries are aware that the effectiveness of existing lubrication systems must be improved to achieve power-efficient and pollution-preventing machining processes. As such, this research is targeted to study on a plausible solution to the issue in grinding titanium alloy (Ti-6Al-4V) by using nanolubrication, as an alternative to flood grinding. The aim of this research is to evaluate the optimum condition of grinding force and surface roughness using MQL lubricating system to deliver nano-oil at different level of weight concentration of Silicon Dioxide (SiO2) mixed normal mineral oil. Taguchi Design of Experiment (DoE) method is carried out using a standard Taguchi orthogonal array of L16(43) to find the optimized combination of weight concentration mixture of SiO2, nozzle orientation and pressure of MQL. Surface roughness and grinding force are also analyzed using signal-to-noise(S/N) ratio to determine the best level of each factor that are tested. Consequently, the best combination of parameters is tested for a period of time and the results are compared with conventional grinding method of dry and flood condition. The results show a positive performance of MQL nanolubrication.  

Keywords: Grinding, MQL, precision grinding, Taguchi optimization, titanium alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
30 Taguchi-Based Optimization of Surface Roughness and Dimensional Accuracy in Wire EDM Process with S7 Heat Treated Steel

Authors: Joseph C. Chen, Joshua Cox

Abstract:

This research focuses on the use of the Taguchi method to reduce the surface roughness and improve dimensional accuracy of parts machined by Wire Electrical Discharge Machining (EDM) with S7 heat treated steel material. Due to its high impact toughness, the material is a candidate for a wide variety of tooling applications which require high precision in dimension and desired surface roughness. This paper demonstrates that Taguchi Parameter Design methodology is able to optimize both dimensioning and surface roughness successfully by investigating seven wire-EDM controllable parameters: pulse on time (ON), pulse off time (OFF), servo voltage (SV), voltage (V), servo feed (SF), wire tension (WT), and wire speed (WS). The temperature of the water in the Wire EDM process is investigated as the noise factor in this research. Experimental design and analysis based on L18 Taguchi orthogonal arrays are conducted. This paper demonstrates that the Taguchi-based system enables the wire EDM process to produce (1) high precision parts with an average of 0.6601 inches dimension, while the desired dimension is 0.6600 inches; and (2) surface roughness of 1.7322 microns which is significantly improved from 2.8160 microns.

Keywords: Taguchi parameter design, surface roughness, dimensional accuracy, Wire EDM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1034
29 Taguchi-Based Six Sigma Approach to Optimize Surface Roughness for Milling Processes

Authors: Sky Chou, Joseph C. Chen

Abstract:

This paper focuses on using Six Sigma methodologies to improve the surface roughness of a manufactured part produced by the CNC milling machine. It presents a case study where the surface roughness of milled aluminum is required to reduce or eliminate defects and to improve the process capability index Cp and Cpk for a CNC milling process. The six sigma methodology, DMAIC (design, measure, analyze, improve, and control) approach, was applied in this study to improve the process, reduce defects, and ultimately reduce costs. The Taguchi-based six sigma approach was applied to identify the optimized processing parameters that led to the targeted surface roughness specified by our customer. A L9 orthogonal array was applied in the Taguchi experimental design, with four controllable factors and one non-controllable/noise factor. The four controllable factors identified consist of feed rate, depth of cut, spindle speed, and surface roughness. The noise factor is the difference between the old cutting tool and the new cutting tool. The confirmation run with the optimal parameters confirmed that the new parameter settings are correct. The new settings also improved the process capability index. The purpose of this study is that the Taguchi–based six sigma approach can be efficiently used to phase out defects and improve the process capability index of the CNC milling process.

Keywords: CNC machining, Six Sigma, Surface roughness, Taguchi methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1017
28 Effect of Drawbar Force on the Dynamic Characteristics of a Spindle-Tool Holder System

Authors: Jui-Pui Hung, Yu-Sheng Lai, Tzuo-Liang Luo, Kung-Da Wu, Yun-Ji Zhan

Abstract:

This study presented the investigation of the influence of the tool holder interface stiffness on the dynamic characteristics of a spindle tool system. The interface stiffness was produced by drawbar force on the tool holder, which tends to affect the spindle dynamics. In order to assess the influence of interface stiffness on the vibration characteristic of spindle unit, we first created a three dimensional finite element model of a high speed spindle system integrated with tool holder. The key point for the creation of FEM model is the modeling of the rolling interface within the angular contact bearings and the tool holder interface. The former can be simulated by a introducing a series of spring elements between inner and outer rings. The contact stiffness was calculated according to Hertz contact theory and the preload applied on the bearings. The interface stiffness of the tool holder was identified through the experimental measurement and finite element modal analysis. Current results show that the dynamic stiffness was greatly influenced by the tool holder system. In addition, variations of modal damping, static stiffness and dynamic stiffness of the spindle tool system were greatly determined by the interface stiffness of the tool holder which was in turn dependent on the draw bar force applied on the tool holder. Overall, this study demonstrates that identification of the interface characteristics of spindle tool holder is of very importance for the refinement of the spindle tooling system to achieve the optimum machining performance.

Keywords: Dynamic stiffness, Drawbar force, Interface stiffness, Spindle-tool holder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2425
27 Simulation of Static Frequency Converter for Synchronous Machine Operation and Investigation of Shaft Voltage

Authors: Arun Kumar Datta, M. A. Ansari, N. R. Mondal, B. V. Raghavaiah, Manisha Dubey, Shailendra Jain

Abstract:

This study is carried out to understand the effects of Static frequency converter (SFC) on large machine. SFC has a feature of four quadrant operations. By virtue of this it can be implemented to run a synchronous machine either as a motor or alternator. This dual mode operation helps a single machine to start & run as a motor and then it can be converted as an alternator whenever required. One such dual purpose machine is taken here for study. This machine is installed at a laboratory carrying out short circuit test on high power electrical equipment. SFC connected with this machine is broadly described in this paper. The same SFC has been modeled with the MATLAB/Simulink software. The data applied on this virtual model are the actual parameters from SFC and synchronous machine. After running the model, simulated machine voltage and current waveforms are validated with the real measurements. Processing of these waveforms is done through Fast Fourier Transformation (FFT) which reveals that the waveforms are not sinusoidal rather they contain number of harmonics. These harmonics are the major cause of generating shaft voltage. It is known that bearings of electrical machine are vulnerable to current flow through it due to shaft voltage. A general discussion on causes of shaft voltage in perspective with this machine is presented in this paper.

Keywords: Alternators, AC-DC power conversion, capacitive coupling, electric discharge machining, frequency converter, Fourier transforms, inductive coupling, simulation, Shaft voltage, synchronous machines, static excitation, thyristor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5981
26 Periodontal Disease or Cement Disease? New Frontier in the Treatment of Periodontal Disease in Dogs

Authors: C. Gallottini, W. Di Mari, A. Amaddeo, K. Barbaro, A. Dolci, G. Dolci, L. Gallottini, G. Barraco, S. Eramo

Abstract:

A group of 10 dogs (group A) with Periodontal Disease in the third stage, were subjected to regenerative therapy of periodontal tissues, by use of nano hydroxy apatite (NHA). These animals induced by general anesthesia, where treated by ultrasonic scaling, root planning, and at the end by a mucogingival flap in which it was applied NHA. The flap was closed and sutured with simple steps. Another group of 10 dogs (group B), control group, was treated only by scaling and root planning. No patient was subjected to antibiotic therapy. After three months, a check was made by inspection of the oral cavity, radiography and bone biopsy at the alveolar level. Group A showed a total restitutio ad integrum of the periodontal structures, and in group B still mild gingivitis in 70% of cases and 30% of the state remains unchanged. Numerous experimental studies both in animals and humans have documented that the grafts of porous hydroxyapatite are rapidly invaded by fibrovascular tissue which is subsequently converted into mature lamellar bone tissue by activating osteoblast. Since we acted on the removal of necrotic cementum and rehabilitating the root tissue by polishing without intervention in the ligament but only on anatomical functional interface of cement-blasts, we can connect the positive evolution of the clinical-only component of the cement that could represent this perspective, the only reason that Periodontal Disease become a Cement Disease, while all other clinical elements as nothing more than a clinical pathological accompanying.

Keywords: Nanoidroxiaphatite, Parodontal Disease, Rigenerative Therapy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
25 Linear Prediction System in Measuring Glucose Level in Blood

Authors: Intan Maisarah Abd Rahim, Herlina Abdul Rahim, Rashidah Ghazali

Abstract:

Diabetes is a medical condition that can lead to various diseases such as stroke, heart disease, blindness and obesity. In clinical practice, the concern of the diabetic patients towards the blood glucose examination is rather alarming as some of the individual describing it as something painful with pinprick and pinch. As for some patient with high level of glucose level, pricking the fingers multiple times a day with the conventional glucose meter for close monitoring can be tiresome, time consuming and painful. With these concerns, several non-invasive techniques were used by researchers in measuring the glucose level in blood, including ultrasonic sensor implementation, multisensory systems, absorbance of transmittance, bio-impedance, voltage intensity, and thermography. This paper is discussing the application of the near-infrared (NIR) spectroscopy as a non-invasive method in measuring the glucose level and the implementation of the linear system identification model in predicting the output data for the NIR measurement. In this study, the wavelengths considered are at the 1450 nm and 1950 nm. Both of these wavelengths showed the most reliable information on the glucose presence in blood. Then, the linear Autoregressive Moving Average Exogenous model (ARMAX) model with both un-regularized and regularized methods was implemented in predicting the output result for the NIR measurement in order to investigate the practicality of the linear system in this study. However, the result showed only 50.11% accuracy obtained from the system which is far from the satisfying results that should be obtained.

Keywords: Diabetes, glucose level, linear, near-infrared (NIR), non-invasive, prediction system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 818
24 Interoperable CNC System for Turning Operations

Authors: Yusri Yusof, Stephen Newman, Aydin Nassehi, Keith Case

Abstract:

The changing economic climate has made global manufacturing a growing reality over the last decade, forcing companies from east and west and all over the world to collaborate beyond geographic boundaries in the design, manufacture and assemble of products. The ISO10303 and ISO14649 Standards (STEP and STEP-NC) have been developed to introduce interoperability into manufacturing enterprises so as to meet the challenge of responding to production on demand. This paper describes and illustrates a STEP compliant CAD/CAPP/CAM System for the manufacture of rotational parts on CNC turning centers. The information models to support the proposed system together with the data models defined in the ISO14649 standard used to create the NC programs are also described. A structured view of a STEP compliant CAD/CAPP/CAM system framework supporting the next generation of intelligent CNC controllers for turn/mill component manufacture is provided. Finally a proposed computational environment for a STEP-NC compliant system for turning operations (SCSTO) is described. SCSTO is the experimental part of the research supported by the specification of information models and constructed using a structured methodology and object-oriented methods. SCSTO was developed to generate a Part 21 file based on machining features to support the interactive generation of process plans utilizing feature extraction. A case study component has been developed to prove the concept for using the milling and turning parts of ISO14649 to provide a turn-mill CAD/CAPP/CAM environment.

Keywords:

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1949
23 Wear and Friction Analysis of Sintered Metal Powder Self Lubricating Bush Bearing

Authors: J. K. Khare, Abhay Kumar Sharma, Ajay Tiwari, Amol A. Talankar

Abstract:

Powder metallurgy (P/M) is the only economic way to produce porous parts/products. P/M can produce near net shape parts hence reduces wastage of raw material and energy, avoids various machining operations. The most vital use of P/M is in production of metallic filters and self lubricating bush bearings and siding surfaces. The porosity of the part can be controlled by varying compaction pressure, sintering temperature and composition of metal powder mix. The present work is aimed for experimental analysis of friction and wear properties of self lubricating copper and tin bush bearing. Experimental results confirm that wear rate of sintered component is lesser for components having 10% tin by weight percentage. Wear rate increases for high tin percentage (experimented for 20% tin and 30% tin) at same sintering temperature. Experimental results also confirms that wear rate of sintered component is also dependent on sintering temperature, soaking period, composition of the preform, compacting pressure, powder particle shape and size. Interfacial friction between die and punch, between inter powder particles, between die face and powder particle depends on compaction pressure, powder particle size and shape, size and shape of component which decides size & shape of die & punch, material of die & punch and material of powder particles.

Keywords: Interfacial friction, porous bronze bearing, sintering temperature, wear rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3932